Weak Connectivity and Disconnected CORBA
Objects on Hand-Held Devices

Denis Conan, Sophie Chabridon, Olivier Villin, and Guy Bernard

Institut National des Télécommunications, 9 rue Charles Fourier, 91011 Evry, France
{Denis.Conan|Sophie.Chabridon|Olivier. Villin|Guy.Bernard } Qint-evry.fr

1 Introduction

With wireless communications and mobile hand-held or wearable devices be-
coming a reality, new applications where users can have access to information
anytime, anywhere are made possible. Distributed applications development is
facilitated by the use of standard middleware technology. Perhaps the most pop-
ular model is object-oriented middleware in which applications are structured
into potentially distributed objects that interact via location transparent method
invocation. Our focus is on the CORBA architecture standardised by the Object
Management Group (OMG) [8].

Our main contribution is to propose a framework, called Domint, which
adapts legacy CORBA applications so that they can keep working even when
weakly connected or disconnected. Weak connectivity results from intermittent
communication, low-bandwidth, high-latency or expensive networks. We distin-
guish between two kinds of disconnections: voluntary disconnections when the
user decides to work on their own and involuntary disconnections due to physical
wireless communication.

Important pioneering work has been done for mobile information access as
surveyed in [3]. Our position is different with respect to the underlying technolo-
gies involved. Coda [6] and Odyssey [7] focus on file systems and Bayou [9] is
mainly targeted at database systems. Not unlike Rover [4], we address object-
based systems. However, our intention is to take advantage of the most recent
standard techniques so that we can cater for a large number of applications. We
propose to benefit from state-of-the-art middleware technology and validate our
approach by demonstrating the feasibility of running an Object Request Broker
(ORB) on a Personal Digital Assistant. This comes with all the advantages of
language, operating system and network interoperability of CORBA middleware
technology.

The remainder of this paper presents the Domint architecture in Section 2
and prototype performance in Section 3.

2 Design Rationale and Architecture

In a classical distributed application with strong connectivity, the graphical user
interface is loaded on the mobile terminal and the server objects are hosted

2 Conan et al.

on machines of the wired network. Keeping working while being disconnected
implies transferring some elements from the servers to the mobile terminal before
losing connectivity, logging operations or state changes during the disconnection,
and re-integrating when re-connecting. This section first presents the design
rationale and then the architecture of Domint.

CORBA is chosen for its ability to be used in multiple domains and for provid-
ing extensibility mechanisms such as portable interceptors to build application-
transparent services. In order to make the functionality of application server
objects available even when being disconnected, proxy objects that we call dis-
connected objects are created on the mobile terminal. Being an object means
that both data and code are present thus the benefits of the mobile code tech-
nology can be valuable [2]. A disconnected object is a CORBA object which is
similar in design and implementation to the remote object, but specifically built
to cope with disconnection and weak connectivity. It is the application designer’s
responsibility to balance between a straightforward design and a more complex
one that adapts better to connectivity variations. Disconnected objects, being
CORBA objects, are accessible from all the applications of the mobile terminal
and can use standard CORBA services such as naming, event notifications or
transactions independently of the Domint framework.

In order to deal with multiple applications concurrently, some parts of re-
source management and log management (respectively the management of re-
sources such as network bandwidth and the propagation of logged requests) are
centralised and application-transparent. In addition, these services are achieved
by CORBA objects and accept requests from the application for better adapta-
tion. The application-aware resource management service abstracts, to applica-
tions in the CORBA world, connectivity information provided by the operating
system. More precisely, it accepts requests to modify the per-application percep-
tion of which resources and resource levels correspond to bad, weak or strong
connectivity, thus improving agility. The application-aware log management ser-
vice is run by a CORBA object able to act as a representative of the disconnected
objects during the re-transmission of the logged requests. It also accepts some
code from the latter objects in the form of CORBA Objects By Value (OBV) to
interpret the logged requests and to perform for example, log compaction, hence
improving fidelity.

The architecture of Domint is depicted in Figure 1. The two sub-figures
present UML-like collaboration diagrams of the client sending the first request
to a remote object when the connectivity is strong and then sending a request
in the case of weak connectivity, respectively. The collaborations are explained
in [1]. In terms of entities, all the rectangles represent CORBA objects. The
portable interceptor PI is also a CORBA object but a local one. All the requests
from and the replies to the client are intercepted by the PI. On request sending,
the PI acts as a switch between the disconnected object DO, and the remote
object. When the client user interface (Client in the diagrams) starts, a client-
side interceptor is registered at the creation of the ORB. Depending on the
state changes of the logical connection, the client-side request interceptor can

Weak Connectivity and Disconnected CORBA Objects. .. 3

Client S : Remote
Object : Remote
Client .
Object
<< new >> 4.2
21 2.2
23
2211 5.a.2.2
2.2, 2.2.1.
a1 4.1.2
DOM LM
221 DOM a2, LM
RM
<< new >>
222
CM
1: Client’s request before interception
2.1: findRM() 2.2:findCM() 2.2.1:createDO() 2.2.1.1: findRM() 1: Client request before interception 2: getCMinfo()
2.2.1.2: findLM() 2.2.1.3: addInterpretLogOBV() 2.2.2: createCM() 3: Client request after interception 4: getCMiInfo()
2.3: getCMiInfo() 3: Client’s request after interception 4.1.1: findCM() 5.a.1: addLog() 5.a.2.1: << periodic >> getCMiInfo() 5.a.2.2: DO request
4.1.2: getCMinfo() 4.2: <<periodic>> incrementalStateTransfer() 5.b.1: treatLog() 5.b.2: getCMInfo() 5.b.3: DO request
(a) (b)

Fig. 1. The Domint architecture: (a) interactions during the first call to a remote
object in the case of strong connectivity, corresponding to the connected mode; the next
client’s requests sent in the connected mode do not generate the requests italicised; ()
interactions during a call to the same remote object in the case of weak connectivity,
corresponding to the partially connected mode. The remote object is hosted on a
machine of the wired network while all the other entities are executed on the mobile
terminal.

build a CORBA ForwardRequest exception indicating the change of request
target IOR and raise that exception. The exception is automatically managed
by the ORB. The effect is a transparent switching of target object: from the
remote object to the disconnected object and wvice versa. The decision table
contained in the PI for the transparent switching between modes is given in [1].
On response reception, the PI detects possible communication failures between
the sending of the request and the reception of the response. The client and
the PI belong to the same execution entity whereas the disconnected objects
manager DOM, the resource manager RM, the connectivity manager CM, the
DO and the log manager LM are grouped in another execution entity, also on
the mobile terminal. Except the connectivity manager, the managers are single
objects. The DOM is the entry point to find the other managers. The RM is a
factory of CMs. A CM accomplishes the abstraction of connectivity information
related to one resource. The policy currently implemented associates a CM per
logical link between a client and a remote object; it is the finest granularity at
the middleware level. We can easily imagine other policies such as one CM per
application or one CM per remote host.

A connectivity manager handles a logical connection between a client on
the mobile terminal and a remote object on the wired network, however the
number of wireless physical connections that link the two objects at a given
time and regardless of whether the logical connection corresponds to different
wireless physical connections over time. Connectivity managers rely on network

4 Conan et al.

monitoring entities that effectively measure the resource levels: network activity,
available bandwidth, transmission cost, round-trip time. .. The monitoring can
be provided by non-CORBA entities, and preferably, by the operating system.
Connection monitors can be organised, for instance, in hierarchical structures
controlled by a resource manager; the Domint’s resource manager could be the
representative in the CORBA world of this resource manager.

In order to not “punish strongly-connected clients” [6], while strongly con-
nected, client’s requests go directly to the remote object. Secondly, in order to
“insulate applications from insignificant variations in resource level” [7], an hys-
teresis mechanism detailed in [1] is designed to avoid too frequent state transfers
and switchings between the disconnected object and the remote server object.
For this purpose we introduce a first-class partially connected mode, in addition
to the connected and disconnected modes. Thirdly, in order to “expose network
connectivity to applications and permit applications” and users “to be involved in
connectivity related decisions” [4], users’ interfaces can customise the constants
of the hysteresis mechanism and can obtain and display connectivity information.
Of course, users can disconnect or re-connect voluntarily by invoking operations
disconnect () or reconnect (); these calls are not addressed to the connectivity
managers, but to the remote objects, and are intercepted and treated by the PI.

The design of disconnected objects is highly application-dependent. [1] gives
patterns for the development of such disconnected objects. We do not address
consistency and conflict resolution problems in this paper. We have designed a
generic log service that can easily be adapted to integrate domain specific consis-
tency protocols; research is currently in progress to evaluate how the mechanisms
of Bayou [9], ICeCube [5] or operation transforms [10] can benefit to the DOM
service.

3 Performance Results

We have conducted a first series of performance measures in different software
and hardware combinations (laptop PC and iPAQ PDA, running Windows or
Linux). For wireless communications, a Compaq IEEE 802.11b WL110 card
at 11Mbps was plugged in all devices and we used a software base station.
Each test was run 100 times so as to compute meaningful averages. A garbage
collection occurs before each run on the client and server sides in order to have
no interference with previous operations.

In Table 1, we show a subset of the performance results obtained on the
client side with an iPAQ (206 Mhz, 16 Mb of ROM and 32 Mb of RAM) running
Windows CE 2.0 and ORBacus 4.1.0 as the ORB for sending data. A first lesson
is that the use of an ORB alone (line #3) induces little overhead as compared
with standard remote TCP communication for data larger than 16Kb. Secondly,
intercepting requests introduces a negligible cost with regard to the associated
processing. In addition, lines #5 and #6 experiments teach us the following facts:
1) for data smaller than 16Kb, the overhead ranges from 30% to 100%, but in
value, it stays imperceptible for the end user; 2) for data larger than 128Kb, the

Weak Connectivity and Disconnected CORBA Objects. .. 5

overhead is acceptable, extra Domint messages being short compared to large
data messages. Finally, not shown in Table 1, the duration of a transparent
switching performed by the ORB is estimated around 240ms.

|Experiment [1b]128 bj16 Kb[128 Kb[512 Kb | 1 Mb

1. TCP local 740 | 8+0 [39+13] 24846 | 96044 |1919+23
2. TCP remote 940 | 1042 | 61£7 | 456:£74 [1878+214[3717+286
3. ORB conn. without PI 13:£1]18£50| 634 | 46296 | 184348 | 3630270
4. ORB conn. with PI doing nothing||17+2| 1742 | 6645 [471+104] 1831488 [3675£200
5. ORB conn. with PI DOM 5442 5442 | 100£2 | 508£78 [1912:+128|3757+238
6. ORB part. conn. with PI DOM ||55+:2(552 [10343 | 504483 [19194-168]3798£205

Table 1. The performance results on iPAQ with Windows CE: times (ms) for sending
data (bytes).

References

1.

10.

D. Conan, S. Chabridon, O. Villin, and G. Bernard. Domint: Weak Connectiv-
ity and Disconnected CORBA Objects on Hand-Held Devices. Technical report,
Institut National des Télécommunications, Evry, France, Aug. 2002.

. A. Fuggetta, G. Picco, and G. Vigna. Understanding Code Mobility. IEEE Trans-

actions on Software Engineering, 24(5), May 1998.

. J. Jing, A. Helal, and A. Elmagarmid. Client-Server Computing in Mobile Envi-

ronments. ACM Computing Surveys, 31(2), Jun. 1999.

. A. Joseph, J. Tauber, and F. Kaashoek. Mobile Computing with the Rover Toolkit.

IEEE Transactions on Computers, 46(3), 1997.

. A. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel. The IceCube Approach

to the Reconciliation of Divergent Replicas. In Proc. 20th ACM PODC, Aug. 2001.
L. Mummert, M. Ebling, and M. Satyanarayanan. Exploiting Weak Connectivity
for Mobile File Access. In Proc. 15th ACM SOSP, Dec. 1995.

B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton, J. Flinn, and K. Walker.
Agile Application-Aware Adaptation for Mobility. In Proc. 16th ACM SOSP, 1997.
OMG. The Common Object Request Broker - Architecture and Specifications.
Revision 2.4.2. OMG Document formal/01-02-01, Feb. 2001.

D. B. Terry, M. M. Theimer, K. Petersen, and A. J. Demers. Managing Update
Conflicts in Bayou, a Weakly Connected Replicated Storage System. In Proc. 15th
ACM SOSP, Dec. 1995.

N. Vidot, M. Cart, J. Ferri, and M. Suleiman. Copies convergence in a distributed
real-time collaborative environment. In Proc. ACM CSCW, Dec. 2000.

