
BUFFERBLOAT_DISSECTOR HOWTO

ANDREA ARALDO

1. Introduction

bufferbloat_dissector is a patched version of Tstat. Therefore, to install
and run bufferbloat_dissector, you have to perform the same steps as when
installing and running Tstat. Also the syntax remains the same.

We highly recommend to read the following sections of the �Tstat howto�1 before
reading this document. The sections are:

• �Installation�
• �Usage�
• �Output/Logs�

If you have any problems, if anything is not so clear, if I forgot to say something or
I said something wrong don't hesitate to contact me at andrea.araldo@gmail.com .
I will thank you for having helped me in improving bufferbloat_dissector and
in making the life of any other guys who will use it a little easier. I would also
be very glad also if you will contact me simply to let me know that you are using
bufferbloat_dissector and you are having fun (going mad) with it.

andrea.araldo@gmail.com

2. Tstat overview

Tstat [FMM+11] is an open source passive monitoring tool developed by the
networking research group at Politecnico di Torino2 since 2000. It started as an
evolution of tcptrace3 and o�ers live monitoring (specifying the interface to monitor)
and o�ine analysis (specifying the input �le to analyze, e.g. a pcap trace). It is
written in ANSI C for e�ciency and allows sophisticated multi-gigabit-per-second
tra�c analysis to be run live using common hardware and Libpcap [JLM94], the
de facto standard application programming interface (API) to capture packets.

Tstat sni�s IP packets and aggregate them in �ows. Each �ow is typically de�ned
as the sequence of packets characterized by the same �owID that have been observed
in a given time interval, where �owID = (ipaddress1, port1, ipaddress2, port2,
direction) so that TCP and UDP �ows are considered. The direction indicates if
the data go from ipaddress1 to ipaddres2 or in the opposite direction. For this
work, only TCP �ows are studied. The start of a new �ow is commonly identi�ed
when the TCP three-way handshake is observed; similarly, its end is triggered when
either a proper TCP connection teardown is seen, or no packets have been observed
for some time.

Date: 05 August 2013.
1http://tstat.tlc.polito.it/HOWTO.shtml
2Tstat Homepage: http://tstat.tlc.polito.it
3TCPTrace Homepage: http://www.tcptrace.org

1

BUFFERBLOAT_DISSECTOR HOWTO 2

By con�guration �les, it is possible to specify the hosts that are considered as
internal or external and the tra�c is organized in

• Incoming tra�c: The source is external and the destination is internal.
• Outgoing tra�c: The source is internal and the destination is external.
• Local tra�c: Both source and destination are internal.
• External tra�c: Both source and destination are external.

We monitor only outgoing tra�c and divide internal and external hosts.
Tstat collects several network-layer as well as transport-layer measurements,

which are described in full details in http://tstat.polito.it/measure.shtml. Part
of the Tstat output is represented by plain text logs. In the o�ine analysis (the one
that we are performing), for each pcap trace Tstat produces a folder with di�er-
ent log �les. Examples of log �les are: log_tcp_complete, log_tcp_nocomplete ,
log_udp_complete , log_skype_complete, log_chat_complete, log_streaming_complete.
Their form is quite similar: they are plain text �les where each row corresponds to a
di�erent �ow and each column is associated to a speci�c measure (for log_tcp_complete
we have number of data packets, number of SYN messages, maximum receiver win-
dow announced, ...).

Tstat is also able to identify the application that generated the tra�c. Primarily,
Tstat implements a deep packet inspection (DPI) technology.

3. Queueing delay measurement implementation

Bu�erbloat-related code. When implementing our methodology in Tstat, our
goal was to isolate the code related to the queueing delay calculation from the rest
of Tstat. Tstat is now a complex tool able to accomplish di�erent measurement
tasks and it's important to maintain it modular: the experimenter should be able
to activate and deactivate what he needs for his measurement. We know that not
all the experimenters will be interested in queueing delay measures and we want
that they should be able to use Tstat for their goals simply ignoring the existence
of portions of code related to queueing delay.

All the C procedures related to queueing delay measurement are in tstat/bufferbloat.h
and tstat/bufferbloat.c. In particular, the functions declared here are:

• bufferbloat_analysis(..):
� called in tstat/tcp.c, tstat/ledbat.c, tstat/rexmit.c

• chance_is_not_valid(..):
� called in tstat/tcp.c

• check_direction_consistency(..):
� called in tstat/tcp.c, tstat/ledbat.c, tstat/rexmit.c

These function calls are activated only if the precompilation option BUFFERBLOAT_ANALYSIS
is enabled (see �Con�guration parameters�).

The code in tstat/bufferbloat.c is an evolution of the code developed by
Chiara Chirichella [Chi12] to study the bu�erbloat by monitoring the uTP �ows.
We generalize and extend the code to make it work both with uTP monitoring
(as in Chirichella's work) and TCP monitoring (as in our work). The calculation
method used for the uTP case is very similar to ours. They both estimate the
queueing delay collecting the samples of gross delays. Gross delay is the general

BUFFERBLOAT_DISSECTOR HOWTO 3

term with which we indicate the one-way delay in the uTP case and the data-to-
acknowledgement time in our TCP case. Therefore, if bufferbloat_analysis(..)
is called by tstat/rexmit.c, the following parameter is passed:

last_gross_delay = etime_rtt/1000

where etime_rtt is the data-to-acknowledgement time in microseconds.
On the contrary, if bufferbloat_analysis(..) is called by tstat/ledbat.c,

the last_gross_delay will be assigned a value depending by time_diff, that is
the one-way delay.

We inserted comments in the code with the aim to make it self-explanatory and
thus we do not dwell on the code description.

Con�guration parameters. Our implementation on Tstat is highly con�gurable
by precompilation options4.

The general options are

• BUFFERBLOAT_ANALYSIS: if enabled, the queueing delay estimation will be
performed. Otherwise, the �classical� version of Tstat will run

• DATA_TRIGGERED_BUFFERBLOAT_ANALYSIS: if enabled, in addition to the
queueiif enabledng delay inference method that we are presenting in this
work, a di�erent method will run. It is based on the ack-to-the-following-
data-segment time (rather then on data-to-ack time).We implement this
method but do not analyze it. This method will be ignored in this work.

• FILTERING: if enabled, all the LEDBAT-like �ltering operations to calculate
the baseline will be used.

• FORCE_CALL_INLINING: if enabled, gcc compiler will be forced to compile
using the optimization technique called �call inlining�5: in the compilation
phase, the calls to a function are replaced with the body of the function.
This generally permits shorter running times, because, at run time, the
overhead of the function call (branch, parameter passing, allocation of space
in the stack, return parameter handling, ...) is avoided. The disadvantage
is the increase of the object code size.

The debug options are:

• SEVERE_DEBUG: If it is enabled, a lot of redundant and overabundant checks
will be performed to check for inconsistent states or data. If an inconsistent
state is detected, Tstat terminates and issues an error message. This can
be useful for further editing of the code to be sure that the modi�cations
do not introduce inconsistency.

• SAMPLE_VALIDITY: If it is enabled, Tstat will perform the calculations to
check how many acknowledgements are considered valid or invalid (see the
validation documentation).

• SAMPLE_BY_SAMPLE_LOG: If it is enabled, the log �les with all the queueing
delay samples will be produced (in addition to the log �les of the aggregated
queueing delays).

• ONE_FLOW_ONLY: it can be used when, for debugging purposes, it is necessary
to be sure that Tstat is monitoring only one �ow.

The default con�guration is with only BUFFERBLOAT_ANALYSIS and
FORCE_CALL_INLINING are enabled.

4See tstat/Makefile.conf
5See http://www.greenend.org.uk/rjk/tech/inline.html for a good howto on the question

BUFFERBLOAT_DISSECTOR HOWTO 4

4. Output log file

In addition to the other Tstat log �les, the following �les will be produced6:

• log_tcp_windowed_qd_acktrig: if BUFFERBLOAT_ANALYSIS is enabled
• log_ledbat_windowed_qd: if BUFFERBLOAT_ANALYSIS is enabled
• log_tcp_windowed_qd_datatrig: if BUFFERBLOAT_ANALYSIS and DATA_TRIGGERED
are enabled

• log_ledbat_qd_sample: if BUFFERBLOAT_ANALYSIS and SAMPLE_BY_SAMPLE_LOG
are enabled

• log_tcp_qd_sample_acktrig: if BUFFERBLOAT_ANALYSIS and SAMPLE_BY_SAMPLE_LOG
are enabled

• log_tcp_qd_sample_datatrig: if BUFFERBLOAT_ANALYSIS,
SAMPLE_BY_SAMPLE_LOG and DATA_TRIGGERED are enabled

For the measures that we present here, only log_tcp_windowed_qd_acktrig is
used.

Each row of this �le describes a 1-second-window of a certain �ow pair charac-
terized by the same (ipaddress1, port1, ipaddress2, port2)-tuple. Considering the
role of the host that sends the packet, for each tuple like above Tstat distinguishes
between client and server, i.e., host that opens a connection and and host that
replies to connection request. The role of client or server does not correspond to
the classi�cation in internal or external host.

The columns of the log �le are as follows:

(1) timestamp (in seconds)
(2) ip_addr_1: IP address of the client
(3) port_1: port of the client
(4) ip_addr_2: port of the server
(5) port_2: port of the server
(6) internal_src: 1 if the host identi�ed as client is internal; 0 otherwise7

(7) internal_dst: 1 if the host identi�ed as server is internal; 0 otherwise
(8) connection_type (client-to-server direction8): a string in the form

<con_type>:<p2p_type>. <con_type> can be P2P, HTTP, SMTP, ... (see
tstat/protocol.h for the complete list). If the connection is of type P2P,
<p2p_type> indicates more detail about the type of connection. In our
work, we use only the information in <con_type>.

(9) aggregated_queueing_delay (client-to-server direction): in milliseconds
(10) window_error (client-to-server direction): in milliseconds
(11) qd_max_w1 (client-to-server direction): in milliseconds, it indicates the max-

imum of the queueing delays collected in the last 1-second-window

6Notice that the term �windowed� stands for �aggregated�
7For more details, search tstat/struct.h for �internal_src�
8Actually, this is a redundant information beacause the two directions are always of the same

type.

BUFFERBLOAT_DISSECTOR HOWTO 5

(12) chances_in_win (client-to-server direction): how many acknowledgements
(either valid or invalid) are collected in the 1-second-window. Each ac-
knowledgment is considered as a �chance�9 to calculate the queueing delay.
When SAMPLE_VALIDITY is disabled, this column is always equal to �-�.

(13) aggregated_grossdelay (client-to-server direction): this is the average
data-to-acknowledgement time (milliseconds) of all the samples collected
in the 1-second-window.

(14) connection_id (client-to-server direction): this is meaningful only in the
LEDBAT contest.

(15) samples_in_win (client-to-server direction): number of queueing delay
samples collected in the 1-second window. The aggregated queueing de-
lay is calculated on the base of these samples.

(16) not_void_windows (client-to-server direction): meaningless, used only for
debugging purposes

(17) qd_measured_sum (client-to-server direction): in milliseconds, it is the sum
of the queueing delay samples seen from the beginning of the �ow

(18) aggregated_qd_sum (client-to-server direction): in milliseconds, it is the
sum of the aggregated queueing delay of the 1-second-windows seen from
the beginning of the �ow.

(19) sample_qd_sum_until_last_window (client-to-server direction): in mil-
liseconds, it is the sum of all the queueing delay samples from the beginning
of the �ow to the last closed 1-second window.

(20) baseline (client-to-server direction): in milliseconds: it is the last baseline
calculated in the 1-second window. Notice that this value is not used for
the calculation but only written here for debugging purposes. Indeed, the
baseline used for the queueing delay calculation is recomputed at every
sample.

(21) connection_type (server-to-client direction)
(22) aggregated_queueing_delay (server-to-client direction)
(23) window_error (server-to-client direction)
(24) qd_max_w1 (server-to-client direction)
(25) chances_in_win (server-to-client direction)
(26) aggregated_grossdelay (server-to-client direction)
(27) connection_id (server-to-client direction)
(28) samples_in_win (server-to-client direction)
(29) not_void_windows (server-to-client direction)
(30) qd_measured_sum (server-to-client direction)
(31) aggregated_qd_sum (server-to-client direction)
(32) sample_qd_sum_until_last_window (server-to-client direction)
(33) baseline (server-to-client direction)

The procedures responsible for writing the log �le are print_last_window_general(..)
(it writes the �rst �ve columns of each row) and print_last_window_directional(..)
(it writes all the other columns, starting from the ones related to the client-to-server
direction and then writing the columns related to the server-to-client direction).

9The log �le log_tcp_windowed_qd_datatrig (that we do not use) has the same form presented
here. In that contest, every data segment is considered as a chance to calculate the queueing
delay. This is why we do not call this column �number_of_acks� and prefer the more general
name �chance�

BUFFERBLOAT_DISSECTOR HOWTO 6

Both the procedures are in tstat/bufferbloat.h and tstat/bufferbloat.c.
They are used to produce not only log_tcp_windowed_qd_acktrig, but also
log_ledbat_windowed_qd and log_tcp_windowed_qd_datatrig. This is why, for
the sake of generality, some columns are meaningless in our contest and some col-
umn names may seem too abstract.

5. Post-processing

All the results are obtained by means of calculations that have the log �le de-
scribed above as input. The script �les that implement these calculations are in
the folders offline_analysis, performance_evaluation and ping_validation.

Most of them are Linux bash scripts and use tools like awk10. We use Gnuplot
([Jan09]) for some of the plots.

For more advanced data analysis, we use R ([IG96]), a programming language
for statistical computing and graphics. We choose to use this language because

• it permits to associate to raw data semantic information that are essential
for further complex processing

• it provides ready-to-use statistical functions and plotting capabilities
• it permits to combine data in a very natural way, similar to SQL
• it is suitable for mathematical computation, like Matlab

The major limitation that we �nd in R is that it reads data into memory by default.
The data needed for some of our computations are huge and cannot be contained in
the RAM only. The result is that, by default, R run into �cannot allocate memory�
problems. Fortunately, R has few packages for big data support11. We use �

package, that provides �le-based access to datasets that cannot �t in memory: the
programmer invokes the same functions12 as if the data set were entirely in the
memory and the � package performs the underlining operations to map from disk
to memory only necessary/active parts of the data.

All the functions we use are in
offline_analysis/R_scripts/get_affected_flows.r . The best way to use
these functions is editing the �le above in its last part and inserting the function
calls that are needed; then, launching

sh offline_analysis/Rlauncher.sh

from the shell. This script will execute the R code: all the function de�nitions
will be loaded and the function calls executed. A log �le will be written in the �le
speci�ed inside get_affected_flows.r to check for possible errors.

6. Statistical characterization of the queueing delay and

per-application breakdown

Refer to the �gures of [Ara13]13. Almost all plots of chapter 4 are obtained with
R. To obtain them from scratch, edit offline_analysis/Rscripts/get_affected_flows.r,
insert the following lines as the main instructions and run that script.

eps �les will be produced as output. To locate them, you can check the code.

10In a Linux shell, run man awk for more details
11See

http://www.bytemining.com/2010/08/taking-r-to-the-limit-part-ii-large-datasets-in-r/
for a good introduction to this topic

12Actually, we found that this is only partially true
13http://perso.telecom-paristech.fr/~araldo/pmwiki/uploads/Main/thesis.pdf

BUFFERBLOAT_DISSECTOR HOWTO 7

To obtain �g 4.1 and �g 4.3, insert:

build_outgoing_windows_df ()

c a l c u l a t e_pe r c e n t i l e s ()

bui ld_frequency_plots ()

To obtain �g. 4.2, insert:

build_outgoing_windows_df ()

c a l c u l a t e_pe r c e n t i l e s ()

p l o t_pe r c en t i l e s ()

To obtain �g. 4.4, insert:

build_outgoing_windows_df ()

bui ld_quanti le_time_evolut ion ()

plot_quant i le_time_evolut ion ()

To obtain �g. 4.6, insert:

build_outgoing_windows_df ()

plot_percentage_bar ()

To obtain �g. 4.7 and �g 4.8, insert:

build_outgoing_windows_df ()

p lo t_c las s_di s t ingu i shed_frequency_plot s ()

References

[Ara13] A. Araldo. Passive analysis of queueing delay in the Internet. Tesi di laurea magistrale,
Universita' di Catania, 2012/13.

[Chi12] C. Chirichella. A methodology to gauge the extent of Bu�erbloat in the Internet:
LEDBAT vs TCP . Tesi di laurea specialistica, Universita' degli Studi di Napoli
Federico II, 2011/12.

[FMM+11] A. Finamore, M. Mellia, M. Meo, M.M. Munafo, and D. Rossi. Experiences of internet
tra�c monitoring with tstat. Network, IEEE, 25(3):8�14, 2011.

[IG96] Ross Ihaka and Robert Gentleman. R: A language for data analysis and graphics.
Journal of computational and graphical statistics, 5(3):299�314, 1996.

[Jan09] Philipp K Janert. Gnuplot in action: understanding data with graphs. Manning Pub-
lications Co., 2009.

[JLM94] V Jacobson, C Leres, and S McCanne. libpcap, lawrence berkeley laboratory, berkeley,
ca. Initial public release June, 1994.

