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Abstra
t: Mobile ad-ho
 networks, MANETs, are self-organizing and very dy-nami
 systems where pro
esses have no global knowledge of the system. Dueto node failures, mobility, dis
onne
tion and new arrivals, the network is notfully 
onne
ted and it is not always possible to stati
ally establish end-to-endpaths between nodes. In this paper, we propose a model that 
hara
terizes thedynami
s of MANETs in the sense that it 
onsiders that paths between nodesare dynami
ally built and the system 
an have in�nitely many pro
esses but thenetwork may present �nite stable partitions. We also propose an algorithm thatimplements an eventually perfe
t partition parti
ipant dete
tor ♦PD whi
heventually dete
ts the parti
ipant nodes of stable partitions. It is 
hara
ter-ized by both the strong partition parti
ipant 
ompleteness and eventual strongpartition parti
ipant a

ura
y properties.Key-words: Parti
ipant dete
tor, MANET, Partitionable networks, Modelsfor dynami
 systems
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Déte
teur des parti
ipants de partitions dans lesréseaux MANETs en utilisant des 
heminsdynamiquesRésumé : Les réseaux mobiles sans �ls tels que les MANETs sont des systèmestrès dynamiques et auto-organisants où les pro
essus n'ont pas une 
onnaissan
eglobale du système. À 
ause des défaillan
es des n÷uds, de leurs dé
onnexionset arrivées, le réseau ne peut être à tout moment 
omplètement 
onne
té etil n'est pas toujours possible d'établir des 
hemins statiques entre les n÷uds.Dans 
e rapport, nous proposons un modèle pour 
ara
tériser la dynami
ité desMANETs. Notre modèle 
onsidère des 
hemins 
onstruits dynamiquement entreles n÷uds ave
 un nombre in�ni de pro
essus. Cependant, nous supposons qu'ilexiste des partitions stables et �nies. Nous proposons aussi un algorithme quiimplémente un déte
teur des parti
ipants de partitions ultimement parfait ♦PDqui déte
te à terme tous les parti
ipants des partitions stables. Ce déte
teur est
ara
térisé par les deux propriétés de 
omplétude forte et de justesse à termeforte sur les parti
ipants des partitions.Mots-
lés : Déte
teur de parti
ipants, MANET, Réseaux partionnables, Mo-dèles pour les systèmes dynamiques



Partition Parti
ipant Dete
tor 31 Introdu
tionA mobile ad ho
 network (MANET) is a self-organized dynami
 system 
om-posed of mobile wireless nodes. It la
ks a �xed infrastru
ture. Nodes do nothave a global knowledge of the system and the number of parti
ipant nodes isunknown. The network is not fully 
onne
ted and a node 
an only send mes-sages to nodes that are within its transmission range. Hen
e, it may be that amessage sent by a node should be routed through a set of intermediate nodesuntil rea
hing the destination node. Furthermore, links between nodes are 
on-sidered unidire
tional. For instan
e, it might happen that a node 
an re
eivea message from another node but has insu�
ient remaining energy to send itba
k a message.Due to arbitrary failures, dis
onne
tions, arrivals, departures, or node move-ments, a MANET is 
hara
terized as an extremely dynami
 system where linksbetween nodes 
hange over time. Thus, the temporal variations in the networktopology implies that a MANET 
an not be viewed as a stati
 
onne
ted graphover whi
h paths between nodes are established before the sending of a message.A path between two nodes is in fa
t dynami
ally built, i.e., a link between twointermediate nodes of a path is not ne
essarily established beforehand but whenone node sends a message to the following one in the path. Another impa
tof the dynami
s of MANET is that la
k of links between nodes partition theminto 
omponents. A MANET is thus a partitionable system [13℄, i.e., a systemin whi
h nodes that do not 
rash or leave the system might not be able of 
om-muni
ating between themselves. Other examples of partitionable MANETs arethose mobile networks where nodes are sparsely distributed (sparse MANETs)[9℄. Collaborative appli
ations [5℄, distributed monitoring [16℄, resour
e allo
a-tion management [2℄ are examples of appli
ations that support partitioning and
an thus go on running in multiple partitions (
omponents). However, su
h par-titions must present some eventual stability (or a stability whose duration is longenough) in order to ensure that those appli
ations 
an progress and terminate.When some stability 
onditions eventually take pla
e for some set of pro
esses,the latter forms a partition whose members are stable in the sense that theydo neither 
rash nor leave the partition, and new members are not a

epted.Nevertheless, we 
onsider that nodes 
an move inside the partition. Members ofthe partition are mutually rea
hable from ea
h other through links that do notlose messages and that ensure that a message arrives within a bounded delay.In this paper, we denote su
h a partition a stable partition. Noti
e that it mayhappen that some nodes (e.g., a mobile node that keeps on moving) will neverjoin a stable partition, i.e., the MANET may present some eventually �stableregions� or �
onne
tivity islands� while the rest of the network has a dynami
behavior where a stable 
onne
tivity among nodes is not possible.Motivations of the paper: The above dis
ussion shows that there is a needfor a model that takes into a

ount the dynami
s of MANETs, as well as their�stable regions�. In other words, a MANET should be modeled as a dynami
system where several stable partitions, not 
ompletely isolated from others, 
aneventually exist. Furthermore, in su
h a 
ontext it would also be interesting tobe able to dete
t the existen
e of su
h stable partitions, i.e., to provide an even-tually perfe
t partition parti
ipant dete
tor. Parti
ipant dete
tors are ora
lesRR n° 7002



4 Arantes & Sens & Thomas & Conan & Limasso
iated with ea
h pro
ess. The invo
ation of the ora
le by a pro
ess gives theset of pro
esses that belongs to its partition. A parti
ipant dete
tor 
an makemistakes, but if a pro
ess p belongs to a stable partition eventually and perma-nently, it will obtain the set of pro
esses that belong to its partition. Similarlyto failure dete
tors [8℄, the eventually perfe
t partition parti
ipant dete
tor isthus 
hara
terized by both the strong partition parti
ipant 
ompleteness andeventual strong partition parti
ipant a

ura
y properties.A se
ond important motivation for our work was Cho
kler et al.'s [10℄ workwhere the authors spe
ify group membership servi
e for partitionable systems.Basi
ally, a group membership servi
e spe
i�es the view a pro
ess has on the
urrent 
omponent (i.e., partition) that it belongs to. They argue that faulttolerant appli
ations on top of a partitionable system usually rely on su
h a ser-vi
e. Contrarily to our work, they 
onsider an asyn
hronous stati
 distributedsystem 
omposed of N pro
esses whi
h is fully 
onne
ted. A stable 
omponentis de�ned by the authors as �a set of pro
esses that are eventually alive and 
on-ne
ted to ea
h other, and the link from any pro
ess in this set to any pro
essoutside the set is down�. It is to some extent similar to stable partition ex
eptthat pro
esses of a stable 
omponent do not 
ommuni
ate to the other pro
essesof the network. A

ording to them, the liveness properties of membership ser-vi
e for partitionable system must hold only in stable 
omponents. Moreover,this property ensures that ea
h pro
ess of a stable 
omponent installs a �nal viewthat 
orresponds to the members of su
h a 
omponent. This is 
alled a Pre
iseMembership. On the other hand, the authors state that the latter 
an only beguaranteed for a stable 
omponent if an eventually perfe
t partition parti
ipantdete
tor1 is provided.Contributions of the paper: Its 
ontributions are threefold: (1) A modelthat 
hara
terizes as mu
h as possible the behavior, dynami
s, and the men-tioned �stability per region� of MANETs. It also de�nes the 
onditions thatthe system must satisfy for supporting stable partitions. Our model 
onsidersthat in�nitely many pro
esses 
an exist in the system but stable partitions are�nite. Nodes do not have a global knowledge of the system, the network is notfully 
onne
ted, and path between nodes are dynami
ally built over time; (2) aneventually perfe
t partition parti
ipant dete
tor whose algorithm 
onsiders ourproposal model. It has been inspired by the algorithm proposed by Aguileraet al. in [1℄; (3) a support for Cho
kler et al.'s requirements ne
essary for apossible implementation of a pre
ise membership servi
e on top of a partition-able MANET system. Noti
e that the 
onstru
tion of the membership servi
eitself for partitionable systems is not the fo
us of this paper. Our aim is justto provide a support for those partition-aware appli
ations that have been builton top of Cho
kler's spe
i�
ation for portability sake towards MANET.The rest of this paper is organized as follows. Se
tion 2 de�nes the dynami
model that 
hara
terizes the MANET and the existen
e of stable partitions.Our eventually perfe
t partition parti
ipant dete
tor algorithm is presented inSe
tion 3. Finally, some related works are des
ribed in Se
tion 4 and Se
tion 5
on
ludes the paper.1denoted eventually perfe
t failure dete
tor in the authors' paper. INRIA



Partition Parti
ipant Dete
tor 52 System ModelWe 
onsider a dynami
 distributed system S 
omposed of in�nitely many mo-bile nodes. Considering one pro
ess per node, the system 
onsists thus of anin�nite 
ountable set Π of pro
esses. Contrarily to a stati
 environment, in adynami
 anonymous system, pro
esses do not know Π.Pro
esses: There is one pro
ess per node and they 
ommuni
ate by message-passing through an underlying wireless network. The words node and pro
ess aretherefore inter
hangeable. Pro
esses have unique and totally ordered identi�ers,i.e., ∀p ∈ Π, p is the pro
ess identi�er (pid). A pro
ess knows its identity butdoes not ne
essarily know the identities of the other pro
esses.The topology of the network is dynami
 due to node arrivals, departures,
rashes, and mobility. Pro
esses 
an fail by 
rashing. A 
orre
t pro
ess is apro
ess that does not 
rash during a run; otherwise, it is faulty. A faulty nodewill eventually 
rash and does not re
over.Nodes 
an dynami
ally enter the system or leave it (voluntarily dis
onne
tthemselves from the system). A 
orre
t pro
ess that voluntarily dis
onne
tsleaves the system. A pro
ess that leaves the system re-enters it with a newidentity (pid) and is 
onsidered as a new pro
ess.Nodes 
an also be mobile and they 
an keep 
ontinuously moving and paus-ing. When a node moves, its neighborhood may 
hange and, in 
onsequen
e,the set of logi
al links. Mobility 
an lead to involuntary dis
onne
tions when apro
ess is isolated from other pro
esses.Due to node movements, failures, arrivals or departures, links 
ome up anddown over the time. Thus, paths between two nodes are built dynami
ally asfar as 
onne
tivity between intermediate nodes are established. Furthermore,sin
e a pro
ess may not know the identity of the other pro
esses, it 
annot senda point-to-point message to them. It 
an just broad
ast a message whi
h will bere
eived by those nodes that are within in its transmission range. Finally, linksbetween nodes are 
onsidered unidire
tional. For instan
e, it might happen thata node 
an re
eive a message from another node but has insu�
ient remainingenergy to send it ba
k a message.Pro
esses exe
ute by taking steps. Ea
h pro
ess has a lo
al 
lo
k that 
ountthe number of step sin
e a �xed date. Pro
esses are 
onsidered syn
hronous inthe sense that we assume that there are lower and upper bounds on the rate ofexe
ution (number of steps per time unit) of any non-faulty pro
ess. Thus, tosimplify our model and without loss of generality, we assume that lo
al pro
ess-ing takes no time. Only message transfers take time.Dynami
 Paths: To simplify the presentation of the model, we 
onsider theexisten
e of a dis
rete global 
lo
k whi
h is not a

essible to the pro
esses. Wetake the range T of the 
lo
ks' ti
k to be the set of natural numbers.One of the goals of our model is to de�ne dynami
 paths, i.e., a 
on
eptof end-to-end 
onne
tivity through transfer of messages along a sequen
e ofpro
esses.We assume that our system does not modify the messages they 
arry, neithergenerate spontaneous messages nor dupli
ate them. Ea
h message m has aunique identi�er idm. The following integrity property is satis�ed: q re
eives aRR n° 7002



6 Arantes & Sens & Thomas & Conan & Limmessage m from p at most on
e and only if p previously sent m to q. Messages
an be delivered in out of order. We de�neM as the set of all possible messages.We 
onsider Lamport's happened-before relation between events [14℄: a → bif event a 
ausally pre
edes event b. Let sendp(m) be the sending event of mon pro
ess p and recp(m) be the re
eption event of message m on p.We also de�ne F a set of fun
tions from Π×M to M whi
h takes a pro
ess
p and a message m as input and outputs a message m′ = f(p, m)

def
= fp(m).Elements of F model algorithms exe
uted by pro
esses. Noti
e that the outputof fp 
an depend upon the state of p.At �rst, we de�ne the notion of rea
hability: a pro
ess q being rea
hablefrom p at time t means that if p sends a message m at time t then q re
eives amessage that is 
ausally dependent upon m. More formally:De�nition 1. Rea
hability: ∀(p, q, t, m, f) ∈ Π×Π×T ×M×F , q is rea
hablefrom p at time t for the message m with the algorithm f : if q = p or if thereexists sendp(m) event at time t, then ∃(p1, p2, .., pn) ∈ Πn with p1 = p and

pn = q, and ∃(m1, m2, ..., mn−1) ∈ Mn−1 with m = m1 su
h that:(1) ∀i ∈ [1, n − 1], sendpi
(mi) → recpi+1

(mi)(2) ∀i ∈ [2, n − 1], mi = fpi
(mi−1)We denote Sp,q,t,m,f the set of sequen
es of pro
esses (p1, p2, ..., pn) thatsatisfy the above de�nition. For all P = (pi)i∈[1,n] ∈ Sp,q,t,m,f , we de�ne

trec(P, t, m, f) the time at whi
h q re
eives mn−1 and we de�ne mrec(P, t, m, f) =
mn−1.It is important to noti
e that rea
hability does not require an end-to-endlink between p and q at time t. The link is indeed built over the time.We 
an now de�ne the 
on
ept of dynami
 path whi
h models asyn
hronousend-to-end 
onne
tivity in a MANET.De�nition 2. Dynami
 path (noted p t q): ∀(p, q, t) ∈ Π×Π×T there existsa dynami
 path between p and q at time t: if ∀(m, f) ∈ M×F , Sp,q,t,m,f 6= ∅.We also de�ne the 
on
ept of timely dynami
 path where 
ommuni
ationdelay between pro
esses of su
h a path is bounded.De�nition 3. Timely dynami
 path (noted p  tq): there exists δpq su
h that
p t q ⇒ ∀(m, f) ∈ M×F , ∃P ∈ Sp,q,t,m,f su
h that trec(P, t, m, f)− t < δpq.Moreover, we de�ne a useful property that ensures that a node appears atmost on
e in a timely dynami
 path.De�nition 4. Simple timely dynami
 path (noted p

>

  tq): p  tq and ∃(pi)i∈[1,n] ∈
Sp,q,t,m,f : (i 6= j ⇒ pi 6= pj) and trec((pi)i∈[1,n], t, m, f) − t < δpq.To summarize our de�nitions, we have p

>

  tq ⇒ p  tq ⇔ q is rea
hable fromp at time t for all messages m and all algorithms f .Eventual Group Stabilization: As previously explained, a membership ser-vi
e on top of a partitionable network 
an only be provided for those groupsof pro
esses whi
h present an eventual stabilization. We denote ea
h of thesegroups a stable partition. Basi
ally, the stable partition of a pro
ess p, denotedINRIA



Partition Parti
ipant Dete
tor 7
♦PARTp, is 
omposed of the same set of 
orre
t pro
esses that 
an always
ommuni
ate to ea
h other through simple timely dynami
 paths. Thus, pro-
esses within ♦PARTp neither 
rash nor leave it, and new node arrivals in thepartition do not take pla
e. However, dynami
 paths 
an evolve and pro
esses
an move inside the stable partition as long as they keep being 
onne
ted by asimple timely dynami
 path.At �rst, we de�ne the set of nodes that 
an be mutually rea
hable througha pro
ess p at a time t. These nodes form 
y
les whi
h in
ludes p. The nodesthat 
ompose the 
y
les of p, denoted by Cyclep(t), are then de�ned as follows:De�nition 5. Cyclep(t)

def
= {q | ∃(m, f, n) ∈ M × F × N : ∃(pi)i∈[1,n] ∈

Sp,p,t,m,f : ∃k ∈ [1, n] : pk = q}.De�nition 6. We de�ne the stability property of a node p if there exists t su
hthat: (1) ∀t′ ≥ t : Cyclep(t
′) = Cyclep(t)(2) ∀t′ ≥ t : q, r ∈ Cyclep(t

′) ⇒ q
>

  t′r(3) ∃N : ∀t0 : |Cyclep(t0)| ≤ NA node p is ♦stable if ∀q ∈ Cyclep(t), q has the stability property.Axiom 1 de�nes that the set of nodes of 
y
les of p does not 
hange whereasAxiom 2 imposes the existen
e of timely links between all nodes of these 
y
les.Axiom 3 �xes a bound on 
y
les size sin
e we make no assumption on the totalnumber of nodes. Finally, a node is ♦stable if all nodes of its 
y
les are also
♦stable.Now, we de�ne the Stabilization Time of a ♦stable node as the minimal time
STp that satis�es the above de�nition. STp is unknown.A stable partition, denoted by ♦PARTp of a ♦stable pro
ess p, is de�ned asfollows:De�nition 7. ♦PARTp

def
= Cyclep(STp)It is worth remarking that nodes of a stable partition are not ne
essarily iso-lated from other nodes of the network. Depending on the network 
onne
tivity,it might be the 
ase that one or more nodes of a stable partition 
an send orre
eive messages to nodes whi
h do not belong to their partition.

d

a b

c

state 2state 1

e

ba

d
c

state 3

b

c

e

a

Figure 1: Illustration of a ♦stable pro
essRR n° 7002



8 Arantes & Sens & Thomas & Conan & LimFigure 1 illustrates the de�nition of ♦stable nodes. All nodes on the �gureare 
orre
t and the graph evolves from state 1 to state 3 and then remainsin state 3. Solid arrows 
orrespond to timely dynami
 paths, otherwise theline is dashed. Before state 3, none of the nodes are ♦stable and it does notexist any stable partition sin
e there is no subset of pro
esses that satis�esDe�nition 6. On the other hand, as there always exist timely paths betweennodes a, b and e after state 3, these nodes are ♦stable and form a partition, i.e.,
♦PARTa = ♦PARTb = ♦PARTe.3 Eventually Perfe
t Partition Parti
ipant De-te
torBased on the system model de�ned in the previous se
tion, we present in thisse
tion an algorithm for dete
ting the parti
ipants of a partition and then asket
h of proof whi
h shows that this algorithm implements an eventually per-fe
t partition dete
tor ♦PD. We also prove that our dete
tor supplies therequirements for providing pre
ise membership.Ea
h pro
ess p has lo
ally an eventually perfe
t partition parti
ipant dete
-tor, denoted ♦PD. When invoked, ♦PD returns to p the set of pro
esses thatare mutually rea
hable from p, i.e., those pro
esses that it believes to belong toits partition. If p is a ♦stable node, eventually, ♦PD will return the nodes thatbelong to the stable partition ♦PARTp.Similarly to failure dete
tors, ♦PD is 
hara
terized by both the 
ompletenessand the a

ura
y properties. Completeness 
hara
terizes the 
apability of the
♦stable node p of 
onstru
ting an output set whi
h 
ontains the identi�
ationof the pro
esses that belong to its partition while the a

ura
y 
hara
terizes the
apability of that pro
ess of not in
luding in su
h a set those pro
esses whi
hare not in its partition.� Strong partition parti
ipant 
ompleteness : For ea
h ♦stable pro
ess p, if

q ∈ ♦PARTp, then eventually p 
onsiders q as a member of its stablepartition permanently.� Eventual strong partition parti
ipant a

ura
y : For ea
h ♦stable pro
ess
p, if q 6∈ ♦PARTp, then eventually p will no longer 
onsider q as a memberof its stable partition.Note that if p is not a ♦stable node the above properties not ne
essarilyhold, i.e., the �eventually� and �permanently� 
hara
teristi
s of the properties
an not be ensured.Sin
e pro
esses do not know the identity of the other pro
esses, they 
annotsend point-to-point messages to them. Thus, the only sending primitive pro-vided to pro
ess p is the broadcastnbg primitive that allows p to send a messageto all its 
urrent neighbors (nodes within its transmission range) without ne
-essarily knowing their identity. Due to the dynami
s of the system the set ofneighbors of p 
an 
hange during a run. A se
ond remark is that a node q thatre
eived a broad
ast message from p is not ne
essarily 
apable of broad
astinga message to p sin
e links are unidire
tional. INRIA



Partition Parti
ipant Dete
tor 9

Algorithm 1 Implementation of Eventually Perfe
t Partition Parti
ipant De-te
tor1 Init:2 Begin3 { Processes supposed to be in ♦PARTp }4 inPart← {p}; output← {p};5 T imeout← α;6 set timer to T imeout;7 broadcastnbg(〈ALIV E, p〉);8 End910 Task T1: upon re
eption of (〈ALIV E, path〉)11 Begin12 If �rst node in path = p then13 For all q: q appears after p in path do14 inPart← inPart ∪ {q};15 Else16 If p appears at most on
e in path then17 broadcastnbg(〈ALIV E, path · p〉);18 End1920 Task T2: upon expiration of Timeout21 Begin22 If output 6= inPart then23 T imeout← T imeout + 1;24 output← inPart;25 set timer to T imeout;26 inPart← {p};27 broadcastnbg(〈ALIV E, p〉);28 End2930 Task T3: when membership() is invoked by the upper layer31 Begin32 return(output);33 End

RR n° 7002



10 Arantes & Sens & Thomas & Conan & Lim3.1 Algorithm Des
riptionAlgorithm 1 implements an eventually perfe
t partition parti
ipant dete
tor
♦PD for pro
ess p. By querying its lo
al ♦PD (Line 30), pro
ess p obtains the
urrent knowledge that the former has of the set of pro
esses that belong to itspartition (Line 32).The lo
al dete
tor exe
utes an initialization phase and then two 
on
urrenttasks. At the initialization phase (Lines 4�7), it initializes its timer and sendsto all its neighbors an ALIV E message whi
h in
ludes just p.Task T 1 handles p's dete
tor re
eption of an 〈ALIV E, path〉 message fromthose pro
esses that have p as their neighbor. If path is equal to 〈p, . . .〉, p knowsthat its 〈ALIV E, p〉 message was forwarded through a 
y
le, i.e., all nodes thatappear after p in path are mutually rea
hable from it (Lines 13�14). Otherwise,if p does not appear in path or appears just on
e, p's dete
tor appends p to pathand forwards it to all its neighbors (Lines 16�17). Note that p's dete
tor mustforward the message even if p already appears on
e sin
e it might be the 
asethat there exists a 
y
le between q and r where p belongs both to the simplepath from q to r and the simple path from r to q.Task T 2 is exe
uted whenever the timeout expires. If the new set of nodesthat p's dete
tor believes to belong to p's partition (inPartp) is di�erent fromthe previous one, it in
rements the timeout value (Lines 22�23). This meansthat, if p is a ♦stable node, either the STp is not rea
hed yet or it is rea
hedbut the timeout value is not enough for the message 〈ALIV E, p〉 sent from pto travel through the longest 
y
le from p. When both 
onditions happen, theset of pro
esses in inPart, and thus in output, will always be the same. Finally,in Lines 24�27, p's dete
tor initializes its timer and the variable inPart andthen broad
asts to all its neighbors an ALIV E message that 
ontains just p asrea
hable, as in the initialization phase.3.2 Sket
h of ProofWe present a sket
h of proof of both the strong partition parti
ipant 
ompletenessand eventual strong partition parti
ipant a

ura
y properties of algorithm 1 that
hara
terize the eventually perfe
t parti
ipant partition dete
tor ♦PD.For simpli
ity's sake of the text, �p's dete
tor� is just noted as p.The key of the proof is to show that if eventually and permanently q ∈
Cyclep(t) then eventually and permanently q ∈ outputp (strong partition 
om-pleteness); otherwise, there exists a time after whi
h q 6∈ outputp permanently(eventual strong partition a

ura
y).De�nition 8. Let p be a ♦stable pro
ess. We denote δp the maximum of
{δqr |(q, r) ∈ ♦PARTp × ♦PARTp}. The value of δp exists be
ause the num-ber of nodes in ♦PARTp is �nite: ♦PARTp = Cyclep(STp) whi
h is boundby Axiom 3 of De�nition 6. Therefore, the number of possible pro
ess pairs(q,r) of ♦PARTp × ♦PARTp is �nite. Moreover, the number of possible δqris also bounded sin
e paths of ♦PARTp are timely (Axiom 2). However, δp isunknown.De�nition 9. We denote inPartp(t) the value of inPart of pro
ess p at time tand outputp(t) the value of output of pro
ess p at time t. It is worth mentioningINRIA



Partition Parti
ipant Dete
tor 11that after the initialization phase where p is added to inPart (Line 4), it isnever more removed from inPart.Lemma 1. Let p be a ♦stable pro
ess and q ∈ ♦PARTp. ∃∆ : ∀t ≥ STp :
∃t′′ ≥ t : q ∈ inPartp(t

′′) and t′′ − t ≤ ∆.Proof. Let q ∈ ♦PARTp and t ≥ STp. If q = p, then permanently q ∈
outputp(t) thanks to the Lines 4, 24 and 25 of the algorithm. Otherwise, by de�-nition of♦PARTp, q ∈ Cyclep(t) and Axiom 2 of De�nition 6 implies that p

>

  tq.We de�ne the messagem = 〈ALIV E, p〉 and the fun
tion fp(msg) = msg·p. Let
P = (pi)i∈[1,k] ∈ Sp,q,t,m,f be the sequen
e of pro
esses that belong to a simpletimely path between p and q at time t. Let t′ = trec(P, t, m, f). By de�nition,
♦PARTp = Cyclep(t

′) and Axiom 2 of De�nition 6 implies also that q
>

  t′p. Wede�ne the message m′ = 〈ALIV E, p1 · · · pk〉. Let P ′ = (pi)i∈[k,n] ∈ Sq,p,t′,m′,fbe the sequen
e of pro
esses that belong to a simple timely path between qand p at time t′. By the de�nition of simple paths, ea
h pi appears at moston
e in the sequen
es (pi)i∈[1,k] and (pi)i∈[k,n]. We 
onsider now the sequen
e
(pi)i∈[1,n]. By 
onstru
tion, p1 = pn = p, pk = q and a pro
ess appears at mosttwi
e in the sequen
e.Noti
e that for all i ∈ [1, n], fpi

is equivalent to algorithm 1. This is truesin
e the 
ondition at Line 16 holds for all pi with i ∈ [2, n− 1] be
ause pro
ess
pi appears at most on
e in 〈ALIV E, p1 · · · pi−1〉 sin
e it appears at most twi
ein 〈ALIV E, p1 · · · pi−1 · pi · · · pn〉.To 
on
lude, p will add pk = q in inPartp at t′′ = trec(P ′, t′, m′, f). More-over, ea
h of the link is timely and we have therefore t′′ − t′ ≤ (n − k)δp and
t′ − t ≤ kδp, i.e., t′′ − t ≤ nδp. Finally, a pro
ess appears at most twi
e in
(pi)i∈[1,n] and ea
h of them is in ♦PARTp whi
h is bounded by N (Axiom 3 ofDe�nition 6). We have therefore n ≤ 2N and t′′ − t ≤ ∆

def
= 2Nδp.Lemma 2. Let p and q be two ♦stable pro
esses su
h that q ∈ ♦PARTp. q isremoved from outputp a �nite number of times.Proof. The proof of this Lemma is by 
ontradi
tion. We suppose that q isremoved an in�nite number of times from outputp. Thus, q is also in�nitelyremoved from inPartp sin
e outputp is only updated at Line 24 when inPartp isassigned to it. However, whenever q is removed from inPartp, Lemma 1 ensuresthat q will be added later in inPart. Hen
e, at the next timeout expiration afterthe addition of q in inPart, the 
ondition inPartp 6= outputp will hold. Due toour assumption, su
h a 
ondition will hold an in�nite number of times and thus,be
ause of Lines 22�23 of the algorithm, the timeout value will grow inde�nitelyand will be
ome higher than the ∆ de�ned in Lemma 1 at a time T .Sin
e the timeout value is greater than ∆, the same Lemma 1 ensures that qwill be in inPartp at a time t before the expiration of ea
h timeout. Moreover,

q will remain in inPartp from t to the timeout expiration sin
e pro
esses in
inPart 
an only be removed at Line 26 of the algorithm. At ea
h timeoutexpiration, q will therefore be in inPart and 
opied to outputp. Thus, q willalways remain in outputp what is 
ontradi
tory with the initial assumption.Lemma 3. Let p be a ♦stable pro
ess and q ∈ ♦PARTp. ∃ t ≥ STp : ∀t′ > t:
q ∈ outputp(t

′).RR n° 7002



12 Arantes & Sens & Thomas & Conan & LimProof. Thanks to Lemma 2, q is removed from outputp a �nite number of times.Let t be the last time of its removal. After t, q will remain in outputp.Lemma 4. Strong partition 
ompleteness: Let p be a ♦stable pro
ess.
∃t : ∀t′ > t : ♦PARTp ⊂ outputp(t

′).Proof. Lemma 3 shows that for every q su
h that q ∈ ♦PARTp, there exists atime tq, su
h that q remains de�nitely in outputp after tq. ♦PARTp is �nite(Axiom 3 of De�nition 6) and there exists thus a time t = max{tq|q ∈ ♦PARTp}su
h that all pro
esses of ♦PARTp remain de�nitely in outputp.Lemma 5. Let p be a ♦stable pro
ess. There exists a time T su
h that if pre
eives an alive message of the form 〈ALIV E, p · p2 · · · pn−1〉 at a time t′ > T ,then ∀i ∈ [2, n − 1], pi ∈ ♦PARTp.Proof. First, remark that if p re
eives a message of the form 〈ALIV E, p ·
p2 · · · pn−1〉 at a time tr, then there exists te su
h that ∀i ∈ [2, n − 1], pi ∈
Cyclep(te). Indeed, the re
eption of the message at tr implies its emission at teand the 
ontent p · p2 · · · pn−1 of the message de�nes its path whi
h is a 
y
le.We 
onsider now the set ALIV ESp(te) the set of alive messages of the form
〈ALIV E, p · p2 · · · pn−1〉 re
eived by p su
h that ∀i ∈ [2, n− 1], pi ∈ Cyclep(te).This set is bounded be
ause Cyclep(te) is bounded for all te (Axiom 3 of Def-inition 6) and be
ause a pro
ess does not appear more than twi
e (Line 16 ofthe algorithm). For all te we 
an therefore 
onsider the re
eption time last(te)in p of the last message of ALIV ESp(te).We de�ne T = max{last(te) | te < STp}. By 
onstru
tion of T , if p re
eivesan alive message of the form 〈ALIV E, p · p2 · · · pn−1〉 at t′ > T , it was 
learlyemitted by p at a time ts ≥ STp. Moreover, the initial remark of the proofshows that ∀i ∈ [2, n − 1], pi ∈ Cyclep(ts). Axiom 2 of De�nition 6 impliesthat Cyclep(ts) = Cyclep(STp) = ♦PARTp and we have ∀i ∈ [2, n − 1], pi ∈
♦PARTp.Lemma 6. Let p be a ♦stable pro
ess, ∃u : ∀t′ ≥ u : q ∈ inPartp(t

′) ⇒ q ∈
♦PARTp.Proof. Let t be the bounded time of the previous lemma and u be the nexttimeout expiration after t. If q ∈ inPartp(t

′) with t′ ≥ u, q was added between
u and t′ upon the re
eption of a message 〈ALIV E, p1 · · · pn−1〉 with p1 = p byLine 14 of the algorithm. The previous lemma ensures that q ∈ ♦PARTp, what
on
ludes the demonstration.Lemma 7. Eventual strong partition a

ura
y: Let p be a ♦stable pro
ess.
∃t : ∀ t′ ≥ t : ∀q 6∈ PARTp ⇒ q 6∈ outputp(t

′).Proof. Follows dire
tly from Lemma 6.Theorem 1. Let p be a ♦stable pro
ess. ∃u ∈ T : ∀t > u, ∀t′ > u : outputp(t
′) =

outputp(t) = ♦PARTp.Proof. Lemma 4 shows that there exists a time u1 su
h that ∀t > u1,♦PARTp ⊂
outputp(t) while Lemma 6 shows that there exists a time v su
h that ∀t >

v : inPartp(t) ⊂ ♦PARTp. Moreover, outputp is a 
opy of inPartp whenINRIA



Partition Parti
ipant Dete
tor 13the timeout expires (Line 24). We de�ne u2 as the time of the �rst timeoutexpiration after the time v. ∀t > u2, outputp(t) ⊂ ♦PARTp. Finally, we de�ne
u = max{u1, u2}, and we have ∀t > u, ∀t′ > u, outputp(t) = ♦PARTp =
outputp(t

′).Theorem 2. Algorithm 1 implements a partition parti
ipant dete
tor ♦PD for
♦stable pro
esses.Proof. Consider a ♦stable pro
ess p. To satisfy the strong partition parti
ipant
ompleteness property, we must prove that eventually ♦PARTp is permanentlyin
luded in the output set of p. This 
laim follows dire
tly from Lemma 4.To satisfy the eventual strong partition parti
ipant a

ura
y property, we mustprove that there exists a time t after whi
h q 6∈ ♦PARTp is no longer in
luded inthe ouptut set of p. This 
laim follows dire
tly from Lemma 7 and the theoremfollows.3.3 Pre
ise MembershipIn [10℄, Cho
kler et al. 
onsider a stati
 distributed partitionable network 
om-posed of N pro
esses fully 
onne
ted by unidire
tional links. Nodes and links
an 
rash. A stable 
omponent is de�ned to be a set of 
orre
t pro
esses thatare eventually 
onne
ted to ea
h other and for whi
h links to them from all theother pro
esses are down. Their de�nition of stable 
omponent 
orresponds toour stable partition de�nition ex
ept that stable 
omponents are isolated fromthe other nodes of the network.The authors state that the liveness properties of membership servi
e forpartitionable system must hold only in stable 
omponents and if an eventuallyperfe
t parti
ipant dete
tor is provided. In this 
ase, the servi
e o�ers a pre
isemembership, i.e., it delivers the same last view to all members of a stable 
om-ponent: for every stable 
omponent C, there exists a view V with the membersof C su
h that V is the last view of every pro
ess in C.We 
an easily verify that our de�nition of stable partition and eventuallyperfe
t parti
ipant dete
tor supply the requirements for providing pre
ise mem-bership in MANETs.Lemma 8. If p is a ♦stable pro
ess then ∀q ∈ ♦PARTp, ♦PARTp ⊂ ♦PARTq.Proof. We de�ne t = max{STp, STq}. Let (q, r) ∈ ♦PARTp × ♦PARTp. Wewill show that r ∈ ♦PARTq. First, t ≥ STp and we have therefore (q, r) ∈

Cyclep(t)×Cyclep(t). The axiom (2) of the de�nition 6 ensures that q
>

  tr. Let
(m, f) ∈ M× F . By de�nition of dynami
 path, ∃P = (pi)i∈[1,k] ∈ Sq,r,t,m,f .Let m′ = mrec(P, t, m, f) and t′ = trec(P, t, m, f). We have q ∈ ♦PARTp =
Cyclep(t

′) and r ∈ ♦PARTp = Cyclep(t
′) and the axiom (2) ensures also that

r
>

  t′q: there exists P ′ = (pi)i∈[k,n] ∈ Sr,q,t′,fr(m′),f . We verify immediatly that
(pi)i∈[1,n] ∈ Sq,q,t,m,f and therefore that r ∈ Cycleq(t). Finally, t ≥ STq and
r ∈ ♦PARTq.Lemma 9. If p is a ♦stable pro
ess then ∀q ∈ ♦PARTp, ♦PARTp = ♦PARTq.RR n° 7002



14 Arantes & Sens & Thomas & Conan & LimProof. ♦PARTp ⊂ ♦PARTq thanks to the lemma 8. Moreover, p ∈ ♦PARTp,therefore q is a ♦stable pro
ess and p ∈ ♦PARTq. The previous lemma alsoensures that ♦PARTq ⊂ ♦PARTp.Theorem 3. Pre
ise membership. Eventually, ♦PDp provides the samelast parti
ipant view for all members of ♦PARTpProof. p is a ♦stable pro
ess. The strong partition 
ompleteness and the even-tual strong partition a

ura
y of the algorithm ensure that there exists tp su
hthat ∀t′ ≥ tp, outputp(t
′) = ♦PARTp. ∀q ∈ ♦PARTp, q is also a ♦stable pro-
ess and there exists tq su
h that ∀t′ ≥ tq, outputq(t

′) = ♦PARTq. The lemma 9ensures that ♦PARTp = ♦PARTq and therefore, after the time max{tp, tq},we have outputp = outputq = ♦PARTp = ♦PARTq.4 Related WorkSimilarly to our approa
h, some arti
les, [4℄, [15℄, [20℄, propose a model fordynami
 systems su
h as MANET or peer-to-peer systems. However, none ofthem have 
onsidered dynami
 
onstru
tion of paths or the existen
e of severalstable partitions.Like in our work, in [15℄ the authors state that a dynami
 system mustpresent some stability period in order to guarantee progress and terminationof the 
omputation. However, in their work, there exists just a single reliable
ore 
luster during a period of stability whi
h 
onsists of the minimal numberof nodes that have to be simultaneously alive during a long enough period inorder for the whole system to be able to progress. Hen
e, in their approa
h, itis not possible to have several stable groups simultaneously as in our approa
h.Furthermore, the number of pro
esses in ea
h run is bounded and links are
onsidered to be bidire
tional.In [20℄, the authors also 
onsider that a dynami
 system 
an be 
hara
ter-ized by perturbed periods followed by quies
ent periods, i.e., periods where nomore arrivals or departures take pla
e. They then study the problem of overlaynetwork 
onne
tivity in dynami
 distributed systems. The paper shows thatthere is no proto
ol that 
an ensure su
h a 
onne
tivity during perturbed pe-riods sin
e network partitions 
an happen. Noti
e that even if the problem ofnetwork partition is 
onsidered during perturbed periods, this work is interestedin the eventual 
onne
tivity of the overlay, i.e., a stable period where there isno partition.In [4℄, the authors propose a model for dynami
 systems where two param-eters, the number of nodes (in a run or in all runs) and the diameter of thenetwork, 
an be 
hara
terized (e.g., bounded/unbounded, known/ unknown)depending on the dynami
s of the system. The �rst parameter allows to model
ontinuous arrival and departure of nodes from the system while the se
ond oneallows to 
ir
umvent the impossibility of a node to have a global point-to-point
onne
tivity view of the network. However, their model does not provide ameans for 
hara
terizing partitionable networks neither dynami
 paths.In [6℄, the authors have introdu
ed the notion of evolving graphs in order tomodel the temporal dependen
y of paths in dynami
 systems su
h as MANETor DTN (disruption tolerant networks). Con
isely, an evolving graph is a time-step indexed sequen
e of subgraphs, where the subgraph at a given time-stepINRIA
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orresponds to the network 
onne
tivity at the time interval indi
ated by thetime-step value. To this end, ea
h node or link has a �presen
e s
hedule� thatindi
ates the moment during whi
h the node takes part to the system. Likein our model, evolving graphs 
apture the notion of path over time. However,evolving graphs are based on time-step s
hedulers and path over time 
an notbe 
hara
terized as timely. Furthermore, they do not support in�nitely manynodes.Aguilera et al. present in [1℄ a heartbeat failure dete
tor, HB, for partition-able network. The output of the failure dete
tor at ea
h pro
ess p is an arraywith one entry for ea
h pro
ess of the system. The heartbeat sequen
e of everypro
ess not in the same partition of p is bounded. Our partition parti
ipantdete
tor algorithm is inspired by this work. Contrarily to our approa
h, in theauthors' work, the system is 
onsidered to be a fully-
onne
ted stati
 one, thenumber of nodes of the system is known, nodes do not move or leave the system,and all links are fair lossy. Moreover, the output of HB at p is not the set ofpro
esses that belong to p's partition.Cho
kler et al. [10℄ and Babagaolu et al. [3℄ have extended the de�nitionof eventually perfe
t failure dete
tors to partitionable environments in order toprovide a membership servi
e. Basi
ally, these dete
tors, as our partition parti
-ipant dete
tor, eventually dete
t mutual rea
hability among pro
esses. Similarlyto our approa
h, in [10℄, the failure dete
tor behaves like an eventually perfe
tone provided a stable 
omponent exists. However, in both works, the 
onsideredpartitionable systems are stati
 and initially the network is fully 
onne
ted.In [7℄, the authors de�ne a parti
ipant dete
tor for self-organized networks(MANET). Like in our approa
h, both the identity and the number of nodesin the network are not initially known. However, the network is 
onsideredto be always 
onne
ted through reliable bidire
tional links and the parti
ipantdete
tors are de�ned by the authors for dis
ussion about the minimal informa-tion that pro
esses must have about the other parti
ipants in order to makethe problem of 
onsensus with unknown membership (CUP) solvable. Thus, aparti
ipant dete
tor neither 
onsiders the physi
al topology of the network norpossible partitions but just outputs a view of the network.Nesterenko and S
hiper propose in [17℄ the eventual rea
hability failure de-te
tor ♦R whi
h outputs a quorum to ea
h pro
ess. They de�ne the 
on
eptof a rea
habiliy graph R that is a dire
t graph in whi
h the nodes of R arethe pro
esses of the system and there is an edge from p′ to p in R if the quo-rum outputted by p 
ontains p′. The authors state that the 
on
ept of ♦R
an be extended to partitionable networks if the 
ompletness and interse
tionproperties of ♦R are redu
ed to pro
esses of the same partition. Although theassumptions for the 
onsidered system are di�erent from ours (the system is notdynami
, the number and identity of nodes are known, the links are reliable)and no implementation of ♦R is given, their approa
h is similar to ours sin
eea
h pro
ess outputs a quorum whi
h 
ontains the membership view the pro
esshas of the system or the partition in the 
ase of partitionable systems.In a previous work [11℄, we have proposed an eventual partition failure de-te
tor for MANET that uses information provided both by Aguilera et al's HBfailure dete
tor and a dis
onne
tion dete
tor. However, the number of nodes isknown and the solution is neither based on periods of stability nor on dynami
paths.RR n° 7002



16 Arantes & Sens & Thomas & Conan & LimDisruption or delay-tolerant networks (DTNs) [12℄, opportunisti
 wirelessa

ess networks [18℄, Vehi
ular ad ho
 networks (VANETs) [19℄ are example ofnetworks that also present some la
k of 
ontinuous network 
onne
tivity andthus partitions. Their routing proto
ols adopt an �store and forward� or a
ollaborative opportunity of 
ommuni
ation approa
h by exploiting the 
on
eptof dynami
 path over time between sour
e and destination nodes.5 Con
lusionThis paper proposes a model for dynami
 networks, su
h as MANETs, whi
h
onsiders that the system is anonymous with an in�nite set of pro
esses. Themodel 
hara
terizes the 
on
ept of dynami
 paths between pro
esses built overthe time as well as the 
on
ept of stable partitions, where a �nite set of nodesare 
onne
ted though timely dynami
 paths. Based on this model, we proposean algorithm for an eventually perfe
t partition parti
ipant dete
tor, ♦PD,whose properties of strong 
ompleteness and eventual strong a

ura
y have beenproved. We also show that ♦PD supplies the requirements for providing pre
isemembership for partionable networks.Referen
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