
Disconnected Operations in Mobile Environments

DenisConan,SophieChabridonandGuyBernard
Institut NationaldesTélécommunications

9, rueCharlesFourier

91011Évry cedex, France�
Denis.Conan�Sophie.Chabridon �Guy.Bernard� @int-evry.fr

Phone:DenisConan:(+33� 0) 1 60 76 45 34,Fax: (+33� 0) 1 60 76 47 80

Abstract

Theexecutionof distributedapplications involving mo-
bile terminalsandfixedservers connectedbywirelesslinks
raisesthe needfor handling networkdisconnections,both
involuntaryduringunexpectedconnectionbreakdowns,and
voluntary whenthe userwantsto savemoney and energy.
In this paper, we investigate howstandard CORBA mecha-
nisms(ObjectsBy Value andPortableInterceptors) canbe
usedfor enhancinglegacyCORBA-baseddistributedappli-
cations in order to support voluntary and involuntary dis-
connections.We showthat thefirst mechanismcanbeused
for handling easilyvoluntary disconnectionsbycopyingon
the terminal all the data necessaryfor running the appli-
cationin a disconnectedmode. Thesecondmechanismal-
lows also to handle involuntary disconnections ; a switch
betweenconnectedmodeand disconnectedmodecan be
performedtransparently to theuser.

1 Introduction

Wirelesscommunicationsand distributed serviceswill
be of vital strategic importancein the nearfuture. Right
now, mobile handhelddevices suchasPersonalDigital As-
sistants(PDA) areattractinggreatattentionandthe avail-
ability of wireless telecommunication networks provide
new prospects for client-server applicationsandtheir inter-
actions. However, softwarecapacitiesof mobile handheld
devicesarerathermodest,the connectivity to servicesvia
theInternetis limited andthenumberof availableservices
is very low compared to thepossibilitiesof homeandper-
sonalcomputersconnectedto theInternet via wired links.

Thework presentedin this paperis partof theITEA Vi-
vianproject[2] concerning theopening of mobile platforms
for thedevelopment of component-basedapplications. The
consortiumis composedof majoreuropeanindustriessuch

asNokia andPhilips, researchinstitutes,namelyHUT in
Finland and INRIA and INT in France,and providers of
serviceson mobile handhelddevices. Theobjective of Vi-
vianis to provideanadequateplatform for mobile handheld
deviceswhichwill enable theproductionof third-partysoft-
wareapplications. In that context, we focus on providing
CORBA compliant software support for the execution of
client-serverapplications in adisconnectedmanner in wire-
lessenvironments.Two kinds of disconnectionsaretaken
into account: voluntarydisconnections,decidedby theuser
of the wirelesshandheld, and involuntary disconnections,
asaresultof physicalwirelesscommunicationbreakdowns.
Fromtheuserpointof view, theexpectedbenefits of volun-
tary disconnectionsare: money andenergy savings by re-
ducing theduration of wirelesscommunications,possibility
to runtheapplication whennowirelessconnectionis avail-
able(e.g. in a plane), andminimization of the probability
of unexpecteddisconnections.

The goal of this paperis to investigatehow standard
CORBA mechanismscan be usedfor enhancing legacy
CORBA-baseddistributedapplications in orderto support
both voluntary and involuntary disconnectionsin mobile
environments. For illustration andevaluation purpose,we
chosean email browserapplication. The structure of the
paperis the following. In Section2 we presentthe email
browserapplication andtheextentedfunctionalitiesneeded
for supporting disconnectionsin awirelessenvironment. In
Section3 we discusshow standardCORBA mechanisms
(ObjectsBy ValueandPortableInterceptors)canbe used
for supporting thesefunctionalities. Section4 compares
our approach with relatedresearchwork, andfinally con-
clusionsandfutureresearchdirectionsaredrawn in Section
5. We developeda prototypeusingtheORBacusORB [1]
on PortablePCsunder Linux and Windows usingJava,
namelythejdk 1.3.1 virtual machine,andon iPAQ us-
ing alsoJava but with theVAME virtual machine calledj9.
All the machinesareequipped with wirelessIEEE 802.11



communicationcards.

2 Example application: Wireless Email
Browser

This section illustrates the adaptation of an email
browserfor wirelessenvironments. Our emailbrowserof-
fers the basicfunctionalitiesof well-known softwaresuch
asNetscapeMessengeror Microsoft IE. The userhandles
messagescomposedof a bodyanda header, itself divided
into anidentifier, thenamesof thesenderandthereceiver,
asubject,thedateof sending, anda status(reador unread).
Themainfunctionalitiesprovidedby thegraphical userin-
terface(GUI) aresending, replying to, forwarding,receiv-
ing,anddeletingamessage.Theadaptation todisconnected
operationsis thesubjectof thenext sections.

In thefirst versionof theemailbrowsernamed“central-
ized”, the GUI is executed into the sameexecution entity
asthe usermailbox object. The mailboxobjectplaystwo
roles: (1) themailboxobjectstoresreceivedemails; (2) for
sending a message,theGUI sendsthemessageto themail-
box object, the latter getsthe receiver’s addressfrom the
mailbox manager objectandforwardsthemessage.A sec-
ondexecution entity contains the mailbox manager that is
responsiblefor creating, deleting, andlocalizing the mail-
boxobjects.

The secondversion of the email browser named“dis-
tributed” is obtainedby separatingthe GUI and the user
mailbox objectintodifferentexecutionentities(cf. figure1).
The GUI is launched by the user in the mobile terminal
andcommunicateswith the corresponding mailbox object
via wirelesslinks. Sincesomeof the datathat arecopies
of the mailbox object’s dataare locally storedwithin the
GUI, thedistribution leadsto theseparation of GUI’s oper-
ationsinto twogroups: theoperationsthatonly impactlocal
(GUI’s) dataandtheonesthatarecarriedover themailbox
object straightafter beingexecutedby the GUI. A typical
operationof thefirst group is theoperationchangeSta-
tus() of the GUI sayingthat a messagehasbeenread
or unread. In thecentralizedversion, theoperation is syn-
chronously performedon the mailbox object. Now, it is
applied and logged by the GUI in order to avoid gener-
ating too many requests on the wirelessnetwork. At the
next remote operationexecution,for instancea call to re-
ceiveMessage(), the log of local operations is trans-
mittedasanargumentandappliedto themailboxobjectbe-
fore theprocessingof theremoteoperation. So,theeffects
of changeStatus() areseenbefore theeffectsof re-
ceiveMessage(), asin thecentralized version. There-
fore, theGUI logsall its local operationssincethe last re-
moteoperation that do not needto be processedremotely

in a synchronousway. Another consequenceis thatall the
remoteoperationshaveastheirfirst argumentanarraycon-
taining the list of local operations. This designpatternis
rathersimpleandcanapplyto distributedapplications that
arepiece-wisedeterministic1 [5].

Howeverthequalityof thewirelesslink, in orderto load
datafrom themailbox objectat aconvenient rateandquan-
tity, messagesarereadin two steps:first the header, next
thecontent.Theuserbrowsesthesetof headersandloads
only the desiredcontents. The reasonsfor this distinction
arethatcontentsareusuallymuchlarger thanheaders,and
beingoptimistic,userswill not readevery content whereas
they readall theheaders.Anotherway to adaptto thewire-
lesslink is theadditionof “collective” operationsthatread
anddeletegroupsof messages:e.g. all theread/unreadmes-
sages,all themessages.

The restof the paper is on the studyof how to handle
disconnectionsusingCORBA mechanisms,namelyObjects
By ValueandPortable Interceptors. Figures2 and3 sketch
thesolutions designedin thefollowing sections.Beforethe
disconnection,a copy of themailbox objectis instantiated
on the mobile terminal. During the disconnection,the re-
questsarelocally servedandloggedby thelocal copy. The
received messagesarealsostoredin theremotemailboxob-
ject for futuredelivery. Whenreconnecting,the loggedre-
questsareforwarded to the remotemailbox objectandthe
received messagesare loadedif the userasksfor it. The
GUI is augmentedwith aniconic imagestatingthecurrent
mode: connectedor disconnected.

searchMailBox("Michel")

sendMsg("Michel")

ORB (Client)

Mobile Terminal

MailBox Manager

MailBox Marc

ORB (Server)

Server’s Host

MailBox MichelGUI Marc
sendMsg("Michel")

readMsg()

Figure 1. The email browser in the connected
mode .

1The execution of each execution entity is divided into separate inter-
vals by the messagesthe entity receives. Eachinterval is a deterministic
sequenceof execution,startedby thereceptionof a messageandended by
the reception of the next message.Theexecution within a singleinterval
is completely determinedby the stateat the time the messageis received
andby the content of the message.The entity may sendany numberof
messagesto otherentitiesduringthestateinterval.[5]



sendMsg("Michel")readMsg()

MailBox Manager

MailBox Marc MailBox Michel

ORB (Server)

Server’s HostMobile Terminal

ORB (Client)

MailBox copy Marc

GUI Marc

Figure 2. The email browser in the discon-
nected mode .

during

GUI Marc

MailBox Copy Marc

ORB (Client)

Mobile Terminal

MailBox Manager

MailBox Marc

ORB (Server)

Server’s Host

MailBox Michel
the disconnection

sent

of the requests

Forwarding

Figure 3. The email browser during a recon-
nection.

3 Handling disconnections

In thefirst two versionsof theapplicationwirelessemail
browser, the GUI cannot continue its execution when the
userclosesthe connection, for instanceto save money or
whenthe connectionis broken. The GUI shouldaccessa
local object that shouldbe a copy containing all the state
of theoriginal onethatremainson thewired network or an
emptydefault-statecopy. Therearetwo waysto proceed:
either the userasksthe GUI to make a local copy of the
remoteobjectandthendisconnectsvoluntarily or theappli-
cationperiodically updatesalocalcopy andswitchesto it in
caseof connectionfailure.In thefollowing, wedevelop the
two casesin two distinguishedsolutionsusingtwo differ-
entCORBA mechanisms,namelyObjectsBy Value(OBV)
andPortable Interceptors(PI). Thefirst solutionwith OBV
is developedin Section3.1, themain issuebeingthe state
transfer of theremoteobject.Thesecondsolutionis divided
into the following issues:the statetransferof the remote
object (cf. Section3.1), the monitoring of the connection
to detectdisconnections (cf. Section3.2), the transparent
switchingbetweenmodes(cf. Section3.3), andthedesign
of thelocalcopy of theremoteobject (cf. Section3.4).

3.1 State transfer

Before presenting the solution using OBV in Sec-
tion 3.1.2, Section3.1.1 gives a short overview of this
CORBA mechanism.

3.1.1 Short overview of OBV

The concept of OBV was introducedin the CORBA 2.3
standard[10]. It enablesthepassingof anobjectby value
ratherthanby reference. The semanticsof passingan ob-
jectby valueis similar to thatof standardprogramminglan-
guages.Theclientreceivesasareturnvalueadescriptionof
thestateof theobjectandanew instanceisautomaticallyin-
stantiatedwith thatstatewhichhasa separateidentity from
thaton theserverside.

CORBA 2.3 introducesnew keywords to the Interface
Definition Language (IDL): valuetype, ValueBase,
custom, abstract, supports. . .We will presentonly
partof themhere. A valuetype is a new IDL constructthat
canbethought of asastruct with inheritanceandmeth-
ods. The valuetype is passedby value, like thestruct,
but cancontain operations, like theinterface. An es-
sentialproperty of valuetypesis that their implementation
is local andtheir usedoesnot involve theObjectRequests
Broker (ORB). They have no Interoperable ObjectRefer-
ence(IOR),whichis thewayCORBA identifiesremoteob-
jects. An abstract interface allows to determine
at runtime whetheran object is to be passedby valueor
by reference. An abstract interface cannot bein-
stantiateddirectly. It musteitherbe inherited by a regular
interfaceorsupportedbyavaluetype(usingthesupports
keyword).

3.1.2 Use of OBV for state transfer

The impactof the additionof the wirelessmodeto a dis-
tributed legacy application is not negligible but we payed
particular attentionto limit it asmuchaspossiblein theIDL
andtheclientcode.

Theabstractinterfacefunctionality makesit veryeasyto
addin theclient codea voluntary switchbetweena remote
objectpresenton the server sideanda valuetype copy on
theclient side.Therefore,anabstractinterfacenamedAb-
stractMailBox is definedin theIDL with all theneces-
sarymethods to manipulate messages.This abstractinter-
faceis thensupportedby avaluetypenamedValueMail-
Box andis inheritedby theregular interfaceof themailbox
object. Thenew interfaceprovidestwo new methods with
respectto the legacy interface:disconnect() is called
by theuserfor initiating statetransferandreconnect()
allows to apply to the remoteobjectthemodificationsthat



occurredlocally on theclient sideduring disconnection. In
the client code of the legacy application, the reference to
the remote object must be replacedby a reference to the
abstractinterface, which containsa reference to a remote
object andto a valuetypeinstancein connectedanddiscon-
nectedmodes,respectively.

We now detail the way we perform statetransferfrom
a remote object to its valuetype copy. In [7], the main
drawbackfoundto theuseof OBV for disconnectedoper-
ationswasthemany changesrequiredon client andserver
sides.A statefulvaluetypemustdefinein theIDL a public
datafield for eachstatevariable(public datafieldsandat-
tributes)presentin the supported interface(see[7] p. 66)
andthenimplementthecorresponding accessorandmodi-
fier methods. To overcomethis drawback, thecustommar-
shalling facility of OBV requires the valuetype to imple-
ment the marshal() andunmarshal() methodsand
to betaggedcustom.

In conclusion, the prototype we developed with OBV
satisfiesthe requirementsfor voluntary disconnectionwith
limited modificationsin the IDL anda very simpleusein
the client code. Nevertheless,the interface musthave op-
erations thatcheckpoint andrestorethestateof theobject.
In thecaseof OBV, this is theoperationsmarshal() and
unmarshal(). In addition, it is notwell adaptedto invol-
untary disconnectionswhereit is necessaryto switchauto-
maticallybetweentwo copiesof thesameobject,onethatis
ontheserverandonethatis localto theclient.Thisis dueto
thefactthatavaluetypeis notaddressablevia anIOR since
it is not a CORBA object. Theseaspectsareconsidered in
Section3.3 wherewe investigatea solutionwith portable
interceptors.

A AB B

C C

DDE E

F F

lowDown lowDownlowUp lowUp

highDown highDownhighUp highUp

disconnected partially connected connected

(b)(a)

Figure 4. The hysteresis of the monitoring of
the connection state .

3.2 Connection monitoring

Sinceno entity providesthe informationyet, we design
aconnectionmonitor to simulatethequalityof thewireless

when(b>highUp)/
if(!voluntaryDisc)

mode=’c’
{reconnect()}

when(b<=lowDown)/
mode=’d’

mode=’p’
{disconnect()}

if(mode==’c’ && !voluntaryDisc)
when(b<=highDown)/

mode=’p’
when(b>lowUp)/

when(b<=lowUp)/
mode=’d’

when(b>highUp)/
reconnect()
mode=’c’

A B C

DEF
when(b>highDown)

when(b>lowDown)

when(b<=lowDown)

when(b<=highUp)

b stands"bandwidth"
c, p and d stand for "connected", "partially connected" and "disconnected", respectively

Figure 5. The state diagram of the monitoring
of the connection state .

connection. This monitoring involvesa connection band-
width monitorandaconnectionstatemonitoronthemobile
terminal. We expecthardwareandsoftwaremanufacturers
providing in sometime a systemcall giving therealband-
width or signalnoiseratio.

The connectionstatemonitor implements an hysteresis
mechanismfor smoothingbandwidth variations(cf. figure4
and figure 5). The hysteresisdefinesthreemodes: “dis-
connected”whentherequestis only performedby thelocal
copy ontheterminal ; “connected”whentherequest is only
performedby theobject on thewired host; “partially con-
nected”when the requestis performed by the local copy
that transmitsthecall to theremoteobject. Sincethelocal
copy does not perform theoperationswhentheGUI is (di-
rectly)connectedto theremoteobject,theformeris not“up
to date”,andwhengoing from connectedto partially con-
nected,a statetransferis necessary. WhentheGUI is dis-
connectedor partially connected,the local copy performs
theoperationsandis “up to date”,except for messagesthat
wererecentlyreceivedby theremoteobject. Theusermust
explicitly call a receive operation to know if therearenew
messagesreceived . Of course,we canadaptthe GUI to
dothatperiodically. Therefore,thethird modenamed“par-
tially connected” is introducedto avoid the“ping-pong ef-
fect” betweenthetwo othermodes. Whatwe defineasthe
“ping-pongeffect” occurswhensmall variations around a
valueof thebandwidth imply successivestatetransfers.

On diagram4.a, when the value of the bandwidth in-
creasesandis lower thanlowUp (resp.highUp), themo-
bile terminal is disconnected(resp. partially connected).
Whenthe valueof the bandwidth decreasesand is higher
thanhighDown (resp.lowDown), themobile terminalis
connected(resp.partiallyconnected).Withoutdiagram4.b,
observe that therestill exists a risk of “ping-pongeffect”
around the valuehighDown. Thus,whenthe connection



is in stateF andthebandwidth becomeshigherthanhigh-
Down, theconnectionstaysbeingpartiallyconnectedup to
thevaluehighUp in casethebandwidth rapidly decreases
again.

3.3 Transparent switching between modes

Beforedeveloping the solutionusingportable intercep-
torsin Section3.3.2,Section3.3.1givesashortintroduction
to CORBA portableinterceptors.

3.3.1 Short overview of portable interceptors

“Portable interceptors are hooks into the ORB through
which ORBservicescan intercept the normal flow of exe-
cutionof theORB” [9]. Threetypesof interceptorsprovide
eleven interception points. Firstly, IOR interceptors give
the applicationan opportunity to modify IORs, morepre-
cisely IOR profiles,before they areexported andseenby
clients. Whenregistered in anexecution entity, anIOR in-
terceptor actson every objectcreation. In our work, this
kind of interceptor serves to adda component to all pro-
files. The presenceof sucha componentin a profile indi-
catesthat the objectbelongs to an applicationsupporting
the disconnected mode. In addition, the component con-
tainsa CORBA policy object that itself includes a boolean
value statingwhether theobjectcanbecopiedon the mo-
bile terminal. Secondly, client-sideinterceptors introduce
five interception pointsin a request andreply sequenceon
theclientside.Two of themintervenebeforeasynchronous
or asynchronousrequestis sentby theORB.Thelast three
allow to parsethe reply: normal (successful) or exception,
or otherthannormal andexception, beforethe control re-
turns to the client. When registered in an execution en-
tity, aclient-sideinterceptoractsoneveryrequestandreply
regardlessof which typesof componentsthe IORs have.
Nevertheless,whenthe IOR profile possessesthe compo-
nent “disconnectedmode”, specialtreatments are applied
(cf. Section3.3.2). Finally, server-side interceptors define
five other interception points, two on the reception of re-
questsandthreeon thesendingof replies.Theserver-side
interceptorsarepresentedherefor thesakeof completeness
but arenotusedin theprototype.

Portableinterceptorsis theCORBA mechanism usedby
CORBA servicesto transparently addextra-functional ser-
vicesto applications. In fact, portable interceptors arein-
stantiatedandregisteredto an ORB during the creation of
the ORB wheninvoking the methodORB.init(). This
operation canbe transparent —i.e the sourcecodeof the
applicationdoesnotneedto modified.In thefollowing sec-
tion, thesolutionfollows thesameapproach.

3.3.2 Transparent switching between modes

We now detail theway we perform thetransparent switch-
ing betweenmodesusingIOR andclient-sideinterceptors.
Whentheserveronthewiredhoststarts,anIOR interceptor
is registeredat thecreationof theORBs.As aconsequence,
all the remote objects have by default the policy “discon-
nectedmode”. When the GUI starts,an IOR interceptor
andaclient-sideinterceptor areregisteredat thecreationof
theORBs. TheIOR interceptor of theclient is thesameas
theserver’s one.As a result,localcopiesonthemobile ter-
minal alsopossessthepolicy “disconnectedmode”. When
theGUI sendsits first requestto anobjectwhoseIOR pos-
sessesthe policy “disconnectedmode”, a local copy is in-
stantiatedon themobile terminal. Likewise,every request
is interceptedand the client-siderequest interceptor calls
the connection statemonitor that itself calls the connec-
tion bandwidth monitor (cf. 3.2). Depending on the state
changesof theconnection,theclient-siderequestintercep-
tor canbuild a CORBA ForwardRequest exception in-
dicatingthechangeof targetIOR andthrow thatexception.
Theexception is automatically managedby theORB. The
effect is a transparent switchingof target object: from the
remote objectto the copy on the mobile terminal andvice
versa.

In conclusion,theprototypewedevelopedwith Portable
Interceptors satisfies the requirements for transparent
switchingbetweenconnectedmodeanddisconnectedmode
with no modificationsof the IDL andno modifications of
the client. In addition, the current prototype usesinter-
ceptors dedicated to the example application. No much
work needsto bedone to obtaingeneric interceptorsby us-
ing the introspectionmechanismof the Java programming
language. Likewise, becausethe switchingis doneby the
ORB through theuseof CORBA ForwardRequest ex-
ceptions, the local copy cannot bea valuetype,sincea val-
uetype is not managedby theORB anddoesnot have any
IOR. The lastbut not the leastissuewe have to addressin
thenext sectionis thedesignof thelocal copy launchedon
themobileterminal.

3.4 Design of the local copy

In the connectedmode, the requestsof the GUI aredi-
rectlysentto theremoteobject.Hence,thestateof thelocal
copy onthemobile terminaldoesnotevolve. Theadvantage
of this modeis that thereis no indirectionandthe stateof
thelocalcopy canbeempty, thussaving memory. Whenthe
GUI becomespartiallyconnected,theclient-siderequestin-
terceptor calls an operation disconnect() on the local
copy which in turn callsanoperationdisconnect() on
theremoteobject.Thisoperationis similar to theoperation
disconnect() in the OBV solution(cf. Section3.1.2):



it transfers the state. The only differenceis that, now, the
out parameteris nota valuetypebut anAny.

In thepartially connectedmode,theoperationsareexe-
cutedlocally andremotely. If theprototypeof theoperation
containsonly in parameters,theoperation is executed lo-
cally first andthenremotelysothatthelocal copy is “up to
date”. If theprototypecontains only out parametersanda
return type,theoperationis executedremotelyfirst andthen
locally. Theconsequenceis that the local copy gets“up to
date” with the dataloadedfrom the remoteobjectbefore
it responds to the GUI. Regardlessof the prototype of the
operation,before forwardinga request,thelocal copy calls
theconnection statemonitor to know if a recent disconnec-
tion hasoccurred, in which case,therequestis loggedand
the operation performed locally. The mixing of in, in-
out, andout parameters anda returnvalue is let as an
open issuein ourfirst study. Another openissueis thesup-
port of CORBA exceptions thrown by theserversandsent
asresponsesto theclients.

In the disconnectedmode, the operationsareexecuted
only locally. If theprototypeof theoperation contains only
in parameters,the operation is logged. If the prototype
containsonlyout parametersandareturntype,whetheror
not theoperation is loggeddependson whetherthestateof
the targetobjectchanges. Themixing of in, inout, and
out parametersanda returnvalueandtheuseof CORBA
exceptionsraisesthe samedifficulties asmentioned previ-
ously. In addition, recallfromSection2 thateveryoperation
hasasits first argument anarrayrepresentinga log of op-
erations thatwerelocal to theGUI. This log is alsoadded
to the log of the local copy. Of course,this first argument
is an in parameterbut doesnot take part in the previous
discussions.Finally, an importanthypothesisof this study
is thattheremoteobjectcannot beaccessedconcurrentlyby
otherclientswhile thecurrent client is disconnected.Thus,
the reconciliation is easedandkeptsimple. The transition
betweenthedisconnectedmodeandthepartiallyconnected
mode corresponds to thereplayof theoperationsloggedby
the local copy. Clearly, the execution whendisconnected
is not equivalentto an execution while connected. This is
acceptable providedthatthestateof theconnection is visu-
alizedby aniconic imagein theGUI.

4 Related work

A number of researchprojectsdealwith adaptingexist-
ing applicationsfor wirelessaccess.For a broadsurvey on
client-servercomputing in mobileenvironments, thereader
canreferto [4].

OutsidetheCORBA context, Odyssey[8] focuseson dy-
namicadaptation of client-sideapplications to bandwidth

variations,especiallyfor data-intensiveapplications(image
viewer or video player). The systemmonitors the avail-
ablebandwidth andnotifiesthe application whena signif-
icant change occurs. The applicationcanthenswitch to a
suitable“fidelity” (imagequality) level. This concept of fi-
delity is attractive and could be re-usedfor stream-based
Vivian applicationsandimplemented through portable in-
terceptors in theVivian prototype. However, Odyssey does
not support disconnectedmode,andrequestsmodifications
to the underlying operating system(addition of new sig-
nalsandsystemcalls). Again outsidetheCORBA context,
Rover[6] provides a framework to handle resource varia-
tions and disconnectionsbetweena mobile terminal and
fixedservers. Thetwokey conceptsarerelocatabledynamic
object(RDO)andqueuedremoteprocedurecall (QRPC).A
RDOis apieceof codeanddatathatcanbeloaded(copied)
from a server to the terminalandvice versa. Theapplica-
tionscontrol thelocationof RDOs,thusenabling adaptation
to availableresources(e.g. bandwidth or processingpower)
anddisconnected operations. The QRPCmechanism han-
dles the terminal-serverscommunicationsin a transparent
way—i.e. remote procedurecallsor repliesaretransmitted
only whenthenetwork is up. This framework is very flex-
ible andgeneric. However, programmers mustdesignand
codein termsof RDOs,eitherfor new applications or for
specificproxies in orderto support legacy applications. In
ourapproach,theprogrammers’taskis muchreduced,since
thefunctionalcodeof legacy CORBA applicationsremains
unchangedwith only a few additions for supporting discon-
nections to bemade.

In the CORBA context, the Wireless CORBA
specification[11], ��� [12] and ALICE[7] focus on the
management of terminal mobility during the execution
of a distributed application, and thus address the prob-
lem of handling short-timedisconnections. The goal of
WirelessCORBA is to make the mobility of a wireless
terminal transparent to the programmer. To this end, the
transport layerprovidesmechanismsfor detectingnetwork
disconnectionsandmessageretransmissionprovidedanew
networkconnectioncanbesetupwithin some(short)delay,
typically the handover delay in a cellular infrastructure.
Otherwise,an exception is raisedthat can be caught by
the application. The Vivian prototype will benefit from
the features of Wireless CORBA for handling transient
network disconnectionsdueto terminalmobility . However,
long-time disconnections(eithervoluntary or involuntary)
are not handled by WirelessCORBA. ��� introducestwo
proxies (one on the terminalandonerunning in the wired
network) for making involuntary disconnectionstranspar-
ent to theuser. By contrast, our designdoesnot imply any
proxy installationin the wired network, andwe provide a
support for voluntary disconnectedmode. ALICE usesa



proxy too for handling terminal mobility, and provides a
mechanismfor supporting both involuntary andvoluntary
disconnections. Server objectscan be duplicated on the
terminal by the way of the Object By Value mechanism.
As previously explained, we use the Object By Value
mechanism too, but with less modifications in the client
code, becauseby using a custom marshallingno state
variablesappearin theIDL. In addition,the level at which
disconnectionsare handledis different: in ALICE, when
a disconnection occurs,an exception is sentby the ORB
to the client, so that the appropriate code for switching
to disconnected mode has to be included in the client ;
in our approach, disconnectioneventsare trappedat the
ORB level through the interceptor mechanism,so that the
appropriate code is included in the interceptors, leaving
the legacy application codeunchanged—i.e. only a few
additions haveto bemade.

In thesoftwarecomponentscontext, SIRAC[3] proposes
amechanism for duplicating beansfrom anEnterpriseJava
Beansserver to the terminal. Client stubsareextendedso
thattheapplicationcanswitchbetweenstandardmode (ac-
cessinganoriginal beanon its server) andlocal mode (ac-
cessingthe local copy), according to the valueof the cur-
rent accessmode(standard vs. local). Voluntary and in-
voluntary disconnectionsarehandledthrough two methods
(setAccessMode() andgetAccessMode()) inher-
ited by any client stub. Beancopies are createdthrough
ageneric load()method whichachievesserializationand
transmission. Thisapproachis verysimilarto ours(stubex-
tensions play thesamerole asinterceptors,load() plays
the samerole asthe Objectby Valuemechanism) but in a
differentcontext: EnterpriseJava Beansvs.CORBA.

5 Conclusion and perspectives

We have shown is this paper that standardCORBA
mechanismscan be usedfor enhancing legacy CORBA-
baseddistributedapplications in order to support bothvol-
untary andinvoluntarydisconnectionsin wirelessenviron-
ments.TheObjectsBy Valuemechanism helpsat answer-
ing the requirementsof voluntary disconnections,through
a very simpleusein the client codeandlimited modifica-
tionsto theIDL of thelegacy application. ThePortableIn-
terceptorsmechanismremovesthe limitationsencountered
with OBV. It allows to handle bothvoluntary andinvolun-
tary disconnections.Moreover thelattermodeis supported
transparentlyto theuser, with nomodificationneededin the
legacy codeontheclientsideandwith minormodifications
on the server side. As an illustration of how to usethese
mechanisms,wehave implementedasimplewirelessemail
browserby adaptingaCORBA-basedwebbrowserapplica-
tion.

Whereasthesefirst results appear as promising, the
amountof workneededfor adaptingalegacy applicationfor
supporting disconnectedmodes is still important. We are
currently working on furtherminimizing themodifications
needed to thelegacy code.Futureworkwill focusonamore
detailedevaluation of theObjectBy ValueandPortable In-
terceptor mechanisms,with respectto thefollowingcriteria:
legacy codepreservation, transparency towards theapplica-
tion, genericity and performance comparison focusingon
theinduced overhead.Moreover, in thecurrent implemen-
tation,thecalculation of thebandwidth is simulated.Hard-
wareandsoftwaremanufacturers should provide in some
time a systemcall giving the real bandwidth. Finally, the
designof the local copy installedon the mobile terminal
leavessomeopenissues; Section3.4of thepapercontains
a list asastartingpoint for further researchdirections.

Acknowledgements
Theauthors thank BrunoBretelleandOlivier Villin for

their takingpartin theimplementationof theprototypeand
therefereesfor their insightful commentsof apreviousver-
sionof thepaper.

References

[1] ORBacus for C++ and Java - Vesion 4.0.5.
http://www.ooc.com.

[2] The ITEA Vivian project web site. http://www-
nrc.nokia.com/Vivian.

[3] S. Chassande-Barrioz.Adaptationà la mobilité par la du-
plicationde Beandansun serveur EJB. 2001 samoawork-
shop, http://sirac.imag.fr/SAMOA/samoa-
workshop01/wkshp2001.html, March21-23,2001.

[4] J. Jing, A. Helal, andA. Elmagarmid. Client-Server Com-
puting in Mobile Environments. ACM ComputingSurveys,
31(2),June1999.

[5] D. Johnsonand W. Zwaenepoel. Recovery in Distributed
SystemsUsing Optimistic MessageLogging and Check-
pointing. Journal of Algorithms, 11,September1990.

[6] A. Joseph,J. Tauber, andM. Kaashoek.Mobile computing
with the Rover toolkit. ACM Transactionson Computers,
46(3),1997.

[7] N. Lynch. SupportingDisconnected Operationin Mobile
CORBA. M.sc.thesis,Trinity CollegeDublin, 1999.

[8] B. Noble, M. Satyanarayanan, D. Narayanan,J. Tilton,
J. Flinn, andK. Walker. Agile Application-AwareAdapta-
tion for Mobility. In Proc. SixteenthACM Symposium on
OperatingSystemPrinciples(SOSP97), Saint-Malo,France,
October5-8,1997.

[9] OMG. PortableInterceptors.InterceptorsFinalizationTask
Force publisheddraft, Object Management Group, April
2000.

[10] OMG. The Common Object RequestBroker - Archi-
tecture and Specifications.Revision 2.4.2. OMG Docu-
ment formal/01-02-01, Object ManagementGroup, Febru-
ary 2001.



[11] OMG. WirelessAccessandTerminalMobility in CORBA
Specification.OMG Document dtc/01-06-02, ObjectMan-
agementGroup,June2001.

[12] R. Ruggaber, J.Seitz,andM. Knapp. �	� - A GenericProxy
Platformfor WirelessAccessand Mobility . In Proc. 19th
ACM Symposiumon Principles of Distributed Computing
(PODC’2000), Portland,Oregon,July 2000.


