archives-ouvertes

Partition Participant Detector with Dynamic Paths in
MANETS

Luciana Arantes, Pierre Sens, Gaél Thomas, Denis Conan, Léon Lim

» To cite this version:

Luciana Arantes, Pierre Sens, Gaél Thomas, Denis Conan, Léon Lim. Partition Participant Detector
with Dynamic Paths in MANETs. [Research Report] RR-7002, INRIA. 2009, pp.18. <inria-00407685>

HAL Id: inria-00407685
https://hal.inria.fr /inria-00407685
Submitted on 27 Jul 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00407685
https://hal.archives-ouvertes.fr

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMAIQUE

Partition Participant Detector with Dynamic Pathsin
MANETSs

Luciana Arantes — Pierre Sens — Gael Thomas — Denis Conan -# Liéo

N° 7002
Aodt 2009

apport
derecherche

ISRN INRIA/RR--7002--FR+ENG

ISSN 0249-6399

INSTITUT NATIONAL

DE RECHERCHE centre de recherche
EN INFORMATIQUE ;‘(I N RIA PARIS - ROCQUENCOURT

ET EN AUTOMATIQUE

Partition Participant Detector with Dynamic
Paths in MANETS

Luciana Arantes , Pierre Sens , Gael Thomas [l , Denis Conan ,
Léon Lim [

Théme : Réseaux, systémes et services, calcul distribué
Equipe-Projet Regal

Rapport de recherche n® 7002 — Aott 2009 — I8 pages

Abstract: Mobile ad-hoc networks, MANETS, are self-organizing and very dy-
namic systems where processes have no global knowledge of the system. Due
to node failures, mobility, disconnection and new arrivals, the network is not
fully connected and it is not always possible to statically establish end-to-end
paths between nodes. In this paper, we propose a model that characterizes the
dynamics of MANETS in the sense that it considers that paths between nodes
are dynamically built and the system can have infinitely many processes but the
network may present finite stable partitions. We also propose an algorithm that
implements an eventually perfect partition participant detector $PD which
eventually detects the participant nodes of stable partitions. It is character-
ized by both the strong partition participant completeness and eventual strong
partition participant accuracy properties.

Key-words: Participant detector, MANET, Partitionable networks, Models
for dynamic systems

* LIP6 - University of Paris 6 - INRIA
T Institut Télécom, Télécom & Management Sud Paris, UMR CNRS Samovar

Centre de recherche INRIA Paris — Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chd3adgx
Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Détecteur des participants de partitions dans les
réseaux MANETSs en utilisant des chemins
dynamiques

Résumé : Les réseaux mobiles sans fils tels que les MANETS sont des systémes
trés dynamiques et auto-organisants ot les processus n’ont pas une connaissance
globale du systéme. A cause des défaillances des nceuds, de leurs déconnexions
et arrivées, le réseau ne peut étre a tout moment complétement connecté et
il n’est pas toujours possible d’établir des chemins statiques entre les noeuds.
Dans ce rapport, nous proposons un modéle pour caractériser la dynamicité des
MANETs. Notre modéle considére des chemins construits dynamiquement entre
les nceuds avec un nombre infini de processus. Cependant, nous supposons qu’il
existe des partitions stables et finies. Nous proposons aussi un algorithme qui
implémente un détecteur des participants de partitions ultimement parfait $PD
qui détecte & terme tous les participants des partitions stables. Ce détecteur est
caractérisé par les deux propriétés de complétude forte et de justesse & terme
forte sur les participants des partitions.

Mots-clés : Détecteur de participants, MANET, Réseaux partionnables, Mo-
déles pour les systémes dynamiques

Partition Participant Detector 3

1 Introduction

A mobile ad hoc network (MANET) is a self-organized dynamic system com-
posed of mobile wireless nodes. It lacks a fixed infrastructure. Nodes do not
have a global knowledge of the system and the number of participant nodes is
unknown. The network is not fully connected and a node can only send mes-
sages to nodes that are within its transmission range. Hence, it may be that a
message sent by a node should be routed through a set of intermediate nodes
until reaching the destination node. Furthermore, links between nodes are con-
sidered unidirectional. For instance, it might happen that a node can receive
a message from another node but has insufficient remaining energy to send it
back a message.

Due to arbitrary failures, disconnections, arrivals, departures, or node move-
ments, a MANET is characterized as an extremely dynamic system where links
between nodes change over time. Thus, the temporal variations in the network
topology implies that a MANET can not be viewed as a static connected graph
over which paths between nodes are established before the sending of a message.
A path between two nodes is in fact dynamically built, i.e., a link between two
intermediate nodes of a path is not necessarily established beforehand but when
one node sends a message to the following one in the path. Another impact
of the dynamics of MANET is that lack of links between nodes partition them
into components. A MANET is thus a partitionable system [13], i.e., a system
in which nodes that do not crash or leave the system might not be able of com-
municating between themselves. Other examples of partitionable MANETS are
those mobile networks where nodes are sparsely distributed (sparse MANETS)

Collaborative applications [f], distributed monitoring [16], resource alloca-
tion management [2] are examples of applications that support partitioning and
can thus go on running in multiple partitions (components). However, such par-
titions must present some eventual stability (or a stability whose duration is long
enough) in order to ensure that those applications can progress and terminate.
When some stability conditions eventually take place for some set of processes,
the latter forms a partition whose members are stable in the sense that they
do neither crash nor leave the partition, and new members are not accepted.
Nevertheless, we consider that nodes can move inside the partition. Members of
the partition are mutually reachable from each other through links that do not
lose messages and that ensure that a message arrives within a bounded delay.
In this paper, we denote such a partition a stable partition. Notice that it may
happen that some nodes (e.g., a mobile node that keeps on moving) will never
join a stable partition, i.e., the MANET may present some eventually “stable
regions” or “connectivity islands” while the rest of the network has a dynamic
behavior where a stable connectivity among nodes is not possible.

Motivations of the paper: The above discussion shows that there is a need
for a model that takes into account the dynamics of MANETS, as well as their
“stable regions”. In other words, a MANET should be modeled as a dynamic
system where several stable partitions, not completely isolated from others, can
eventually exist. Furthermore, in such a context it would also be interesting to
be able to detect the existence of such stable partitions, i.e., to provide an even-
tually perfect partition participant detector. Participant detectors are oracles

RR n°® 7002

4 Arantes € Sens € Thomas & Conan € Lim

associated with each process. The invocation of the oracle by a process gives the
set of processes that belongs to its partition. A participant detector can make
mistakes, but if a process p belongs to a stable partition eventually and perma-
nently, it will obtain the set of processes that belong to its partition. Similarly
to failure detectors [8], the eventually perfect partition participant detector is
thus characterized by both the strong partition participant completeness and
eventual strong partition participant accuracy properties.

A second important motivation for our work was Chockler et al.’s [TI0] work
where the authors specify group membership service for partitionable systems.
Basically, a group membership service specifies the view a process has on the
current component (i.e., partition) that it belongs to. They argue that fault
tolerant applications on top of a partitionable system usually rely on such a ser-
vice. Contrarily to our work, they consider an asynchronous static distributed
system composed of N processes which is fully connected. A stable component
is defined by the authors as “a set of processes that are eventually alive and con-
nected to each other, and the link from any process in this set to any process
outside the set is down”. It is to some extent similar to stable partition except
that processes of a stable component do not communicate to the other processes
of the network. According to them, the liveness properties of membership ser-
vice for partitionable system must hold only in stable components. Moreover,
this property ensures that each process of a stable component installs a final view
that corresponds to the members of such a component. This is called a Precise
Membership. On the other hand, the authors state that the latter can only be
guaranteed for a stable component if an eventually perfect partition participant
detector] is provided.

Contributions of the paper: Its contributions are threefold: (1) A model
that characterizes as much as possible the behavior, dynamics, and the men-
tioned “stability per region” of MANETs. It also defines the conditions that
the system must satisfy for supporting stable partitions. Our model considers
that infinitely many processes can exist in the system but stable partitions are
finite. Nodes do not have a global knowledge of the system, the network is not
fully connected, and path between nodes are dynamically built over time; (2) an
eventually perfect partition participant detector whose algorithm considers our
proposal model. It has been inspired by the algorithm proposed by Aguilera
et al. in [I]; (3) a support for Chockler et al.’s requirements necessary for a
possible implementation of a precise membership service on top of a partition-
able MANET system. Notice that the construction of the membership service
itself for partitionable systems is not the focus of this paper. Our aim is just
to provide a support for those partition-aware applications that have been built
on top of Chockler’s specification for portability sake towards MANET.

The rest of this paper is organized as follows. Section 2] defines the dynamic
model that characterizes the MANET and the existence of stable partitions.
Our eventually perfect partition participant detector algorithm is presented in
Section Bl Finally, some related works are described in Section Bl and Section
concludes the paper.

Ldenoted eventually perfect failure detector in the authors’ paper.

INRIA

Partition Participant Detector)

2 System Model

We consider a dynamic distributed system S composed of infinitely many mo-
bile nodes. Considering one process per node, the system consists thus of an
infinite countable set II of processes. Contrarily to a static environment, in a
dynamic anonymous system, processes do not, know II.

Processes: There is one process per node and they communicate by message-
passing through an underlying wireless network. The words node and process are
therefore interchangeable. Processes have unique and totally ordered identifiers,
i.e., Vp € II, p is the process identifier (pid). A process knows its identity but
does not necessarily know the identities of the other processes.

The topology of the network is dynamic due to node arrivals, departures,
crashes, and mobility. Processes can fail by crashing. A correct process is a
process that does not crash during a run; otherwise, it is faulty. A faulty node
will eventually crash and does not recover.

Nodes can dynamically enter the system or leave it (voluntarily disconnect
themselves from the system). A correct process that voluntarily disconnects
leaves the system. A process that leaves the system re-enters it with a new
identity (pid) and is considered as a new process.

Nodes can also be mobile and they can keep continuously moving and paus-
ing. When a node moves, its neighborhood may change and, in consequence,
the set of logical links. Mobility can lead to involuntary disconnections when a
process is isolated from other processes.

Due to node movements, failures, arrivals or departures, links come up and
down over the time. Thus, paths between two nodes are built dynamically as
far as connectivity between intermediate nodes are established. Furthermore,
since a process may not know the identity of the other processes, it cannot send
a point-to-point message to them. It can just broadcast a message which will be
received by those nodes that are within in its transmission range. Finally, links
between nodes are considered unidirectional. For instance, it might happen that
a node can receive a message from another node but has insufficient remaining
energy to send it back a message.

Processes execute by taking steps. Each process has a local clock that count
the number of step since a fixed date. Processes are considered synchronous in
the sense that we assume that there are lower and upper bounds on the rate of
execution (number of steps per time unit) of any non-faulty process. Thus, to
simplify our model and without loss of generality, we assume that local process-
ing takes no time. Only message transfers take time.

Dynamic Paths: To simplify the presentation of the model, we consider the
existence of a discrete global clock which is not accessible to the processes. We
take the range 7 of the clocks’ tick to be the set of natural numbers.

One of the goals of our model is to define dynamic paths, i.e., a concept
of end-to-end connectivity through transfer of messages along a sequence of
processes.

We assume that our system does not modify the messages they carry, neither
generate spontaneous messages nor duplicate them. Fach message m has a
unique identifier id,,. The following integrity property is satisfied: ¢ receives a

RR n°® 7002

6 Arantes € Sens € Thomas & Conan € Lim

message m from p at most once and only if p previously sent m to q. Messages
can be delivered in out of order. We define M as the set of all possible messages.
We consider Lamport’s happened-before relation between events [I4]: a — b
if event a causally precedes event b. Let send,(m) be the sending event of m
on process p and recy(m) be the reception event of message m on p.
We also define F a set of functions from II x M to M which takes a process

p and a message m as input and outputs a message m’ = f(p,m) def fp(m).
Elements of F model algorithms executed by processes. Notice that the output
of f, can depend upon the state of p.

At first, we define the notion of reachability: a process g being reachable
from p at time ¢t means that if p sends a message m at time ¢ then ¢ receives a
message that is causally dependent upon m. More formally:

Definition 1. Reachability: V(p,q,t,m, f) € IxIIxT x M x F, q is reachable
from p at time t for the message m with the algorithm f: if ¢ = p or if there
exists send,(m) event at time t, then 3(p1,p2,...,pn) € II" with p1 = p and
Pn = q, and I(my,ma, ..., mp_1) € ML with m = my such that:

(1) VYie[l,n—1], sendy,(m;) — recy,,, (m;)
(2) Vie [2an - 1]’ m; = fpi(mi—l)

We denote Sp q:m,r the set of sequences of processes (pi,ps,...,pn) that
satisfy the above definition. For all P = (pi)icpi,n] € Sp.q.tm.s, we define
trec(P,t, m, f) the time at which ¢ receives m,,_1 and we define mrec(P,t,m, f) =
Mp—1-

It is important to notice that reachability does not require an end-to-end
link between p and g at time ¢. The link is indeed built over the time.

We can now define the concept of dynamic path which models asynchronous
end-to-end connectivity in a MANET.

Definition 2. Dynamic path (noted p ~; q): V(p,q,t) € IIx I x T there exists
a dynamic path between p and q at time t: if Y(m, f) € M X F, Sp qt.m.f # 0.

We also define the concept of timely dynamic path where communication
delay between processes of such a path is bounded.

Definition 3. Timely dynamic path (noted pas.q): there exists 0pq such that
P q=>V(m, f) € M xF,3P € 8y q.t,m,5 such that trec(P,t,m, f) —t < §pq.

Moreover, we define a useful property that ensures that a node appears at
most once in a timely dynamic path.

Definition 4. Simple timely dynamic path (noted p«zth) : pseq and 3(pi)iepn) €
Sp.atom.g : (0 £ J = pi # pj) and trec((pi)icpng t,m, f) —t < dpg-

To summarize our definitions, we have pjs,tq = paq & q is reachable from
p at time t for all messages m and all algorithms f.

Eventual Group Stabilization: As previously explained, a membership ser-
vice on top of a partitionable network can only be provided for those groups
of processes which present an eventual stabilization. We denote each of these
groups a stable partition. Basically, the stable partition of a process p, denoted

INRIA

Partition Participant Detector 7

OPART),, is composed of the same set of correct processes that can always
communicate to each other through simple timely dynamic paths. Thus, pro-
cesses within {$PART, neither crash nor leave it, and new node arrivals in the
partition do not take place. However, dynamic paths can evolve and processes
can move inside the stable partition as long as they keep being connected by a
simple timely dynamic path.

At first, we define the set of nodes that can be mutually reachable through
a process p at a time ¢. These nodes form cycles which includes p. The nodes
that compose the cycles of p, denoted by Cycle,(t), are then defined as follows:

Definition 5. Cycle,(t) = {g | 3(m, f,n) € M x F x N : Ipi)icnn €
Sp,p,t,m,f :dk € [1,71] Ipp = q},

Definition 6. We define the stability property of a node p if there exists t such
that:

(1) Yt >t: Cycley(t') = Cycley(t)

(2) Yt >t:qr e Cycey(t') = q<spr

(3) 3N :Vity: |Cycley(ty)] < N

A node p is {stable if Vg € Cycley(t), q has the stability property.

Axiom 1 defines that the set of nodes of cycles of p does not change whereas
Axiom 2 imposes the existence of timely links between all nodes of these cycles.
Axiom 3 fixes a bound on cycles size since we make no assumption on the total
number of nodes. Finally, a node is {stable if all nodes of its cycles are also
O stable.

Now, we define the Stabilization Time of a {stable node as the minimal time
ST, that satisfies the above definition. ST}, is unknown.

A stable partition, denoted by $PART), of a {stable process p, is defined as
follows:

Definition 7. GPART, < Cycle,(ST,)

It is worth remarking that nodes of a stable partition are not necessarily iso-
lated from other nodes of the network. Depending on the network connectivity,
it might be the case that one or more nodes of a stable partition can send or
receive messages to nodes which do not belong to their partition.

state 1 state 2 state 3

Figure 1: Illustration of a {stable process

RR n°® 7002

8 Arantes € Sens € Thomas & Conan € Lim

Figure [illustrates the definition of {>stable nodes. All nodes on the figure
are correct and the graph evolves from state 1 to state 3 and then remains
in state 3. Solid arrows correspond to timely dynamic paths, otherwise the
line is dashed. Before state 3, none of the nodes are {stable and it does not
exist any stable partition since there is no subset of processes that satisfies
Definition Bl On the other hand, as there always exist timely paths between
nodes a, b and e after state 3, these nodes are {>stable and form a partition, i.e.,
OPART, = OPART, = OPART,.

3 Eventually Perfect Partition Participant De-
tector

Based on the system model defined in the previous section, we present in this
section an algorithm for detecting the participants of a partition and then a
sketch of proof which shows that this algorithm implements an eventually per-
fect partition detector $PD. We also prove that our detector supplies the
requirements for providing precise membership.

Each process p has locally an eventually perfect partition participant detec-
tor, denoted >PD. When invoked, $PD returns to p the set of processes that
are mutually reachable from p, i.e., those processes that it believes to belong to
its partition. If p is a {stable node, eventually, $PD will return the nodes that
belong to the stable partition G PART),.

Similarly to failure detectors, {$PD is characterized by both the completeness
and the accuracy properties. Completeness characterizes the capability of the
{stable node p of constructing an output set which contains the identification
of the processes that belong to its partition while the accuracy characterizes the
capability of that process of not including in such a set those processes which
are not in its partition.

e Strong partition participant completeness: For each {stable process p, if
q € OPART,, then eventually p considers ¢ as a member of its stable
partition permanently.

e Fuventual strong partition participant accuracy: For each {stable process
p, if ¢ ¢ OPART,, then eventually p will no longer consider ¢ as a member
of its stable partition.

Note that if p is not a <>stable node the above properties not necessarily
hold, i.e., the “eventually” and “permanently” characteristics of the properties
can not be ensured.

Since processes do not know the identity of the other processes, they cannot
send point-to-point messages to them. Thus, the only sending primitive pro-
vided to process p is the broadcast,, primitive that allows p to send a message
to all its current neighbors (nodes within its transmission range) without nec-
essarily knowing their identity. Due to the dynamics of the system the set of
neighbors of p can change during a run. A second remark is that a node ¢ that
received a broadcast message from p is not necessarily capable of broadcasting
a message to p since links are unidirectional.

INRIA

Partition Participant Detector 9

Algorithm 1 Implementation of Eventually Perfect Partition Participant De-
tector

1 Init:

2 Begin

3 { Processes supposed to be in SPART), }
4 inPart — {p}; output — {p};

5 Timeout «— «;

6 set timer to Timeout;

7 broadcast, g ((ALIV E, p));

8 End

9

10 Task T1: upon reception of ((ALIV E,path))
11 Begin

12 If first node in path = p then

13 For all q: g appears after p in path do
14 | | inPart— inPartU{q};

15 Else

16 If p appears at most once in path then
17 | broadcast,pg ((ALIV E, path - p));

18 End

19

20 Task T2: upon expiration of Timeout

21 Begin

22 If output # inPart then

23 I Timeout « Timeout + 1;

24 output «— inPart;

25 set timer to Timeout;

26 inPart — {p};

27 broadcast, g ((ALIV E, p));

28 End

20

30 Task T3: when membership() is invoked by the upper layer
31 Begin

32 | return(output);

33 End

RR n°® 7002

10 Arantes € Sens € Thomas & Conan € Lim

3.1 Algorithm Description

Algorithm [l implements an eventually perfect partition participant detector
{PD for process p. By querying its local $PD (Line Bl), process p obtains the
current knowledge that the former has of the set of processes that belong to its
partition (Line BZ).

The local detector executes an initialization phase and then two concurrent
tasks. At the initialization phase (Lines BHI), it initializes its timer and sends
to all its neighbors an ALIV E message which includes just p.

Task T'1 handles p’s detector reception of an (ALIV E, path) message from
those processes that have p as their neighbor. If path is equal to (p, ...), p knows
that its (ALTV E, p) message was forwarded through a cycle, i.e., all nodes that
appear after p in path are mutually reachable from it (Lines [3HI). Otherwise,
if p does not appear in path or appears just once, p’s detector appends p to path
and forwards it to all its neighbors (Lines [6HI7). Note that p’s detector must
forward the message even if p already appears once since it might be the case
that there exists a cycle between ¢ and r where p belongs both to the simple
path from ¢ to r and the simple path from r to q.

Task T2 is executed whenever the timeout expires. If the new set of nodes
that p’s detector believes to belong to p’s partition (inPart,) is different from
the previous one, it increments the timeout value (Lines E2HZ3)). This means
that, if p is a {stable node, either the ST}, is not reached yet or it is reached
but the timeout value is not enough for the message (ALIV E,p) sent from p
to travel through the longest cycle from p. When both conditions happen, the
set, of processes in inPart, and thus in output, will always be the same. Finally,
in Lines BAHZA p’s detector initializes its timer and the variable inPart and
then broadcasts to all its neighbors an ALIV E message that contains just p as
reachable; as in the initialization phase.

3.2 Sketch of Proof

We present a sketch of proof of both the strong partition participant completeness
and eventual strong partition participant accuracy properties of algorithm [l that
characterize the eventually perfect participant partition detector PD.

For simplicity’s sake of the text, “p’s detector” is just noted as p.

The key of the proof is to show that if eventually and permanently g €
Cycle,(t) then eventually and permanently ¢ € output, (strong partition com-
pleteness); otherwise, there exists a time after which ¢ ¢ output, permanently
(eventual strong partition accuracy).

Definition 8. Let p be a {$stable process. We denote 6, the mazimum of
{6q¢r |(¢,7) € OPART, x GPART,}. The value of 0, exists because the num-
ber of nodes in GPART), is finite: GPART, = Cycle,(ST,) which is bound
by Aziom 3 of Definition [@. Therefore, the number of possible process pairs
(¢,r) of OPART, x QPART, is finite. Moreover, the number of possible 0,y
is also bounded since paths of QPART, are timely (Aziom 2). However, §, is
unknown.

Definition 9. We denote inPart,(t) the value of inPart of process p at time t
and output,(t) the value of output of process p at time t. It is worth mentioning

INRIA

Partition Participant Detector 11

that after the initialization phase where p is added to inPart (Line [), it is
never more removed from inPart.

Lemma 1. Let p be a {stable process and ¢ € GPART,. 3A : Vt > ST, :
" >t :qeinParty(t”) and t”" —t < A.

Proof. Let ¢ € GPART, and t > ST,. If ¢ = p, then permanently g €
output,(t) thanks to the Lines Bl 24l and B3 of the algorithm. Otherwise, by defi-

nition of QPART,, q € Cycley(t) and Axiom 2 of Definition Blimplies that P
We define the message m = (ALIV E, p) and the function f,(msg) = msg-p. Let
P = (pi)ic1,k) € Sp,q.t.m,; be the sequence of processes that belong to a simple
timely path between p and ¢ at time ¢. Let t' = trec(P,t,m, f). By definition,

OPART, = Cycle,(t') and Axiom 2 of Definition Bl implies also that g~syp. We
define the message m’ = (ALIVE,py---pr). Let P' = (pi)icfkn] € Sqp,t.m'.f
be the sequence of processes that belong to a simple timely path between ¢
and p at time ¢'. By the definition of simple paths, each p; appears at most
once in the sequences (p;)iep1,k) and (pi)iejx,n)- We consider now the sequence
(pi)ie[lm]. By construction, p; = p, = p, pr = ¢ and a process appears at most
twice in the sequence.

Notice that for all 4 € [1,n], f,, is equivalent to algorithm [[l This is true
since the condition at Line [[A holds for all p; with ¢ € [2,n — 1] because process
p; appears at most once in (ALIV E p; ---p;—1) since it appears at most twice
in (ALIVE,p1---pi—1-pi-Pn)-

To conclude, p will add px = ¢ in inPart, at t"" = trec(P’,t',m',). More-
over, each of the link is timely and we have therefore ¢/ — ' < (n — k)d, and
t'—t < kbp, ie., t" —t < nd,. Finally, a process appears at most twice in
(Pi)ie[1,n) and each of them is in $PART), which is bounded by N (Axiom 3 of

def

Definition f). We have therefore n < 2N and t” —¢t < A = 2Ng,,. O
Lemma 2. Let p and q be two <{stable processes such that ¢ € GPART),. q is
removed from output, a finite number of times.

Proof. The proof of this Lemma is by contradiction. We suppose that g is
removed an infinite number of times from output,. Thus, ¢ is also infinitely
removed from inPart, since output, is only updated at Line Bl when inPart,, is
assigned to it. However, whenever ¢ is removed from inPart,, Lemma[llensures
that ¢ will be added later in inPart. Hence, at the next timeout expiration after
the addition of ¢ in inPart, the condition inPart, # output, will hold. Due to
our assumption, such a condition will hold an infinite number of times and thus,
because of Lines of the algorithm, the timeout value will grow indefinitely
and will become higher than the A defined in Lemma [l at a time T'.

Since the timeout value is greater than A, the same Lemma [Ml ensures that ¢
will be in inPart, at a time ¢ before the expiration of each timeout. Moreover,
g will remain in inPart, from ¢ to the timeout expiration since processes in
inPart can only be removed at Line of the algorithm. At each timeout
expiration, ¢ will therefore be in inPart and copied to output,. Thus, ¢ will
always remain in output, what is contradictory with the initial assumption. [

Lemma 3. Let p be a {stable process and ¢ € $PART,. 3t > ST, :Vt' >t:
q € outputy(t).

RR n°® 7002

12 Arantes € Sens € Thomas & Conan € Lim

Proof. Thanks to Lemma[¢ is removed from output, a finite number of times.
Let ¢ be the last time of its removal. After ¢, ¢ will remain in output,. O

Lemma 4. Strong partition completeness: Let p be a {stable process.
Jt:Vt' >t: GPART, C output,(t').

Proof. Lemma Bl shows that for every ¢ such that ¢ € $PART,, there exists a
time t,, such that ¢ remains definitely in output, after t,. GPART, is finite
(Axiom 3 of Definition[fl) and there exists thus a time ¢t = max{t,|¢ € OQPART),}
such that all processes of G PART), remain definitely in output,. (|

Lemma 5. Let p be a {stable process. There exists a time T such that if p
receives an alive message of the form (ALIVE p-py---pn—1) at a timet' > T,
then Vi € [2,n — 1], p; € OPART,.

Proof. First, remark that if p receives a message of the form (ALIVE,p -
P2+ Pn—1) at a time t,, then there exists t. such that Vi € [2,n — 1], p; €
Cyclep(te). Indeed, the reception of the message at ¢, implies its emission at ¢,
and the content p - ps - - p,—1 of the message defines its path which is a cycle.

We consider now the set ALIV ES,(t.) the set of alive messages of the form
(ALIVE,p-ps---pp_1) received by p such that Vi € [2,n — 1], p; € Cycle,y(te).
This set is bounded because Cycle,(te) is bounded for all ¢, (Axiom 3 of Def-
inition B) and because a process does not appear more than twice (Line [IG of
the algorithm). For all ¢, we can therefore consider the reception time last(t.)
in p of the last message of ALIV ES)y(t.).

We define T' = maz{last(t.) | te < ST,}. By construction of T, if p receives
an alive message of the form (ALIVE,p-ps---pn—1) at ¢ > T, it was clearly
emitted by p at a time t;, > ST,,. Moreover, the initial remark of the proof
shows that Vi € [2,n — 1], p; € Cyclep(ts). Axiom 2 of Definition B implies
that Cycley(ts) = Cycley(ST,) = OGPART, and we have Vi € [2,n — 1], p; €
OPART,.

(I

Lemma 6. Let p be a {$stable process, Ju : V' > u : ¢ € inPart,(t') = q €
OPART,.

Proof. Let t be the bounded time of the previous lemma and w be the next
timeout expiration after ¢. If ¢ € inPart,(t') with ¢’ > u, ¢ was added between
u and ¢’ upon the reception of a message (ALIVE,py -+ p,—1) with p; = p by
Line [[d of the algorithm. The previous lemma ensures that ¢ € $PART),, what
concludes the demonstration. O

Lemma 7. Eventual strong partition accuracy: Let p be a {stable process.
Jt:Vit >t:Yq¢ PART, = q & output,(t').

Proof. Follows directly from Lemma B O

Theorem 1. Letp be a $stable process. Ju € T =Vt > u,Vt' > u : output,y(t') =
output,(t) = GPART,.

Proof. LemmaHshows that there exists a time u; such that V¢ > u;, QPART, C
output,(t) while Lemma [l shows that there exists a time v such that V¢ >
v @ inParty(t) C OPART,. Moreover, output, is a copy of inPart, when

INRIA

Partition Participant Detector 13

the timeout expires (Line 2. We define uy as the time of the first timeout
expiration after the time v. V¢ > ug, output,(t) C GPART,. Finally, we define
u = maz{ui,us}, and we have V¢t > wu, Vt' > u, output,(t) = QPART, =
output,(t'). O

Theorem 2. Algorithm[implements a partition participant detector OPD for
{stable processes.

Proof. Consider a {stable process p. To satisfy the strong partition participant
completeness property, we must prove that eventually $PART), is permanently
included in the output set of p. This claim follows directly from Lemma Hl
To satisfy the eventual strong partition participant accuracy property, we must
prove that there exists a time ¢ after which ¢ ¢ $PART, is no longer included in
the ouptut set of p. This claim follows directly from Lemma [d and the theorem
follows.

O

3.3 Precise Membership

In [T0], Chockler et al. consider a static distributed partitionable network com-
posed of N processes fully connected by unidirectional links. Nodes and links
can crash. A stable component is defined to be a set of correct processes that
are eventually connected to each other and for which links to them from all the
other processes are down. Their definition of stable component corresponds to
our stable partition definition except that stable components are isolated from
the other nodes of the network.

The authors state that the liveness properties of membership service for
partitionable system must hold only in stable components and if an eventually
perfect participant detector is provided. In this case, the service offers a precise
membership, i.e., it delivers the same last view to all members of a stable com-
ponent: for every stable component C, there exists a view V with the members
of C' such that V' is the last view of every process in C.

We can easily verify that our definition of stable partition and eventually
perfect participant detector supply the requirements for providing precise mem-
bership in MANETS.

Lemma 8. If p is a {stable process thenVq € GPART,, QPART, C GPART,.
Proof. We define t = max{ST,, ST;}. Let (¢,7) € GPART, x $PART,. We

will show that » € $PART,. First, ¢ > ST, and we have therefore (¢,7) €

Cycley(t) x Cyclep(t). The axiom (2) of the definition [ensures that qser. Let
(m, f) € M x F. By definition of dynamic path, 3P = (p;)icqi,k) € Sqr t,m,f-
Let m’ = mrec(P,t,m, f) and t' = trec(P,t,m, f). We have ¢ € QPART, =
Cycley(t') and r € GPART, = Cycle,(t') and the axiom (2) ensures also that
raspq: there exists P/ = (Pi)iclkn] € Srqtr.f.(mr), - We verify immediatly that
(Pi)icpi,n] € Sq.q.t.m,s and therefore that r € Cycley(t). Finally, t > ST, and
r € OPART,. O

Lemma 9. If p is a {stable process thenVq € GPART,, QPART, = GPART,.

RR n°® 7002

14 Arantes € Sens € Thomas & Conan € Lim

Proof. $PART, C OPART, thanks to the lemmaR Moreover, p € QPART),
therefore ¢ is a {stable process and p € GPART,. The previous lemma also
ensures that GQPART, C $PART,. O

Theorem 3. Precise membership. FEventually, $PD, provides the same
last participant view for all members of GPART,

Proof. pis a {stable process. The strong partition completeness and the even-
tual strong partition accuracy of the algorithm ensure that there exists ¢, such
that ¥t > t,,, output,y(t') = OPART,. Vq € $PART,, q is also a {stable pro-
cess and there exists ¢, such that Vt' > t,, output,(t') = OQPART,. The lemma[
ensures that QPART, = QPART, and therefore, after the time max{t,,t,},
we have output, = output, = GPART, = GPART,. O

4 Related Work

Similarly to our approach, some articles, [E], [15], [20], propose a model for
dynamic systems such as MANET or peer-to-peer systems. However, none of
them have considered dynamic construction of paths or the existence of several
stable partitions.

Like in our work, in [I5] the authors state that a dynamic system must
present some stability period in order to guarantee progress and termination
of the computation. However, in their work, there exists just a single reliable
core cluster during a period of stability which consists of the minimal number
of nodes that have to be simultaneously alive during a long enough period in
order for the whole system to be able to progress. Hence, in their approach, it
is not possible to have several stable groups simultaneously as in our approach.
Furthermore, the number of processes in each run is bounded and links are
considered to be bidirectional.

In [20], the authors also consider that a dynamic system can be character-
ized by perturbed periods followed by quiescent periods, i.e., periods where no
more arrivals or departures take place. They then study the problem of overlay
network connectivity in dynamic distributed systems. The paper shows that
there is no protocol that can ensure such a connectivity during perturbed pe-
riods since network partitions can happen. Notice that even if the problem of
network partition is considered during perturbed periods, this work is interested
in the eventual connectivity of the overlay, i.e., a stable period where there is
no partition.

In [], the authors propose a model for dynamic systems where two param-
eters, the number of nodes (in a run or in all runs) and the diameter of the
network, can be characterized (e.g., bounded/unbounded, known,/ unknown)
depending on the dynamics of the system. The first parameter allows to model
continuous arrival and departure of nodes from the system while the second one
allows to circumvent the impossibility of a node to have a global point-to-point
connectivity view of the network. However, their model does not provide a
means for characterizing partitionable networks neither dynamic paths.

In [6], the authors have introduced the notion of evolving graphs in order to
model the temporal dependency of paths in dynamic systems such as MANET
or DTN (disruption tolerant networks). Concisely, an evolving graph is a time-
step indexed sequence of subgraphs, where the subgraph at a given time-step

INRIA

Partition Participant Detector 15

corresponds to the network connectivity at the time interval indicated by the
time-step value. To this end, each node or link has a “presence schedule” that
indicates the moment during which the node takes part to the system. Like
in our model, evolving graphs capture the notion of path over time. However,
evolving graphs are based on time-step schedulers and path over time can not
be characterized as timely. Furthermore, they do not support infinitely many
nodes.

Aguilera et al. present in [I] a heartbeat failure detector, HB, for partition-
able network. The output of the failure detector at each process p is an array
with one entry for each process of the system. The heartbeat sequence of every
process not in the same partition of p is bounded. Our partition participant
detector algorithm is inspired by this work. Contrarily to our approach, in the
authors’ work, the system is considered to be a fully-connected static one, the
number of nodes of the system is known, nodes do not move or leave the system,
and all links are fair lossy. Moreover, the output of HB at p is not the set of
processes that belong to p’s partition.

Chockler et al. [I0] and Babagaolu et al. [B] have extended the definition
of eventually perfect failure detectors to partitionable environments in order to
provide a membership service. Basically, these detectors, as our partition partic-
ipant detector, eventually detect mutual reachability among processes. Similarly
to our approach, in [I0], the failure detector behaves like an eventually perfect
one provided a stable component exists. However, in both works, the considered
partitionable systems are static and initially the network is fully connected.

In [7], the authors define a participant detector for self-organized networks
(MANET). Like in our approach, both the identity and the number of nodes
in the network are not initially known. However, the network is considered
to be always connected through reliable bidirectional links and the participant
detectors are defined by the authors for discussion about the minimal informa-
tion that processes must have about the other participants in order to make
the problem of consensus with unknown membership (CUP) solvable. Thus, a
participant detector neither considers the physical topology of the network nor
possible partitions but just outputs a view of the network.

Nesterenko and Schiper propose in [T the eventual reachability failure de-
tector 'R which outputs a quorum to each process. They define the concept
of a reachabiliy graph R that is a direct graph in which the nodes of R are
the processes of the system and there is an edge from p’ to p in R if the quo-
rum outputted by p contains p’. The authors state that the concept of R
can be extended to partitionable networks if the completness and intersection
properties of R are reduced to processes of the same partition. Although the
assumptions for the considered system are different from ours (the system is not
dynamic, the number and identity of nodes are known, the links are reliable)
and no implementation of (R is given, their approach is similar to ours since
each process outputs a quorum which contains the membership view the process
has of the system or the partition in the case of partitionable systems.

In a previous work [IT], we have proposed an eventual partition failure de-
tector for MANET that uses information provided both by Aguilera et al’s HB
failure detector and a disconnection detector. However, the number of nodes is
known and the solution is neither based on periods of stability nor on dynamic
paths.

RR n°® 7002

16 Arantes € Sens € Thomas & Conan € Lim

Disruption or delay-tolerant networks (DTNs) [I2], opportunistic wireless
access networks [I8], Vehicular ad hoc networks (VANETS) [19] are example of
networks that also present some lack of continuous network connectivity and
thus partitions. Their routing protocols adopt an “store and forward” or a
collaborative opportunity of communication approach by exploiting the concept
of dynamic path over time between source and destination nodes.

5 Conclusion

This paper proposes a model for dynamic networks, such as MANETS, which
considers that the system is anonymous with an infinite set of processes. The
model characterizes the concept of dynamic paths between processes built over
the time as well as the concept of stable partitions, where a finite set of nodes
are connected though timely dynamic paths. Based on this model, we propose
an algorithm for an eventually perfect partition participant detector, $PD,
whose properties of strong completeness and eventual strong accuracy have been
proved. We also show that {PD supplies the requirements for providing precise
membership for partionable networks.

References

[1] M.K. Aguilera, W. Chen, and S. Toueg. Using the Heartbeat Failure Detec-
tor for Quiescent Reliable Communication and Consensus in Partitionable
Networks. Theoretical Computer Science, 220(1):3-30, June 1999.

[2] T. Anker, D. Dolev, and I. Keidar. Fault tolerant video on demand ser-
vices. In In Proceedings of the 19th International Conference on Distributed
Computing Systems, pages 244-252, 1999.

[3] O. Babaoglu, R. Davoli, and A. Montresor. Group communication in parti-
tionable systems: Specification and algorithms. IEEE Trans. Softw. Eng.,
27(4):308-336, 2001.

[4] R. Baldoni, M. Bertier, M Raynal, and S. Tucci Piergiovanni. Looking for
a definition of dynamic distributed systems. In PaCT, pages 1-14, 2007.

[5] K. Birman, R. Friedman, M. Hayden, and I. Rhee. Middleware support for
distributed multimedia and collaborative computing. Softw. Pract. Exper.,
29(14):1285-1312, 1999.

[6] B. Bui-Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest,
and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci.,
14(2):267-285, 2003.

[7] D. Cavin, Y. Sasson, and A. Schiper. Consensus with unknown participants
or fundamental self-organization. In In Proceedings of the 3rd International
Conference on ADHOC-NOW 200/, pages 135-148, 2004.

[8] T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM, 43(2):225-267, 1996.

INRIA

Partition Participant Detector 17

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Yang Chen, Jeonghwa Yang, Wenrui Zhao, M. Ammar, and E. Zegura.
Multicasting in sparse manets using message ferrying. In Wireless Commu-
nications and Networking Conference, 2006. WCNC' 2006. [EEE, volume 2,
pages 691-696, April 2006.

G.V. Chockler, I. Keidar, and R. Vitenberg. Group communication speci-
fications: a comprehensive study. ACM Comput. Surv., 33(4), 2001.

D. Conan, P. Sens, L Arantes, and M. Bouillaguet. Failure, disconnection
and partition detection in mobile environment. In NCA, pages 119-127,
2008.

K. Fall. A delay-tolerant network architecture for challenged internets. In
SIGCOMM ’03: Proceedings of the 2003 conference on Applications, tech-
nologies, architectures, and protocols for computer communications, pages
27-34, 2003.

J. Hihner, D. Dudkowski, P. J. Marron, and K. Rothermel. A quantitative
analysis of partitioning in mobile ad hoc networks. SIGMETRICS Perform.
Ewval. Rev., 32(1):400-401, 2004.

L. Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, 21(7), July 1978.

A. Mostefaoui, M. Raynal, C. Travers, S. Patterson, D. Agrawal, and
A. El Abbadi. From static distributed systems to dynamic systems. In
Proceedings of the 24th IEEE Symposium on Reliable Distributed Systems,
pages 109-118, 2005.

P. Murray. A distributed state monitoring service for adaptive applica-
tion management. In Proceedings of the 2005 International Conference on
Dependable Systems and Networks, pages 200-205, 2005.

M. Nesterenko and A. Schiper. On properties of the group membership
problem. Technical Report TR-KSU-CS-2007-01, jun 2007.

K. A. Phanse and J. Nykvist. Opportunistic wireless access networks. In
AcessNets ’06: Proceedings of the 1st international conference on Access
networks, page 11, 2006.

T. Spyropoulos, K. Psounis, and C.S. Raghavendra. Spray and focus: Effi-
cient mobility-assisted routing for heterogeneous and correlated mobility. In
PERCOMW °07: Proceedings of the Fifth IEEE International Conference
on Pervasive Computing and Communications Workshops, pages 79-85,
2007.

S. Tucci Piergiovanni and R. Baldoni. Connectivity in eventually quiescent
dynamic distributed systems. In LADC, pages 38-56, 2007.

RR n°® 7002

18 Arantes € Sens € Thomas & Conan € Lim

Contents

I__TIntroduction 3

2 System Model 5

EE o Porfoct Portiiion Parhic 5 l g
B._Aleorithm Descriptiod 10
B2 Sketch of Proof . . . - . . . o 10
B.3 Precise Membershig 13

4_Related Work 14

6__Conclusiod 16

INRIA

/<

Centre de recherche INRIA Paris — Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le CheSadgx (France)

Centre de recherche INRIA Bordeaux — Sud Ouest : Domainedisitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble — Rhdne-Alpes : 655,vele 'Europe - 38334 Montbonnot Saint-Ismier
Centre de recherche INRIA Lille — Nord Europe : Parc Scieqi#i de la Haute Borne - 40, avenue Halley - 59650 Villeneuvectj
Centre de recherche INRIA Nancy — Grand Est : LORIA, Techfepé& Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-leés-dyaBedex
Centre de recherche INRIA Rennes — Bretagne Atlantique SARCampus universitaire de Beaulieu - 35042 Rennes Cedex
Centre de recherche INRIA Saclay — ile-de-France : ParcyQusiversité - ZAC des Vignes : 4, rue Jacques Monod - 918920@&edex
Centre de recherche INRIA Sophia Antipolis — Méditerran2604, route des Lucioles - BP 93 - 06902 Sophia Antipolis ®ede

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 hesbay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

	Introduction
	System Model
	Eventually Perfect Partition Participant Detector
	Algorithm Description
	Sketch of Proof
	Precise Membership

	Related Work
	Conclusion

