
VALIDATION OF BUFFERBLOAT_DISSECTOR

ANDREA ARALDO

This work is based on [Ara13] that you can download from http://perso.telecom-
paristech.fr/~araldo/pmwiki/uploads/Main/thesis.pdf.

In a local testbed, we compare our measures to the ones obtained by considering
the ping RTT, as ground truth. We also change the data rate at which the network
interface works in order to understand in what scenario our measurement is more
accurate. We repeat the experiment with di�erent values of a parameter (the
quadrant size) to evaluate its impact on the accuracy.

1. Testbed description

We send bidirectional TCP tra�c between two hosts connected via an Ethernet
LAN, as in 1.1. We perform the measurement of the queueing delay of the queue
on host A. We start three �ows:

• the monitored TCP �ow : host B sends data segments to host A that replies
with the acknowledgements.

• the cross tra�c �ow : host A sends burst of data to B
• the ICMP �ow : host B sends an ICMP echo requests to host A at 1 Hz
that replies with an ICMP echo replies.

Our monitor runs on host B and estimate the queueing delay on A observing the
data-to-ack time on the monitored �ow, applying the methodology of chapter 2
of [Ara13]. In particular, the monitor infers how much time the acknowledgments
(that host A sends on the monitored �ow) pass in the local queue. The cross tra�c
�ow is used to periodically form the queue inside A, �lling it with bursts of data
segments with which the host A acknowledgements in the monitored �ow have to
compete. Compare �g. 2.1 of [Ara13] with 1.1 to have a better idea of how the
methodology is applied in the testbed.

1.1. Crafting tra�c. The monitored and cross tra�c �ow are arti�cially created
with Iperf ([TQD+05]). Iperf is a tool that consists of two softwares: iperf client
and iperf server.

To create the monitored �ow, we �rst launch iperf server on host A listening on
port 5011. Then we launch the iperf client on host B specifying to open a TCP
connection to the port 5011 on host A. In this way, iperf client starts to send data
segment to iperf server that replies with acknowledgements.

To create the cross tra�c �ow we launch iperf server on host B listening on
port 5012, then we launch iperf client on host A a series of times, separated by
15 seconds, for 2 seconds each time. iperf client acts to inject tra�c at a data
rate such to use the entire available bandwidth. Therefore, during the intervals of 2
seconds in which iperf client is active, we recreate the scenario of full link utilization
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Figure 1.1. Local testbed

and we impose a large queue in the exit link of host A, hampering in this way the
acknowledgments of host A on the monitored �ow.

The ICMP �ow is created launching the Linux utility ping on host B, setting
host A as destination.

1.2. Creating the bottlenecks. To create some arti�cial bottlenecks, we use
Ethtool1 and Netem2.

1See http://en.wikipedia.org/wiki/Ethtool
2See http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
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Ethtool permits to physically slow down the Ethernet interface3. Our hosts are
equipped with a 100 Mbps Ethernet interface and we slow down the interface of
host A to 10 Mbps.

On the other hand, Netem creates software bottlenecks. We set Netem to use
the Hierarchical Token Bucket (HTB) method to implement the bottleneck. HTB
is now part of the o�cial Linux Kernel. We use Netem to limit the rate at which
host B sends packets to host A in the in the monitored �ow. The limit we impose is
7Mbps . In the same way, we impose a limit of 1 Mbps in the data rate at which the
host A send packets to host B. Doing this way, we want to simulate the bottleneck
represented by the ADSL uplink.

It should be noticed that, to slow down the link exiting from host A, we use
both Netem and Ethtool. We do this beacuse during our experiments we observed
that slowing down the 100Mbps ethernet interface only via Netem may lead to
an instable evolution of the RTT we use as ground thruth (as can be seen in 1.2
- for now observe only RTT (green line) and ignore the rest). In particular, the
RTT goes up and down very rapidly. We suppose that this is a consequence of the
token bucket mechanism: when there are free tokens, they are rapidly consumed
by iperf client that can send a lot of packets and �ll the queue, thus imposing high
round trip times². In the time intervals when there are no more tokens, the packets
of iperf client cannot go out and have to wait until they are recreated. In these
intervals the queue has the chance to partially empty and the round trip times
decrease. 1.2 shows also that when Netem is used in conjunction with Ethtool, the
RTT evolution is more natural, because the Ethernet interface physically works at
10 Mbps and Netem has to slow down the link only by a factor of 10 (instead of
slowing down by a factor of 100 like when using only Netem).

Because we want to avoid these irregular and unnatural behaviors, we choose to
use Netem and Ethtool together.

1.3 completes 1.1 with some more details about the tools that we use.

1.3. Replicating the experiments. The experiments that we propose for the
validation are easily reproducible. They are automated by means of distributed
bash scripts. To have an idea of what the scripts are and what process are launched,
see 1.4.

Two identical version of our Tstat implementation are present on both host A
and host B. Some preliminary con�guration variable may be set up4

Then, launching ping_validation/exp2-brain-iperf.sh, the entire experi-
ment is performed. This script is the �orchestrator� and is responsible to launch all
the softwares we need. It runs in host A but is able also to launch processes in host

3On some network interfaces it may not work
4In ping_validation/exp2-brain-iperf.sh on the host A

side and in ping_validation/exp2-ping-netbook.plot.sh and
ping_validation/exp2-netbook-variables_conf.sh on the host B side. The word �net-
book� that appears in the names of the host B side scripts is not meaningful. It appears only
because in our experiment we originally used a netbook as host B.
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Figure 1.2. (top) RTT (green line) when only Netem is the host
A bottleneck. (bottom) RTT (green line) when Netem is used in
conjunction to Ethtool.

B5. This script also calls a script on host B, ping_validation/exp2-ping-netbook.plot.sh,
that is delegated to launch other processes on host B.

5Some network settings are needed on both host A and host B:

• /etc/hosts �le must be edited in host A, to associate the IP address of host B to the
name �netbook�

• /etc/hosts �le must be edited in host B, to associate the IP address of host A to the
name �desktop�

• from host A it must be possible to access via SSH the host B as root user without
password. A good howto about this is:
http://www.linuxproblem.org/art_9.html

• ping_validation/exp2-brain-iperf.sh must be launched with root privileges
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Figure 1.3. Local testbed: detailed schema

First, the bottlenecks are created on host A and host B. Then, the iperf servers
start (both the one for the monitored �ow and the one for the cross tra�c �ow) to
listen on their respective ports. On host B, tcpdump starts to sni� the monitored
�ow. At the end of the experiment, it will produce a pcap trace6, useful for further
analysis of the experiment. Then host B starts to ping host A. The round trip
times are recorded in the ping output �le, together with the relative timestamps 7.
Finally, the monitored and the cross tra�c �ows start.

6The �le name is speci�ed by the variable PCAP_TRACE of
ping_validation/exp2-netbook-variables_conf.sh

7The �le name is speci�ed by the variable PING_OUT_FILE of
ping_validation/exp2-netbook-variables_conf.sh .
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Figure 1.4. Testbed automating scripts

1.4. Analyzing the results. After running the experiment, it's possible to obtain
plots like 1.2 using the the pcacp trace and the ping output �le produced with the
previous procedure. Launching ping_validation/exp2-netbook-offline-plotting.bash
Tstat analyzes the pcap trace producing its log �les8. At the end of the process, a

8All the log �les written by Tstat will be in the folder speci�ed by the variable
TSTAT_OUT_FOLDER of ping_validation/exp2-netbook-variables_conf.sh .
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Figure 1.5. O�ine analysis process

gnuplot script examines the Tstat log �le and the ping output script and generate
the plots 9. Separating the experiment runs from the analysis of results permits to
compare the results produced by di�erent con�gurations of Tstat on the same pcap
trace.

To have an idea of the data taken as input, the data produced during the analysis
and the scripts and sofwares involved, see 1.5.

2. Impact of parameters and surrounding conditions

2.1. The impact of the quadrant size. At low level, tcptrace (and thus Tstat
too) keeps sequence numbers in a circular data structure named quad (i.e., after
the �quadrants� the structure is divided into, to speed-up lookup). In case the
quad has a �xed size, it may happen that, if the number of outstanding segments
grows larger than the quad size, then sequence numbers are overwritten � so that
acknowledgements cannot be paired with data and RTT samples are lost. We show
an occurrence of this problem in 2.1, where we con�gured two values of the quad
size10 � one is �xed (to a purposely small value) and the other is variable and can

9An eps �le is generated. Its path is speci�ed in ping_validation/build_gnuplot_script.bash

.
10The quadrant size is represented by MAX_SEG_PER_QUAD in tstat/param.h
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grow arbitrarily large to avoid overwriting outstanding sequence numbers (notice
that variable size is handled with linked lists, so that in this validation phase we take
precisely the opposite direction to [GCCK13], as we do not want to compromise
accuracy).

2.1 and 2.2 represent three measurements on exactly the same tra�c trace11.
Each measurement correspond to a con�guration of Tstat. For each of the three
con�gurations, we provide three plots: in the top plot we compare the ground
truth (the RTT of the ICMP �ow) with our estimation. In the bottom plot we
represent the number of acknowledgments that host A sends to host B every second
in the monitored �ow and the validity ratio, i.e. the ratio between the number of
valid acknowledgements observed in a second (see section 2.2 of [Ara13]) and the
total number of acknoledgements (either valid or invalid). In the middle plot,
we represent how many queueing delay samples Tstat is able to calculate. These
samples are the ones that Tstat uses to calculate the aggregated queueing delay,
every second (see section 2.5 of [Ara13]).

First, we easily observe that when the cross tra�c is inserted, it saturates the
link from host A to host B. Therefore, the queueing delay increases, as con�rmed
by the ground truth. As expected, the number of acknowledgements that succeed
in arriving to host B decreases and thus Tstat has less information to infer the
queueing delay, as con�rmed by the decreasing of the number of queueing delay
samples per second. Nevertheless, the qd_samples/sec value does not depend only
on the number of acknowledgements but also on the quadrant size. From 2.1, it is
clear that with a small quadrant size the number of qd_samples/sec that can be
calculated is very small for sequence numbers are possibly overwritten. Observing
the validity ratio plot, we can grasp why it happens: with a small quadrant size,
most of the acknowledgements are marked as invalid, and cannot be used for our
estimation. For the con�guration MAX_SEG_PER_QUAD=2, the validity ratio never
exceeds 0.25, while for the con�guration MAX_SEG_PER_QUAD=INFTY it reaches 1.0
.

As a consequence, for small values of the quadrant size, Tstat estimation is very
coarse, while, increasing the quadrant size, Tstat better approaches the ground
truth (in 2.1, compare the top plot of the two con�gurations, in particular after
second 55). We point out that, when quadrant size is small, the error is not �ran-
dom� but systematically may lead to an underestimation of the queueing delay: in
particular, during our experiments we observed that when the ICMP RTT is not so
high Tstat gives a good estimation but when the RTT is high Tstat cannot produce
its estimates. Providing estimates of the queueing delay only when it is low clearly
is a measurement bias.

The 2.2 represents an intermediate case: the validity ratio is slightly lower than
with MAX_SEG_PER_QUAD=INFTY, and so the number of queueing delay samples
per seconds; nonetheless Tstat succeeds in estimating the queueing delay.

The results that are presented in the following chapter are obtained with
MAX_SEG_PER_QUAD=INFTY. The considerations that we've given in this section
highlight that to infer the queueing delay (like when performing any other mea-
surement), attention should be paid in tweaking the measuring tool, otherwise the
results may be distorted. We point out that other authors do not report much on
tweaking the tool they use.

11We sni� the tra�c with tcpdump and then apply the measurement on the o�ine trace
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Figure 2.1. Queueing delay estimation using di�erent values
of quadrant size. MAX_SEG_PER_QUAD=2 in the top �gure and
MAX_SEG_PER_QUAD is INFTY in the bottom �gure (INFTY means
that Tstat keeps track of all the segments: the only limit is the
system meory).
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Figure 2.2. Queueing delay estimation with MAX_SEG_PER_QUAD=5

2.2. Dependency on the data rate. In this subsection, we show that the ex-
pected data rate should be taken into account when tweaking Tstat. For the data
rates that we have when using the bottlenecks (Netem and Ethtool), a MAX_SEG_PER_QUAD=5
is enough to have a good estimation of the queueing delay. Now, we provide the
results obtained replicating the experiments of 1 without any bottleneck (neither
in host A nor in host B, neither Netem nor Ethtool). Both the monitored �ow and
the cross tra�c �ow are free to run at the maximum speed.

2.3, 2.4 and 2.5 show that the number of acknowledgements in the monitored �ow
is more than a magnitude larger than the previous experiments, but the validity
ratio is almost 0 even with MAX_SEG_PER_QUAD=15 and thus the number of
queueing delay samples per second is not su�cient. In the previous experiments,
with
MAX_SEG_PER_QUAD=2 the estimation was coarse but at least possible. Now,
with that con�guration, Tstat is not able to provide any estimation. While in
the previous example MAX_SEG_PER_QUAD=5 guaranteed a good estimation,
now the estimation is very coarse. To have a good estimation, we have to set
MAX_SEG_PER_QUAD=15.

3. Performance analysis and analysis of the overhead

In this section, we coarsely analyze the overhead imposed on Tstat by the queue-
ing delay estimation both in terms of required disk space for the output �les and
of execution time.

We run Tstat on a set of 59 compressed pcap traces. The total size of the traces
is 43 GB. With bu�erbloat analysis disabled, Tstat running time is 23 minutes and
the output log �les are 1,462GB. Enabling bu�erbloat analysis, the log �les increase
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Figure 2.3. Experiment without bottlenecks
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Figure 2.4. Experiment without bottlenecks
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Figure 2.5. Experiment without bottlenecks

to 2,328 GB and running time increases to 25 minutes. We can conclude that the
bu�erbloat analysis imposes an overhead of 60% in terms of required space on the
disk and of 8% in terms of running time.
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