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Résumé : Le  caching  de  réseau  peut  aider  à
gérer  l'explosion  du  trafic  sur  Internet  et  à
satisfaire  la  Qualité  d'Expérience  (QoE)
croissante  demandée  par  les  usagers.
Néanmoins,  les  techniques  proposées  jusqu'à
présent  par la littérature scientifique n'arrivent
pas à exploiter tous les avantages potentiels. Les
travaux  de  recherche  précédents  cherchent  à
optimiser le hit  ratio ou d'autres métriques de
réseau,  tandis  que  les  opérateurs  de  réseau
(ISPs) sont plus intéressés à des métriques plus
concrètes,  par  exemple  le  coût  et  la  qualité
d'expérience  (QoE).  Pour  cela,  nous  visons
directement  l'optimisation  des  métriques
concrètes et montrons que, ce faisant, on obtient
des meilleures performances.
Plus  en  détail,  d'abord  nous  proposons  des
nouvelles techniques de caching pour réduire le
coût  pour  les  ISPs  en  préférant  stocker  les
objets qui sont les plus chères à repérer. 

Nous montrons qu'un compromis existe entre la
maximisation  classique  du  hit  ratio  et  la
réduction du coût.
Ensuite,  nous  étudions  la  distribution  vidéo,
comme  elle  est  la  plus  sensible  à  la  QoE  et
constitue  la  plus  part  du  trafic  Internet.  Les
techniques  de  caching  classiques  ignorent  ses
caractéristiques particulières, par exemple le fait
qu'une  vidéo  est  représentée  par  différentes
représentations, encodées en différents bit-rates
et résolutions. Nous introduisons des techniques
qui prennent en compte cela.
Enfin,  nous  remarquons  que  les  techniques
courantes assument la connaissance parfaite des
objets  qui  traversent  le  réseau.  Toutefois,  la
plupart  du trafic  est  chiffrée  et  du coup toute
technique de caching ne peut  pas fonctionner.
Nous proposons un mécanisme qui permet aux
ISPs de faire du caching, bien qu’ils ne puissent
observer les objets envoyés. 
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Abstract  : Network  caching  can  help  cope
with today Internet traffic explosion and sustain
the demand for an increasing user Quality of
Experience.  Nonetheless,  the  techniques
proposed in the literature do not exploit all the
potential benefits. Indeed, they usually aim to
optimize  hit  ratio  or  other  network-centric
metrics,  e.g.  path  length,  latency,  etc.,  while
network operators  are  more focused on more
more practical metrics, like cost and quality of
experience. We devise caching techniques that
directly  target  the  latter  objectives  and  show
that this allows to gain better performance.
More  specifically,  we  first  propose  novel
strategies  that  reduce  the  Internet  Service
Provider  (ISP)  operational  cost,  by
preferentially caching the objects whose cost of
retrieval is the largest. 

We then focus on video delivery, since it is the
most sensitive to QoE and represents most of
the  Internet  traffic.  Classic  techniques  ignore
that  each  video  is  represented  by  different
representations,  encoded  at  different  bit-rates
and resolutions. We devise techniques that take
this into account.
Finally,  we  point  out  that  the  techniques
presented in  the  literature  assume the  perfect
knowledge of the objects that are crossing the
network. Nonetheless, most of the traffic today
is  encrypted  and thus  caching  techniques  are
inapplicable.  To  overcome  this  limit,  We
propose a mechanism which allows the ISPs to
cache, even without knowing the objects being
served. 
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Résumé 11
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Abstract

Network caching is a promising technique to cope with today Internet traffic
explosion and to help sustain the demand for an increasing user quality of ex-
perience. Nonetheless, the techniques proposed so far in the literature do not
exploit all the potential benefits. Indeed, previous work usually aims to optimize
hit ratio or other network-centric metrics, e.g. path length, latency, etc., which
are relevant for the research community. On the other hand, network operators
are more focused on more practical metrics, like cost and quality of experience.
The usual approach in the literature is to target network-centric metrics and
then, in some case, to incidentally observe the consequent benefits induced on
the practical metrics we mentioned above. Our approach is different, in that
we devise caching techniques that directly target the latter objectives, and we
show that this allows to gain better performance.

More specifically, we first propose novel caching techniques to reduce the
Internet Service Provider (ISP) operational cost, by preferentially caching the
objects whose cost of retrieval is the largest. We define these techniques Cost-
Aware Caching strategies. We formalize the problem by means of Integer Linear
Program (ILP) and provide a greedy algorithm that gives the optimal solution.
Numerical results show a trade-off between the classic hit ratio maximization
and cost reduction and give the theoretical bound to the cost-benefit caching
can bring. We apply what we learned from the ILP to devise a novel online
distributed policy that can be implemented in real networks and we give a
probabilistic model based on Che’s approximation. By means of large scale
simulation, we compare the achieved benefit to the theoretical bound found via
the ILP and we show the robustness of our solution in different scenarios.

We then observe that cost minimization cannot be the sole objective of an
ISP; indeed, user quality of experience is another decisive factor. We focus on
video delivery, since it is the most sensitive to user experience and represents the
most part of the Internet traffic. Despite the fact that video is highly cacheable
thanks to its inherent redundancy, classic caching techniques ignore its relevant
peculiarities, the most important of which is that each video is represented by
different files, which we call “representations”, encoded at different bit-rates and
resolutions. We introduce the Representation Selection Problem, which consists
in selecting the right available representations when caching videos, a problem
which has been neglected so far. We describe the problem in terms of Mixed
Linear Integer Problem (MILP) and we highlight some structural properties

9
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of the optimal solution, which guide us in designing an online distributed pol-
icy, implementable in real networks, which we show, by means of large scale
simulation, to effectively balance user perceived utility and bandwidth usage.

Finally, we point out that the techniques presented in the literature assume
the perfect knowledge of the objects that are crossing the network. Nonetheless,
this assumption does not hold anymore, since most of the traffic today is en-
crypted between the user and the Content Provider (CP). As a consequence, all
network caching techniques are practically inapplicable by the ISPs. To over-
come this limit, we propose Content Oblivious Caching, which allows the ISPs
to cache, even if they are not able to observe the objects being served. The
ISP allocates the cache storage to various content providers so as to maximize
the bandwidth savings provided by the cache: the main novelty lies in the fact
that, to protect business-critical information, ISPs only need to measure the
aggregated miss rates of the individual CPs and do not need to be aware of the
objects that are requested, as in classic caching. We propose a cache allocation
algorithm based on a perturbed stochastic subgradient method, and prove that
the algorithm converges close to the allocation that maximizes the overall cache
hit rate. We use extensive simulations to validate the algorithm and to assess its
convergence rate under stationary and non-stationary content popularity. Our
results (i) testify the feasibility of content-oblivious caches and (ii) show that
the proposed algorithm can achieve within 10% from the global optimum in our
evaluation.

Overall, our research shows that, despite network caching has been investi-
gated for more than 20 years, it is still an interesting and open research problem,
with room for novel ideas and techniques. Indeed the continuous evolution of
Internet calls for an equally continuous evolution of network caching. This is
necessary to keep caching effective in improving the most relevant metrics for
network operators and users and more integrated with the evolving network
architectures and the Internet economic ecosystem.



Résumé

Le caching de réseau peut aider à gérer l’explosion du trafic sur Internet et à
satisfaire la Qualité d’Expérience (QoE) croissante demandé par les usagers.
Néanmoins, les techniques proposées jusqu’à présent par la littérature scien-
tifique n’arrivent pas à exploiter tous les avantages potentiels. Les travaux de
recherche précédents cherchent à optimiser le hit ratio ou d’autres métriques de
réseau, par exemple la longueur du chemin, le retard, etc. Ceux-là sont sans
doute importants pour la communauté de recherche. Par contre, les opérateurs
de réseau (ISPs) sont plus intéressés à des métriques plus concrètes, par ex-
emple le coût et la qualité d’expérience (QoE). En littérature on vise usuelle-
ment l’optimisation des métriques de réseau et, dans certains cas seulement, on
constate secondairement l’amélioration des métriques concrètes dont on par-
lais auparavant. Notre approche est différent, car nous visons directement
l’optimisation des métriques concrètes et montrons que, ce faisant, on obtient
des meilleures performances.

Plus en détail, d’abord nous proposons des nouvelles techniques de caching
pour réduire le coût pour les ISPs en préférant stocker les objets qui sont les
plus chères à repérer. Nous appelons ces techniques “Cost-Aware”. Nous for-
malisons le problème par l’optimisation linéaire en nombres entiers (ILP) et
proposons un algorithme glouton qui calcule la solution optimale. Les résultats
montrent qu’un compromis existe entre la maximisation classique du hit ra-
tio et la réduction du coût. De plus, nous concevons un algorithme distribué
qu’on peut implémenter dans des réseaux réels et nous le décrivons avec des
modèles probabilistes. Nous comparons par simulation la performance obtenue
par l’algorithme distribué et la limite théorique calculée par l’ILP. Nous mon-
trons que la performance est robuste par rapport à différents scénarios.

Ensuite, nous constatons que la réduction du coût ne peut pas être le seul
but d’un ISP; en fait, la QoE est un autre aspect important. Nous étudions
la distribution vidéo, comme elle est la plus sensible à la QoE et constitue la
plus part du trafic Internet. Bien que la vidéo se prête facilement au caching
grâce à sa redondance, les techniques de caching classiques ignorent ses car-
actéristiques particulières, par exemple le fait qu’une vidéo est représentée par
différentes représentations, encodées en différents bit-rates et résolutions. Nous
introduisons des techniques qui sélectionnent pour chaque vidéo une de ces
représentation pour la stocker dans le cache, ce qui n’a pas été étudié jusqu’à
présent. Nous décrivons le problème par un Mixed Integer Linear Program

11
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(MILP) et nous trouvons des propriétés structurelles de la solution optimale
que nous prenons en compte pour concevoir une stratégie de caching distribué
qu’on peut implémenter dans des réseaux réelles. Par simulation nous montrons
que notre stratégie distribué est efficace pour balancer l’utilité perçue par les
usagers et le débit nécessaire.

Enfin, nous remarquons que les techniques courantes assument la connais-
sance parfaite des objets qui traversent le réseau. Toutefois, cette hypothèse
n’est plus valable, car la plupart du trafic est chiffrée. Du coup, toute tech-
nique de caching ne peut pas fonctionner. Pour surmonter cet obstacle, nous
proposons un mécanisme qui permet aux ISPs de faire du caching, bien que
ils ne puissent observer les objets envoyés. L’ISP repart le stockage du cache
parmi les différents fournisseurs de contenu (CPs), pour que la réduction du
trafic soit maximisée. L’ISP n’a plus besoin de connâıtre les objets demandés,
mais seulement de mesurer le miss-ratio agrégé de chaque CP. Cela permet de
protéger les informations de business sensibles des CPs. Nous proposons un
algorithme pour l’allocation du stockage de cache et prouvons que il converge
vers une allocation proche à l’optimale, qui maximise le hit ratio global. Par
simulation, nous validons l’algorithme et en étudions les performances.

En général, cette thèse montre que, malgré le caching a été étudié depuis
au moins 20 ans, il est encore un sujet de recherche intéressant et ouvert. Il y
encore du potentiel pour des nouvelles idées et techniques. En effet, l’évolution
continue d’Internet comporte une évolution continue du caching de réseau aussi.
Cela est nécessaire pour que le caching soit un moyen efficace d’améliorer les
métriques les plus importantes (pour les opérateurs de réseau et les usagers)
et plus intégré dans les architectures de réseau et l’écosystème Internet, qui
évoluent continuement.



Chapter 1

Introduction

The fundamental architecture of the Internet is not so much different than
Arpanet’s, from the 1960’s. TCP/IP is still at the core and information is
exchanged in roughly the same way. Nonetheless, Internet is no more used to
exchange few kilobytes of text among public and research institutions. A large
fraction of world population, with heterogeneous interests, education and goals
is now on the web. One by one, all the traditional activities are moving on
the Internet: personal communication occurs on social networks, Voice over
IP (VoIP) and messaging services are replacing the traditional phone calls and
Short Message Service (SMS), mass media are consumed more and more on
the web rather than on radio and TV, citizens can communicate with public
institutions using online services, etc. In other words, Internet is pervading
and, in some way, shaping our everyday life. Surprisingly, the TCP/IP-based
has shown to be robust to this change, by efficaciously serving as a base for
an intricate set of protocols and services, which, at their turn, are combined
in more complex services. Nonetheless, the pervasiveness of the Internet arises
new challenges:

• Traffic growth. The network must be able to handle an aggressively
increasing amount of traffic (in 2019 the traffic will be 64 times the
2005’s [1]).

• Economic interests. Internet can be seen today as an economic ecosys-
tem, in which the main objective of each player is to maximize income.
Technological evolution and economic interests are tightly coupled: a new
technology may change the structure of the ecosystem, making new play-
ers appear or disappear or, on the contrary, promising technical solutions
may never be implemented if they risk to hurt the interests of the most
influential players.

• User experience. The network must be able to move data fast enough so as
to permit to very demanding applications, as HD video streaming, video
conferencing or online games, to be sufficiently responsive. Furthermore,

13



14 CHAPTER 1. INTRODUCTION

Quality of Experience (QoE) is a very sensitive aspect for service providers
as, in a highly competitive environment, they can only attract users if the
quality of the service they provide is sufficiently high.

• Secrecy of information. The information that a Content Provider (CP)
sends to users must be kept secret, for several reasons. First, since users
spend a larger and larger fraction of time on the Internet, profiling their
online activity could reveal too much information about the their real
life, whence privacy is a primary concern. Second, CPs are interested
in having the exclusive knowledge and control of the content they serve,
in order to avoid unauthorized copies, to depict profiles of their users,
compute statistics about the interest of their content, etc., which are at
the core of their business.

In this thesis, we investigate how network caching can help cope with some
of these challenges and how it can harmonize with them.

1.1 Content Delivery and Network Caching

Most current traffic [2] is represented by content delivery . In content delivery,
Content Providers (CPs), like Youtube, Netflix, Spotify, provide pieces of con-
tent, which we also call objects, e.g. videos, audio files, pictures, HTML pages,
etc. Users request objects and Internet Service Providers (ISPs) manage the
networks for transmitting them. We distinguish content delivery from the other
types of transmission that do not comply with the description above, like VoIP,
instant messaging, e-mail, etc.

To emphasize their economic role, we identify CPs, ISPs and users as the
three players in content delivery. Content delivery shows high redundancy, since
the same object is requested by different users and, consequently, transmitted
many times. Caching is intended to exploit this redundancy. Indeed, retriev-
ing all the content from the origin server is inefficient, since it requires many
flows from different users to the server, although all flows carry, essentially, the
same pieces of information. If objects have to cross long paths, the latency is
expected to be high. Moreover, many links are used for the transmission, which
translates in high bandwidth utilization and risk of congestion. To avoid this,
network caching consists in placing in several network locations small memo-
ries1, called caches, which can store a subset of the objects. Users can thus
download the requested objects from the closest location. This has several ad-
vantages: since flows terminate on the cache, without the need to reach the
origin server, traffic redundancy is cut down and less bandwidth is needed to
transmit the same amount of information. The latency, the risk of congestion
and the load on the CP infrastructure are also reduced. For this reason caching
has been widely used starting from the 1990s, when content delivery began to be
preponderant, and it is still widely used. What is more, new players, called Con-
tent Delivery Networks (CDNs), have entered the Internet ecosystem. Caching

1small compared to the origin servers
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is at the core of their business. Some of them are among the wealthiest digital
companies. We point out that CDN technology is just a way, among several
possible other ones, to implement caching. For the time being, it has been
shown to be the most successful, primarily because it efficaciously integrates
in the economic structure of the Internet. Nonetheless we should expect other
innovative alternative caching technologies. For example, some proposals, like
Information Centric Networking (ICN) [3], advocate a reshape of the Internet
architecture, considering caching as a primitive. What said shows that network
caching is, on the one side, a hot topic very relevant in the current Internet and
with remarkable economic implications and, on the other side, an interesting
research problem with several future perspectives.

1.2 Research Goals

In the literature, caching has been mainly intended as a tool to cope with
traffic growth and metrics classically studied to this aim are hit ratio, i.e. the
fraction of requests that a cache is able to serve, path length, latency, server
load, etc. However, traffic growth is just one of the challenges we pinpointed
at the beginning of this chapter. We claim that caching can help cope with
the other challenges as well, and that none of them must be neglected when
designing caching mechanisms.

We start by considering, in Part I the possible economic implication of
caching, in particular the potential achievable ISP cost saving. However, only
targeting cost reduction leads to the risk of a poor service offered to users.
Therefore, we study in Part II how to improve user utility when serving video
content. Nonetheless, our cost-aware and video-related strategies, as well as all
the caching strategies presented in the literature, cannot be applied by the ISPs
on most of their traffic, namely the encrypted traffic. We tackle this problem in
Part III.

We observe that the three problems we consider are deeply connected each
other. Since our work is a first step toward their resolution, we investigate
them separately. However, it should be clear after reading this thesis that the
solutions we give in the three parts can coexist and be combined, which would
be an interesting direction for our future work. We will now briefly introduce
our contribution.

1.2.1 ISP Cost Reduction

We focus on how ISPs can reduce their operational cost through caching in
Part I. When an ISP receives a request for an object that is not stored inside
its network, it has to retrieve it from some other ISP, connected through an
inter-domain link, generating traffic on it and paying for this traffic. On the
contrary, objects cached inside the ISP network can be directly served with no
need to generate inter-domain traffic. In the literature it has incidentally been
observed that having an efficient cache, i.e. high hit ratio, brings inter-domain
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traffic reduction, which is trivial. We go further. We first show that there
is a trade-off between hit ratio maximization and cost minimization. In other
words, if we are able to maximize the hit ratio, we are at the same time losing
a part of the potential cost saving. The root cause of this trade-off is the price
heterogeneity of the inter-domain links: while classic caching is blind to prices,
if we want to minimize cost, we must tend to preferentially cache objects that
lie behind the most expensive inter-domain links.

We propose cache strategies that directly target cost minimization and we
show that saving are remarkably higher than with classic caching. In other
words, moving cost minimization from being a side effect of hit ratio-maximizing
caching to being the final goal makes a crucial difference. In our opinion, max-
imizing hit ratio is interesting from a research point of view, but equivalent
to doing caching for the sake of caching. On the contrary, we claim that the
real objectives of a production network are different and more practical, cost
minimization being one of these, and we show that tailoring caching directly to
them has a tremendous beneficial impact.

1.2.2 User Experience Improvement in Video Delivery

We investigate how we can improve user experience in video delivery through
caching in Part II. Video transmission is highly cacheable and redundant. In-
deed, if we consider a video encoded at a certain bit-rate and resolution, it is
practically immutable, differently, for example, from a dynamic web page, which
often changes. This means that video traffic is potentially highly cacheable.
Moreover, popular videos are requested many times by many users, whence the
redundancy. Furthermore, video delivery constitutes most Internet traffic and
this fraction is expected to increase up to 80% in 2019 [2]. These factors make
caching of videos particularly interesting.

This explains the success of Content Delivery Networks (CDNs) (Sec. 2.2.3),
which are particularly used to replicate video content. However, we claim that
video caching has not reached full maturity, yet, for two reasons: i) the al-
gorithms used by the different CDNs are not publicly available, as they are
considered business sensitive information, and thus their efficiency cannot be
openly evaluated and improved and ii) scientific research (with only some re-
cent exceptions [4, 5]) has treated caching and video delivery as two orthogonal
problems, studied by different communities.

The most currently adopted standards in video delivery, like DASH [6] and
WebRTC [7], rely on Adaptive Bit-Rate (ABR) Streaming [8] (Adaptive Stream-
ing in short), which represents a single video with different files. Each file is
a different representation of the same object, at different quality, i.e. different
resolution and bit-rate. When a user requests a video, she does not explicitly
specify the quality representation, which is instead decided on the fly by a con-
trol algorithm based, among other factors, on the network conditions. While
the assumption behind all classic caching techniques is that one request can
be satisfied by one and only one file, this does not hold anymore for videos,
in which we have also to choose the quality representation we want to serve.
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As a consequence, while classic caching decisions can be decomposed in the ob-
ject selection problem (which object we want to replicate in the caches) and
the replica placement problem (in which network location we want to place its
replicas), we add a new dimension, namely the representation selection problem,
i.e. which all the available representations we want to cache. This is the main
conceptual contribution of Part II. Again, our goal is not to optimize classic
network-related metrics. Our objective is to maximize user utility, considering
that the higher the representation quality served, the higher the user utility. We
show that, to this aim, it is crucial to store the right representations of the right
objects at the right locations. We give guidelines for helping in these choices
and we provide caching strategies, which approach the optimal allocation.

1.2.3 Caching with Encrypted Transmissions

We tackle the problem of making caching feasible with encrypted transmission
in Part III. We examine the case in which the ISP owns a cache infrastructure
and aims at maximizing its efficiency. Classic caching assumes perfect visibility
of the objects and their requests: the cache owner, the ISP in our case, must
observe the objects that are transiting in its network in order to pick some of
them and cache them. Moreover, it has to understand the requests in order
to retrieve the desired objects from caches. Nonetheless, more than 50% of
transmissions are encrypted [9] and this percentage is expected to increase, as
the IETF Internet Architecture Board (IAB) recommends “protocol designers,
developers, and operators to make encryption the norm for Internet traffic” [10].
Before transmitting the objects, Transport Layer Security (TLS) tunnels are
established between the CP server (or some surrogate server) and the users,
which are completely opaque to the ISP, thus making impossible any caching.
As a consequence, ISPs cannot enjoy the advantages of caching, in terms of
bandwidth saving, cost reduction, improved quality to their customers, etc.

To solve this limit, we propose caching as a service offered by the ISP to
the CPs that opt to subscribe. The ISP partitions its cache in segments, and
assigns each to a different CP. Each segment is exclusively managed by the
respective CP, by means of a proxy process running in the cache infrastructure
but remotely controlled by the CP. All the content of the CP is stored in an
encrypted form in the respective segment, so the ISP and the other CPs cannot
look into it, thus preserving the sensitive business information of CPs. The CP
proxy is the only one to decide what to store in its segment, to see which objects
are being requested and to retrieve them. The only task of the ISP is to decide
the allocation, i.e. the size of each segment, in order to maximize the overall
hit ratio. Indeed, more cache space should be ideally conceded to CPs that can
exploit it better, i.e. the ones that have very popular objects. The problem
is that the ISP must compute the allocation without being able to observe the
request flows, consequently having no knowledge about the objects and their
popularity. The ISP can only measure the miss rate, i.e. the amount of requests
that are not satisfied by the cache segment of each CP. We propose an iterative
algorithm, based on perturbed stochastic subgradient methods, which measures
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Figure 1.1: Methodology used in this thesis.

only the miss intensity and continuously adjusts the allocation. We analytically
prove that the algorithm converges to an allocation that is boundedly close to
the optimum. The convergence is robust to the unavoidable noise in the miss
intensity measurement, which is due to the fact that each iteration is of finite
time length and thus the number of requests that concur in the observed miss
intensity is finite, thus preventing from reconstructing the average miss intensity
of the single CPs.

An attentive reader may ask why we are maximizing the overall hit ratio in
this case, while we have claimed that it is not the most relevant metric. We
observe, in regards to this, that we provide here an architecture design and
an algorithm that can be reused, with the necessary modifications, to optimize
also other metrics, e.g. the cost. We target hit ratio here, just because it is still
the reference metric in the literature, and because the focus is on the method
(architecture and algorithm) more than the objective itself, in this case.

1.3 Evaluation Methodology

The benefits of network caching can be studied with different methodologies,
spanning from the most theoretical to the most realistic. Since each methodol-
ogy gives a different viewpoint, in our work we aim to use them in a harmonic
way. Our approach is top-down. As depicted in Fig. 1.1, when proposing a
cache strategy, we usually start by formalizing the scenario and the objective in
an optimization framework. In Part I we provide an algorithm that computes
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the optimal solution in linear time, while in Part II we run the IBM CPLEX
solver. We use the numerical results obtained either by the algorithm or by the
solver to establish the theoretical performance bounds, the possible trade-offs
between objectives and the structural differences with classic caching. Since of-
fline policies are hardly implementable, we then propose online policies in Part I
and Part II. In Part I, we give a probabilistic model of our online policy and
then verify the performance through simulation, either in Octave or ccnSim [11],
which is a simulator of network of caches. We compare our policies with state-
of-the-art strategies present in the literature and with the optimum, which we
use as a benchmark to seize the possible margin for improvement.

In Part III we used a different methodology. Our first goal is to mathemati-
cally prove the convergence of our algorithm, leveraging stochastic optimization
techniques, namely stochastic subgradient methods. Also in this case, to verify
that our algorithm works in realistic situations, we present a simulation cam-
paign.

Overall, in our work we start from theory to end in simulation. Despite its
crude simplification, theory gives us important hints that help us understand
the problem and give us guidelines for the design of real policies. The final
goal is, in any case, to propose implementable strategies, which we evaluate by
means of simulation of realistic scenarios.

1.4 Thesis Organization and Contribution

This thesis is organized as follows.

State of the Art Chapter 2 reviews the network caching architectures and
strategies conceived in the literature and implemented in production network.
It pinpoints the limits that our proposals aim to tackle and discuss the related
work.

Cost Reduction In Part I we present novel techniques to use caching as a
mean to reduce the ISP inter-domain cost.

• Chapter 3 formalizes the problem. First, it provides the optimization
model, which selects the objects to cache in order to minimize the ISP
inter-domain cost. Second, we present a linear time greedy algorithm that
gives the cost-minimizing solution. We provide numerical results running
instances of the algorithm to get theoretical bounds on the achievable
saving and useful guidelines.

• In Chapter 4 we propose an online distributed strategy for cost reduction.
In more detail, it is a metacaching policy, which stores objects with a
probability proportional to the price of the link behind which they can be
retrieved. Our strategy is simple enough to be implemented in a network
device working at line speed. Then, we theoretically model it through
Che’s approximation. By means of simulation, we first verify that results
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are compliant to the prediction of the model. Then, in simple and also
realistic networks, we show that gain is remarkable and we evaluate how
far we are from the optimum. We also provide a sensitivity analysis to
show the impact of policy tuning and scenario characteristics. Overall, we
show that results are consistent in all the considered scenarios.

We also underline that during this part of our research activity, we released ver-
sion 0.3 of ccnSim, an efficient and scalable open-source caching simulator that
we enriched with cost-aware caching functionalities and that we make available
at [11].

Caching of Video In Part II we deal with caching of videos and we introduce
the representation selection problem, which consists in selecting the quality
representation to cache, which has not sufficiently been considered previously.

• In Chapter 5 we present a Mixed Integer Linear Program (MILP), which
decides which objects to cache, at which quality, at which locations and
also the routing. The objective is to maximize user utility, which is directly
related to the video quality served. We run a solver to get numerical
results, which we will use as theoretical bounds. The main guideline that
we obtain is that, at optimum, we must not cache different representations
of the same objects, but just the right ones. In particular, the quality of
cached objects must decrease with their popularity.

• In Chapter 6, we leverage what we have learned to design an online caching
strategy that mimics the optimal solution and that we simulate in realistic
large scale scenarios.

Caching of Encrypted Content In Part III we propose an architecture and
an allocation algorithm to allow ISPs to cache despite encryption.

• In Chapter 7 we first give a conceptual view of our architecture and the
system model. Second, we introduce the underlying assumptions and we
present our partitioning algorithm, whose goal is to find the optimal allo-
cation, i.e. the one maximizing hit ratio. We analytically show that the
algorithm converges boundedly close to the optimal allocation.

• In Chapter 8 we give further implementation details and we evaluate the
performance of the partitioning algorithm in simulations written in Oc-
tave. First, we check the convergence and then we evaluate the impact of
the algorithm parameters as well as the sensitivity to the scenario char-
acteristics. We also simulate the realistic case of time-varying content
popularity and verify that, by appropriate tuning of the algorithm, we are
able to assure the performance.
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Chapter 2

Context and State of
the Art

In this chapter we review the network caching architectures (Sec. 2.2) and strate-
gies (Sec. 2.3) currently used in production networks, as well as the propositions
in the literature. At the same time, we introduce the terminology that will be
used throughout the thesis. We then underline the benefits and limits of cur-
rent approaches (Sec. 2.3.3) which trigger our research. We then describe the
main players in the Internet that are impacted by caching (Sec. 2.1.1). Finally,
the last three sections summarize the previous work closely related to the three
problems tackle in the thesis, namely cost reduction by caching, caching of video
content and caching of encrypted content.

2.1 The Ecosystem of Content Delivery

In this section we describe the Internet ecosystem starting from a very basic
picture and incrementally enriching it up to include all the actors we will en-
counter in the rest of the thesis. We will later refer to this picture to understand
the advantages that content caching bring to each of them.

2.1.1 The Main Players in Content Delivery

The goal of the Internet is exchanging pieces of information, which can be
web pages, audio files, videos, etc. Information can be exchanged under two
paradigms: point to point and point to multi-point. According to the former,
information is produced by one user and transmitted to one other user only. Ex-
amples of point to point communication are e-mails, instant messaging services,
Voice over IP (VoIP), etc. Differently, according to the point to multi-point
paradigm, an entity called Content Provider (CP), is responsible for hosting
and delivering the information to many users. Note that the CP does not
necessarily correspond to the entity generating the information: Youtube and

23
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Facebook are examples of CP hosting content generated by users; other exam-
ples are Neflix and Spotify which host content generated by movie production
companies and music labels, respectively. Note that throughout this thesis we
will use the terms information and content almost inter-changeably. The only
subtle nuance that we will have in mind is that we will implicitly intend con-
tent as information that is interesting for more than one user. In this thesis we
will focus on content delivery, implicitly referring to the point to multi-point
paradigm, in which information is content.

Transmitting content means moving bits across network links, which are
maintained and operated by other entities called Internet Service Providers
(ISPs). Each ISP owns an infrastructure, basically composed of internal links
and routers, interconnected to the other ISPs’ infrastructures by means of ex-
ternal links, which we call inter-domain links. ISPs, CPs and users are the three
vital players in content delivery, in that it is conceptually impossible to remove
one of them from the picture.

To make the picture of the ecosystem complete, we cannot avoid to also
include Content Delivery Networks (CDNs). A CDN is a network of servers
distributed across the Internet which is paid by one or more CPs to distribute
their content. Even though CDNs are today among the biggest companies in
the Internet (examples are Akamai and EdgeCast) and are absolutely necessary
to make Internet work, they are just a technological solution and, as for all
technologies, nothing assures that it will keep being adopted and will not be
supplanted by some other techniques in the future. In other words it is possible
to think of a picture of the content delivery ecosystem without CDNs, and, for
this reason, we do not consider them as vital as the other three players, e.g.
users, CPs and ISPs, without which that picture would not be possible.

2.1.2 Economic Relations in the Internet

While Internet was originally just a network of computers, now it is a much
more complex phenomenon that can be viewed under different perspectives. It
is shaping society [20, 21], influencing politics [22] and psychology [23]. We em-
phasize the point of view of Internet as an economic environment. In general,
“Money plays the largest part in determining the course of history” [24]. This is
particularly true in the Internet, in which the technological evolution is tightly
coupled to the economic interest of each actor. Under an economic viewpoint,
the main goal of a CP is not providing content but maximizing its profit, as
well as the main goal of an ISP is not transferring data but also maximizing
its profit. The adoption of a new technological solution does not directly de-
pend on its efficiency, evaluated from an engineering point of view, but only on
the profitability for the biggest Internet players. In most cases, more efficient
systems bring, as a consequence, more profits for most players and engineering
and economics go hand in hand. But, as we will see later, this is not always
the case. For this reason, in this thesis we will consider, when possible, the
compliance of our proposals to the current economic relations, which we will
briefly summarize in this section and depict in Fig. 2.1.
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Figure 2.1: Economic relations in the content delivery ecosystem.

ISP income and cost According to the taxonomy in [25], we distinguish
between Local ISPs and Transit ISPs. The latter are only connected to other
ISPs, their role being only forwarding data. The former are also connected
to users and CPs, and give connectivity to them. The link between two ISPs
is called inter-domain link and may be ruled by different kinds of agreement.
A settlement-free peering agreement consists in exchanging the traffic without
any payment. On the contrary, with a transit agreement one ISP pays the
other to receive or send data. The connection between an ISP and a CP (or
a CDN) obeys to the same kind of relations. Usually CPs or CDNs pay ISPs
to send and receive data, but peering agreements are becoming more and more
common [26], particularly for big CPs like Google or Netflix and big CDNs like
Akamai. In some case, the ISP receives also a fee from CPs or CDNs to allow
them locate their racks inside the ISP network (Sec. 2 of [27]). Local ISPs
additionally receive payments from the users subscribed to their services, either
adhering to a usage based billing or to a fixed subscription fee. The former, in
which users pay proportionally to the traffic they generate, was mainly used
in previous years, while the latter, in which users pay a fixed fee periodically,
e.g. every month, independently from the traffic, is prevalent today [28, 29, 30].
Summarizing, ISPs income comes from other ISPs, CPs, CDNs and, in case of
local ISPs, from users as well.
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CP income and cost While ISP income is tied to the traffic exchanged, the
CP revenue comes from

• users, who can

– pay every time they access an object (pay-per-view payment), or

– pay a fixed fee periodically, say per month

• advertisers, i.e. third party enterprises which pay the CP to show adver-
tisements to the users consuming the content.

In both cases, the revenue perceived by the CP is directly related to the number
of views, i.e. the number of times the content of the CP has been requested.
Moreover, advertisers typically pay the CP more in case users click on the adver-
tisement message and visit the relative page [31]. Therefore targeted advertising ,
which consists in trying to show the user an advertisement that is likely inter-
esting for her, has an impact on the revenue. Counting the number of views
and of clicks on advertisements and profiling users (to facilitate targeted ad-
vertising) are core functionalities for CPs and a caching architecture can be
considered feasible only if it does not impede them. As concerns the CP cost,
it is constituted by the payment to the connected ISPs for the traffic generated
and, possibly, the payment to the CDNs to subscribe to their content delivery
service, the installation cost of CP racks inside ISPs networks, if any.

CDN income and cost CDN income totally comes from subscribed CPs.
On the other hand, CDNs pay ISPs to exchange traffic, unless settlement-free
peering agreements are active and in some case also for the installation of the
racks.

Conflicting goals between ISPs and CPs or CDNs The complex eco-
nomic interactions between ISPs, CPs and CDNs have not only an impact on
their revenues [32], but also on the effective persistence of the structural prin-
ciples enforced in the Internet by regulators [33] and on user experience [27].
This motivates taking these interactions into account when studying content
delivery. Frequent disputes arose in recent years (see Sec. 3 of [34]) between
ISPs and CPs or CDNs. The latter, encouraged by peering agreements, tend to
devour ISP bandwidth, as they aim to transmit large objects, e.g. high quality
videos, to as many users as possible. To keep user experience high, ISPs contin-
uously increase the bandwidth available in their infrastructures, increasing the
capital expenditures and, on the other hand, are not sufficiently rewarded for
their investment, since most of users pay a monthly fee that does not depend
on the traffic generated. Moreover, once more bandwidth is available, CPs and
CDNs tend to greedily use it by sending larger objects, e.g. videos at higher
quality, and enriching the range of the online services they provide. This “traffic
bloat”, together with a more and more aggressive competition in the market, is
one of the possible reasons of the telecommunication company revenue decrease
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despite the investment increase (see page 2 of [35]). Content caching can help
counteract these issues.

2.2 Content Cache Architectures

Caching is a technique intended to use a memory hierarchy in an efficient way.
To start introducing the nomenclature used later, we will assume that informa-
tion is divided in objects, which can be individually requested. The set of all
objects is the catalog . Let us consider a memory hierarchy composed of two
memories, which we denote with base memory and cache memory. Note that
we are not necessarily referring to the memory hierarchy in a computer archi-
tecture, but, in general, to any form of memory, including memory distributed
over a network. The base memory is large, able to store all the catalog, but
the cost of access is high. Cost may denote access delay, energy consumption,
monetary cost or other metrics of interest. On the contrary, the cache memory
is small but guarantees a fast access. Caching consists in storing in the cache
a subset of the catalog. Every time we access an object, first we look into the
cache. If it is present, we say that a cache hit has occurred and the cached copy
is accessed at low cost. Otherwise, the object is accessed at the base memory
and we say that a cache miss has occurred in this case. Observe that accessing
an object may mean reading or writing (modifying) it, but in this thesis we
will consider just the first case. The constrained space available in the cache
memory limits the amount of objects we can store there, and thus they must be
chosen carefully. This choice is determined by a caching policy (or, equivalently,
caching strategy). Cache efficiency is usually measured in terms of hit ratio,
i.e. the fraction of requests that are served by the cache instead of the base
memory, which straightforwardly also indicates the amount of traffic reduction
guaranteed by the cache. The efficiency of a cache depends on the redundancy
in the request sequence: if redundancy is high, i.e. there are few objects that are
requested many times, traffic reduction is effective, since storing those objects
prevents a large amount of requests to be forwarded toward the base memory.

Caching was introduced in computer architecture, where the memory hier-
archy is composed, going from the largest to the smallest, of hard disk, main
memory and processor cache. The concept started to be adopted in the context
of content delivery in the Internet in the 1990s [36]. Content caching [37, 38, 39]
consists in deploying, in different locations of the network, caches which can
store a part of the catalog. The permanent copies of the objects are assumed
to be stored in some servers (or clusters of servers) called origin servers, man-
aged by the respective CP. The set of origin servers represent, overall, the base
memory.

Content cache can be deployed in different segments of the network. The
placement of a cache has an impact on its efficiency, which has been considered
in the literature [40, 41]. This problem is not the main scope of our research and
we limit ourselves to roughly observe that when a request flow traverses a node
equipped with cache, it is “reduced”, meaning that it is relieved from a part
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Figure 2.2: Flow reduction and aggregation.

of requests, and thus the size of the outgoing flow is smaller than the ingoing.
As depicted in Fig. 2.2, if we place the cache close to users, the request flows
are reduced immediately after their source point and therefore smaller flows will
occupy the rest of the network. On the other hand, if caches are further from
users, they can benefit more from aggregation, meaning that they can intercept
flows coming from different users and, since the aggregated flow typically shows
more redundancy than the single ones, cache efficiency is expected to increase.
The drawback is that flows are unreduced until they encounter a cache, which
implies a higher bandwidth utilization of the links that are crossed before a
caching node.

2.2.1 User-Side Caches

All modern Internet browsers are equipped with a software cache, which inter-
cepts the requests that can be thus satisfied locally in the user machine without
generating any traffic in the network. Some enterprises or organizations also
deploy proxy caches [36] in their Local Area Networks (LANs). A proxy cache
is a software (like Squid) running on a generic server or a specialized hardware
device, like CacheBox. It intercepts the request flows of all the users. Since
the resulting aggregated flow typically shows more redundancy than the single
flows, hit ratio is expected to be higher than with browser caches and thus they
are more effective in reducing the traffic crossing the border of the LAN. On the
other hand, they cannot reduce the traffic inside the LAN, as browser caches
do. To use a proxy cache, the devices in the LAN must be configured in order
to direct all the traffic to the proxy. This configuration can be manually or
automatic, based in the latter case on the Web Proxy Auto Discovery Protocol
(WPAD) [42].
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2.2.2 CP-Side Caches

Reverse proxy caches are placed in the LAN of the CP. They are specialized
devices, like ProxySG, or software running on a generic server (like NGINX),
which act as a front end for the CP, meaning that they intercept all the requests
directed to the it. A reverse proxy cache typically stores the most accessed
objects of the CP in a fast volatile memory, to speed the content retrieval
by avoiding the access to hard drives. Additionally, it can store the results of
frequently executed computations, e.g. dynamic web pages or results of database
queries. Note the traffic reduction is only provided inside the CP LAN and not
in the Internet.

2.2.3 Network Cache

User-side and CP-side caches are not sufficient to cope with Internet traffic
deluge, since the flow aggregation seen by the former is limited, whence their
limited efficiency, and the latter does not reduce Internet traffic at all. Network
caching, which this thesis is focused on, overcomes this limitation by placing
caches in the Internet.

Mirror Servers In the early nineties [43], popular CPs started to deploy
different servers, called mirror servers, at different locations (possibly different
continents), offering the same service and the same content. Server mirroring is
still used now, especially for software downloads. Its peculiarities are that each
CP handles its own servers and that user explicitly selects the specific server
she wants to contact. To be precise, mirror servers cannot be truly defined as
caches, since they replicate all the original catalog, instead of just a part. We
decided to include it in our discussion as they constitute one of the first example
of content distribution and replication system.

Transparent Proxy Cache A transparent proxy cache system is a server
or a systems of servers deployed by the ISP, in a way such that clients are un-
aware of their presence, and thus they do not need any specific configuration,
neither manually nor automatic and they can operate as they were communicat-
ing with the origin server (whence the adjective “transparent”). A transparent
proxy cache can be a specialized device, like CacheFlow, or a software running
on a generic server, like CacheMara. Its work principle is detailed in [44]. Users
send their requests toward the CP server, but the ISP routes them to its trans-
parent proxy, which instantiates two communications at the same moment: i) a
transparent proxy-client communication, in which the transparent proxy acts
as the CP server and ii) a transparent proxy-server communication, in which
the transparent proxy acts as a client. Then, the transparent proxy behaves
as a man in the middle, relaying the data exchanged between the client and
the origin server, allowing them to perform exactly the same operations as they
were directly communicating each other. Since the transparent proxy has the
complete visibility of the traffic, it can decide to cache some of the transmitted
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objects. Given that it intercepts the aggregated request flow of different users of
the ISP, its efficiency is supposed to be larger than a client-side proxy server. In
addition, traffic reduction occurs both inside the ISP network and on the inter-
domain link. Transparent caching can be deployed in a much more distributed
fashion, at the very edge of the network, as in the recent small cell caching
proposals [45], intended for mobile networks. In order to improve transmission
efficiency, mobile ISPs are deploying more and more antennas. The increased
spatial density of the antennas permits to reduce the distance between the user
device and the transmitting wireless source, thus limiting energy consumption
and interference and improving throughput. Therefore, in the most populated
areas, in addition to the classic macrocells (with a radius up to 35 Km), we find
small cells (from 10m radius to few hundreds meters), which can be named fem-
tocells, picocells, metrocells or microcells depending on their size [46]. Authors
of [47] propose to equip the small cell base stations with a transparent cache,
in order to serve user requests locally, thus saving traffic on the backbone.

Redundancy Elimination (RE) Also called byte caching [48, 49, 50, 51] , it
was introduced in 2000 by authors of [52]. RE middleboxes are co-located with
routers, can recognize online if there are identical portions of packets that are
repeatedly sent and exploit this redundancy. Let us consider a link, with RE
middleboxes at its ends. If a redundant portion is frequently sent on the link,
both middleboxes associate to it a short identifier and save this association in
a table. Then, in all following transmissions, a packet containing this portion
is modified before the transmission on the link, replacing the portion with the
index. When the modified packet arrives at the other end of the link, the
receiving middlebox replaces the index with the actual portion, so that the
original packet is reconstructed. Since indexes are shorter than the portions
they replace, RE allows to transmit the same amount of information by using
less bandwidth.

Content Delivery Networks (CDN) A CDN [53, 54] is a network of servers,
called surrogate servers, distributed across the Internet and replicating the con-
tent of one or more CPs that subscribed to its service. Each user request is
served by one of the CDN servers holding a valid replica. In the simplest case,
the selected CDN server is the closest to the user, but selection can be based
also on other criteria, e.g. load balancing, transmission cost, etc. [53]. A CDN
provider may be a third party entity, like Akamai and EdgeCast, that is dele-
gated by the subscribed CPs to distribute their content and receives payment
for this service. Some big CPs have their own CDNs, like Google. Recently,
also ISPs are deploying and offering CDN services [55, 56, 57, 58, 59]. Starting
to appear in 1998 [53, 60], CDN providers are now among the biggest actors in
the Internet and deliver the most part of the traffic generated by the biggest
CPs [61]. We do not want to describe exhaustively the CDN operation, which,
by the way, varies from company to company and is not completely public, be-
ing part of the business sensitive information. Here we limitedly underline the
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basic common aspects. More details can be found in the already cited work and,
as far as modern commercial CNDs operation is concerned, in Sec. 2.1 of [62]
and references therein. The CDN is transparent to the client which operates as
it was communicating with the original CP server. The following mechanisms
must be implemented to permit CDN operation:

• Content transfer, i.e. allowing CP to upload to the CDN storage the
objects whose transmission is delegated.

• Redirection, i.e. redirecting to the CDN infrastructure the requests coming
from users and originally directed to the origin server.

• Object selection, with which the CDN decides which objects should be
replicated across the available surrogate servers

• Replica placement, with which the CDN decides in which of the available
surrogate servers the objects should be stored.

• Request routing, with which the CDN routes each of the requests arriving
at the CDN infrastructure to one of the surrogate servers holding the
requested object (if none, the request is routed to the origin server).

Redirection can be implemented with two different mechanisms:

• DNS redirection. To be easily reachable, a CP always registers its domain
name, e.g. youtube.com, to a domain name registrar [63], associating its
name to an IP address. In the classic scenario, without any CDN, the
associated IP address is the origin server’s. If DNS redirection is used
instead, the CP must modify [64] its association in the registrar, inserting
the IP address of the CDN. Doing this, all the requests directed to the
origin server will be automatically sent to the CDN.

• URL rewriting . This is the most diffused technique for CP-CDN redirec-
tion. Most of Internet content is accessed through HTML pages, which
can be typically described as a basic skeleton enriched with links that
point to other embedded objects (like images, videos, etc.). When URL
rewriting technique is used, the CP delegates to the CDN the delivery
of the embedded objects only, which are usually larger than the skeleton
itself. To this aim, the CP modifies the links present in the skeleton to
make them point to the CDN. As a consequence, when browsers retrieve
the HTML skeleton (directly from the origin server), they transparently
download the embedded objects from the surrogate servers.

Observe that object selection, replica placement and request routing are
three tightly coupled problems that arise not only in the context of CDNs, but
in general in all types of cache networks, including ICNs, which we describe
below.

Finally, just to give an idea of the complexity of CDNs, we write here what
reported by [65]: “Akamai’s CDN currently has over 170,000 edge servers located
in over 1300 networks in 102 countries and serves 15-30% of all Web traffic.”.
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Information Centric Networks (ICN) ICN [3, 66, 67] is a new network
paradigm, alternative to the current IP network model. It has attracted a lot of
interest in the research community but, to the best of our knowledge, has not
been deployed in any production network, yet. A classic IP-based network is
“host-centric”, meaning that the communication is point-to-point, exchanging
packets from a host machine with address A to another with address B. Since
most Internet traffic consists in several users requesting a limited subset of
objects, irrespective of their location, the point-to-point model, which is heavily
based on the location of the communicating hosts, is not suitable [68] to exploit
the inherent redundancy in such traffic. To overcome this limitation, in the ICN
design routers are directly able to:

• read the name of the objects, instead of (or in addition to) the address of
the server

• cache objects in an embedded cache before forwarding it.

Moreover, while the datagram exchanged in IP networks is the packet, i.e.
a sequence of bytes going from one source to a destination, in ICN we have
two datagrams: the interest packet , carrying a request for a named object,
and the data packet , carrying a portion of an object. This adds new potential
functionalities to the network:

• Requests can be routed based on the object name rather than the server
address and can be satisfied by replicas placed at the closest (or best,
based on different possible criteria) network location. This can be real-
ized without the need of the redirection procedures implemented in CDN,
which may degrade performance (see Sec. 2.4.2).

• Caching is a primitive of the network architecture.

Differently from CDN, ICN caching nodes are expected to be routers equipped
with ultra-fast memory, capable of handling traffic at 10 Gbps and beyond [69,
70, 71, 72]. Consequently, these memories are more scattered in the network
and smaller, up to few TB, resulting in a much more distributed cache system
than current CDNs.

Different proposals can be covered under the umbrella of ICN: DONA [73],
Content Centric Networking (CCN) [68], Named Data Network (NDN) [74],
Conet [75], etc. They differ based on strategies regarding:

• Naming : each object must be assigned a name, which will be used by
network devices to route requests, cache objects and retrieve them from
caches. There can be different possible naming strategies: names can be
human readable or not, the name space can be hierarchical or flat, etc.

• Request routing : can be mediated or not. In the first case, the network is
equipped with a rendez-vous system [73], which intercepts all the requests
and translates the requested object names into the address of the physical
location where a replica can be found. In the second case, no location
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address is used, and all the routing is solely based on the name of the
objects.

• Object authenticity : in current networks, the information authenticity is
guaranteed by secure communication channels, e.g. using Transport Layer
Security(TLS), established between the client and the server (either ori-
gin server or CDN surrogate server). Once the secure communication is
established, the client assume that the server will send authentic data.
On the contrary, given that in ICN objects can be distributed in different
locations, new mechanisms have been proposed to allow a client to verify
the authenticity of objects, without secure communication channels. Au-
thenticity is based on a secure binding between an object and its name,
assuring that the object a user is receiving is exactly the one that she has
requested. This can be done by direct binding or by indirect binding. The
former consists in adding a hash of the object to its name, while in the
latter a hash of the object, signed by the CP, is added to the object.

2.3 Policies

The policies by which we can manage a network of caches can be classified in
two families: offline policies and online policies.

2.3.1 Offline Policies

Conceptually, offline policies assume an entity, which we call network controller ,
which decides replica selection (what to cache) and replica placement (which
network location to cache in) and periodically updates these decisions. Observe
that, although not directly related to caching, routing must be decided by the
network controller, to determine the replica to send requests to. Offline policies
determine these decisions, usually based on the results of optimization problems.
In other words, we assume that at a generic time instant we have facilities, i.e.
link capacities and caches, and a set of user requests. The goal is to find the
facility allocation that optimize the objective function, which can be the hit
ratio, the path length, the latency, etc. This approach, which has been named as
snapshot approach [76], is based on this instantaneous picture of the system. It
is not realistic, since the instantaneous picture of the system is never available,
as we never exactly know in advance what users will request. In addition,
offline policies are in many cases not feasible due to the excessive complexity
of the optimization problems that must be solved. Moreover, they require the
information about the network state to arrive to the controller, which adds delay
to the content delivery. This information can also be difficult to reconstruct in
a consistent way. All these problems have been largely observed (for example
in Sec. 2.4 of [62]).

Nonetheless, offline policies have been widely studied by the scientific liter-
ature [77, 78, 79], since they permit to obtain a theoretical description of the
system, which, although not realistic, can help in understanding its behavior.
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Moreover, if we divide the time in finite length slots, we can predict [80], with
a certain degree of precision, a picture of the system in the future slots, based
on the observation of previous ones and we can compute the offline solution on
this prediction. For this reason, when approaching a problem, we first leverage
offline policies (Chapter 3 and Chapter 5), before investigating online strategies
(Chapter 4 and Chapter 3).

2.3.2 Online Policies

In online policies, each node of the cache network takes its decisions, locally and
independently. Every time an object arrives at the node, it decides whether to
cache it or not, before forwarding it toward its destination. The policy ruling
this decision was defined by authors of [81] as metacaching policy , also called
decision policy or insertion policy . If the object is accepted, there may be
no space in the cache to store it. In this case, one of the previously cached
objects must be evicted. The selection of the object to be evicted is dictated
by a replacement policy . In addition, when a request is received, the node must
decide where to forward it. This is determined by a forwarding policy . While
we do not want to repeat here a taxonomy of related work about these policies,
already covered in a complete and clear manner by recent works (Sec. 2 of [82],
Sec. 2.3 of [38], Sec. 5.2 of [83], [84] ) and also by less recent ones [85, 86], we
limit ourselves to describe the ones that we consider and extend. While most
of the literature investigates replacement policies, we embed our strategies in
metacaching policies.

The simplest metacaching policy is Leave a Copy Everywhere (LCE), which
accepts to store all the objects that arrive at the node. An alternative is Fixed
Probabilistic Caching (Prob) [81, 87], which accepts every arriving object with
a fixed probability ψ̄ ∈ [0, 1], called insertion probability . This policy acts as
a filter, as it manages to store only sufficiently popular objects, which arrive
often to the cache and, after several trials, end to be accepted. At regime,
Prob has a better hit ratio than LCE and, if we ideally make the acceptance
probability tend to 0, we will find in cache exactly the most popular objects
(Theor. 1 of [88]). However, it is important to underline that during the initial
transient phase performance is poor, since we refuse to store a subset of objects,
thus losing the related traffic saving. In other words, Prob caches objects only
after they are observed many times (1/ψ̄ times on average), and thus there is a
long transient dominated by cache misses. Moreover, the smaller the acceptance
probability, the longer the transient, meaning that an effective filtering effect
can be obtained only after a long time.

As for the replacement policies, we will leverage Least Recently Used (LRU),
which evicts from cache the least recently requested object. Other finer policies
have been proposed but they are typically too complex to be implemented at
line rate, e.g. 10 Gbps, which is the expected object arrival rate in a real
network [69, 70, 71, 72]. We remark that, while other replacement policies
exist, like Least Frequently Used (LFU) and Last Recently/Frequently Used [89],
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which are more complex than LRU but still simple, most of the literature still
refers to LRU.

For the sake of completeness, we also point out that Instead of evicting
objects every time room is needed for new ones, Time-to-Live (TTL) based
caches [90, 91] evicts objects a certain amount of time after they were inserted.

2.3.3 Cache Partitioning

Cache may be partitioned in different segments, each one handled separately
by either an offline or online policy. The problem of cache partitioning has
first been considered in the context of CPU cache [92, 93, 94, 95]: CPU cache is
partitioned among different competing processes or it is divided in two segments,
one for the instructions and one for the data.

On the other hand, cache partitioning is not frequently applied in network
caches. Some exceptions are [96, 97]. Each segment of the partition is dedicated
to a different application in [96]and [98], while in [97] the ISP manages a cache
and partitions it, assigning each segment to a different CP.

In any case, the problem of finding the allocation, i.e. deciding the size
of each segment, must be solved. In Part III we will describe the novel cache
partitioning technique, based on perturbed stochastic subgradient method, we
first proposed in [14]. Moreover, we will consider cache partitioning when dealing
with video transmission (Chapter 5), using each segment for storing one specific
video quality only.

2.4 Benefits of Caching and Limits of
Current Techniques

This section discusses the advantages of content caching for the Internet
players we pinpointed in Sec. 2.1.1 and then underlines the limits of current
technology.

2.4.1 Benefits

The root cause of all the advantages of caching can be explained in simple terms
by observing that caches are typically closer to the users than the origin server
and thus the length of the path (usually expressed in number of hops) the data
have to cross is reduced. This has many straightforward consequences:

1. The propagation delay and the total processing time of the routers is
reduced, and thus the latency experienced at each user request.

2. The total bandwidth consumed per each transmission, computed as the
sum of the bandwidth used at each link, is reduced as well. As a conse-
quence, we can transmit more data in the network with no need to increase
the link capacity. This also reduce the probability of link congestion.

3. The load on the origin servers is reduced.
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These advantages are particularly evident when flash crowds occur, meaning
that in a short time window a restricted set of objects attracts a very large
number of requests, which happens very often in the Internet [99].

Advantages for users Consequence (1) has a direct positive impact on the
user experience. Thanks to (2), users can consume more content and at a better
quality, e.g. video or audio (we will analyze this in Part II), which improves
the user experience, as well. As observed by [100], reduced latency and in-
creased amount of content available can even make new services possible, e.g.
tele-medicine, extremely interactive applications. They can also change the way
current applications typically work: leveraging fast access to remote informa-
tion, we can move more and more data and processing from the client to the
server, allowing thinner clients on local machines, able to run with less resources
and at low power, which is particularly interesting given that information will
be consumed on tablets and smartphones more than on classic desktop comput-
ers [1].

Advantages for CPs Being able to serve more content at a higher quality
to users, CPs can attract more views (see Sec. 2.1.2) and increase revenue con-
sequently [100]. CPs also benefit from cost reduction. Indeed, caching relieves
origin servers from a fraction of load, thus allowing to increase the amount of
content served without updating the server infrastructure, which brings a capital
expenditure saving. Furthermore, CPs typically pay for the traffic they generate
on the ISPs (see Sec. 2.1.2) they are connected to. Since caching reduces this
traffic, operational expenditure saving is possible as well.

Advantages for ISPs We have to distinguish between local ISPs and transit
ISPs. As already observed, caches deployed in a local ISP can improve the qual-
ity of experience perceived by the subscribed users, thus making the ISP more
attractive. Since a part of traffic is directly served from caches inside the ISP
network, the inter-domain traffic is reduced, which brings operational expendi-
ture saving (we will see how to maximize the saving in Part I). Moreover, more
and higher quality content can be served without updating the capacity of links,
which brings capital expenditure saving. On the contrary, transit ISPs have no
incentive in caching [101], since they do not usually pay for the exchanged traffic
(either ingress or egress traffic) and often, are even paid for it, in which case
retrieving content from other ISPs constitutes a revenue.

2.4.2 Limits of Current Techniques

The research we conduct starts from the observation of the limits of current
caching techniques and moves a step forward toward their resolution. The limits
to take into account are not exclusively technical. As already discussed in
Sec. 2.1.2, even if a caching infrastructure guarantees the best performance, it
will hardly be adopted if it hampers the economic interests of the big players.
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For this reason, we will take into account in this section also the potential
incompatibility issues of the caching solutions with the business relations in the
Internet.

CP loses control over content All caching architectures imply that the CP
loses control on the replicated content, since when a user accesses a replica, she
does not need to contact the origin server of the CP (unless specific mechanisms
are put into place). This impedes [34] access control , which consists in limiting
only to certain users the access to certain objects, and trackability , i.e. recording
the accesses to the different objects from the different users. Note that access
control permits to demand payment from users, while trackability is vital for
preserving the income from the advertisers (Sec. 2.1.2), and thus they are core
functionalities. While some research has been conducted on these issues [102],
only CDNs solved them in practice and this is the main reason of their suc-
cess. Access control and trackability are integral part of the service offered by
CDNs [103, 104]. In practice, when CPs delegate content delivery to CDNs, the
latter take the responsibility of performing those functionalities.

However, issues may arise related to possible malicious or erroneous misuse
by CDNs of these delegated functionalities, e.g. erroneous report of statistics,
which may also translate into an erroneous fee demanded to the CPs, etc. To
the best of our knowledge these issues have not been studied by the scientific
community. In practice, CPs suppose that CDNs are trusted parties, and these
issues do not arise by assumption, which, in our opinion, does not offer sufficient
guarantees. In Part III, we will present a solution that overcome these problems
by giving CPs the complete control over their replicas.

Encryption As already discussed in Sec. 1.2.3, current caching techniques
does not work with encrypted content. The reason is that they require the
visibility of the objects transmitted, which is broken by encryption. We add here
that even object-unaware techniques, like Redundancy Elimination, which do
not require such knowledge, are inapplicable since encryption generate different
streams at each transmission of the same object, nullifying the redundancy.
CDNs circumvent the problem by establishing an encrypted channel between the
client and the surrogate server. This is made at the expense of CPs, which must
i) lose the control of their content delegating it to third party CDNs, ii) accept
the risk of letting third party CDNs incarnate themselves when transferring
data to users. In Part III, we propose an alternative cache architecture that can
co-exist with encryption, without the issues i) and ii).

Permeation As already said, due to encryption, the only effective caching
solution is CDNs. CDN surrogate servers are often directly connected to local
ISPs [105] and in some case local ISPs let CDNs deploy servers inside the access
network [106]. We say that CDNs permeate up to the “edge” of the network,
i.e. the part of the network that it is close to users, and this allows to reduce
immediately the traffic (see Fig. 2.2). However, in mobile networks, especially
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Table 2.1: Metrics optimized by caching algorithms in the literature.

Hit ratio [108, 109, 110, 111]
Number of hops [108, 112, 41, 109, 82, 113]
Latency [114, 115, 108, 116, 117]
Link load [108, 59, 118]

in the envisaged 5G networks [107], the edge is even closer to the users: each
ISP has a high number of small cells (Sec. 2.2.3), each of very small size, and
it is infeasible for any CDN to host their nodes there. The only entity that
can cache in small cells is the ISP which owns them. Unfortunately, classic ISP
transparent caching cannot be applied on encrypted traffic. The architecture
we propose in Part III solves this problem and allows the ISP to deploy caches
up to small cells.

Classic caching goals are not the most interesting As already abun-
dantly stated, almost all the caching strategies presented in the literature aims
to maximize hit-ratio. In our opinion, this is not an interesting goal in itself
and, on the contrary, is like aiming to cache for the sake of caching. The rest
of previous work focuses on optimizing classic metrics like the number of hops,
the latency or the link load. Tab. 2.1 summarizes the objectives pursued by
caching in the literature. We claim that other interesting goals, which have
not been sufficiently investigated, can be achieved. In Part I, for example, we
propose new caching strategies that aim to minimize the inter-domain traffic
cost of ISPs and we show that saving compared to classic caching techniques is
remarkable. In Part II we focus on another important objective not sufficiently
studied in the caching literature, namely the improvement of the video quality
provided to users.

Caching is not tailored for multimedia We have already observed in
Sec. 1.2.2 that classic caching, which would be most beneficial on video trans-
mission, is not tailored for it. This discussion can be extended in general to
every type of multimedia file, e.g. audio, pictures, etc. We attack the problem
in Part II, where we propose caching techniques specifically tailored for video
delivery.

In what follows, we summarize the related work specifically related to the
three problems we tackle in this thesis: cost reduction, video delivery and
caching of encrypted content. We summarize the methodologies in Tab. 2.2.

2.5 Cost Reduction

We discuss in this section the previous work related to the cost-aware caching
problem, which we tackle in Part I. We mainly discuss the work that take into
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Table 2.2: Methodologies used in the related work (more details in Sec. 2.5, Sec. 2.6
and Sec. 2.7) and in this thesis.

Cost Reduction
Delivery of Video
Content

Caching of
Encrypted
Content

Online distributed
caching

[119, 120, 121,
122], Chapter 4

Chapter 6

Game Theory
[123, 124, 125,
126, 127]

[97, 128]

Optimization
Chapter 3,
[120, 129, 27]

[5, 130, 131, 4, 76,
27], Chapter 5

[132]

Stochastic
Optimization

Part III

Economic Models [101, 104] [34]

Probabilistic
Models

[133, 134],
Sec. 4.2

Control Algorithms [135, 136, 137]

Trace-driven
Analysis

[138]

Coding [130]

Recommendation [139] [140]

Architecture [62] [55]

Security
Mechanisms

[141, 142,
102]

account the cost in the caching decisions, but not only. For instance, in the
last subsection we refer to approaches that address cost reduction via other
techniques, which are orthogonal to caching. We consider them, because they
could be combined with our cost-aware caching to increase even further cost
reduction. We also include in our discussion work that is not in the context of
computer networks, but that can be easily applied to them, with the opportune
modifications. In addition, we also consider works in which the notion of cost
is not related to a monetary value (which is our target), because the techniques
they propose still have some validity replacing their notion of cost with ours.

2.5.1 Cost-Aware Replacement Policies

Several cache replacement policies that take into account a cost associated to
objects have been proposed in the literature. Already in the 90s, Young [121]
devises “Greedy Dual” in the context of k-server problem, which can be seen
as a generalization of the caching problem (see Sec. 1 of [143]). In particular,
[121] focuses on the weighted caching problem, where the meaning of “weight” is
“cost”, whose meaning, in turn, is not precisely defined and is left as an abstract
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quantity. Observe that in the early 90s, caching was intended as “paging”, i.e.
moving pieces of data from the disk to the main memory, or as storing fonts in
a printer, while network caching was not yet envisaged. A more efficient version
of this algorithm called “GD-Wheel” has been recently published [122], in the
context of memory-based key-value stores, which are used to store the results of
some computation, e.g. the results of database queries. There, “object” means
one of such results, and its cost reflects how difficult it is to compute it again.
While the aforementioned works fall outside the computer networks research
area, in the late 90s, Cao and Irani [119] extended GreedyDual and applied it
to proxy caches, which we can intend as user-side proxy caches (Sec. 2.2.1) or
transparent proxy caches (Sec. 2.2.3) or reverse proxy caches (Sec. 2.2.2). The
cost can mean in their case the download latency, the object size, the congestion
status of the link used to download the object or even the price paid to use that
link.

The contribution of Part I distinctly differs from the above works. First, we
specifically focus on the monetary cost of inter-domain traffic, providing results
on the realistic saving of an ISP. Second, [121, 122, 119] propose replacement
algorithms based on complex computations that would be impossible at line
speed. On the contrary, in Chapter 4 we propose a metacaching policy that is
lightweight and easily implementable in an ICN-router.

2.5.2 Cost-Awareness in CDN

In two papers [129, 27] published after our first articles on cost-aware caching [17,
16], the authors investigate cost and caching from an inverse viewpoint with
respect to what we do in Part I. In their model, a CDN can store objects to
different locations, each inside a different ISP. Different locations imply different
cost, depending on the agreement between the CDN and the ISPs. Simplifying,
the goal of the CDN is to find the placement that guarantees the minimum
overall cost for the CDN while satisfying all users request. Differently from
them, our goal is minimizing the ISP cost, instead of the CDN cost. While
their CDN model implies “pieces” of cache distributed in different external ISP
networks, we look only at the cache space inside one ISP and we aim to manage
it in order to minimize the cost. From a technical point of view, the optimization
model of [27] is a generalization of ours (Chapter 3). First, we only consider cost,
while they also consider user utility (even if the exact meaning is not clearly
specified). Second, while in the model we provide in Chapter 3 we only need
a decision variable to establish whether to cache an object or not, in [129] we
must also decide in which node, i.e. in which ISP networks, to cache.

2.5.3 Economic Considerations in ICN, P2P and the Cloud

The economic implications of caching are considered by [101, 123, 124, 125, 104],
in the ICN context. In more detail, [101] models the economic incentives of dif-
ferent network players (including regulators) to deploy (or support) distributed
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ICN storage. In [104], the economic feasibility of ICN is evaluated, contrasting
it with client-server, peer-to-peer and CDN models.

Roberts et Al. [133] explore the memory-bandwidth tradeoff: installing a
cache infrastructure implies a certain additional capital expenditure increase
and, at the same time, an operational expenditure decrease, thanks to the inter-
domain traffic reduction. Their goal is to understand what is the amount of
cache to deploy in order to reduce the overall cost, fixing LRU as replacement
policy and LCE as metacaching policy (Sec. 2.3.2). This investigation is extended
and applied specifically the mobile networks in [134], also considering Prob

(Sec. 2.3.2). A recent work [120] investigates the same trade-off in a cloud
environment, where storage resources can be allocated or deallocated on the
fly. Contrarily to [133, 120, 134], we assume a fixed amount of cache space and
we study cache policies that can exploit it efficiently, which makes our study
complementary.

The most relevant works for what we investigate in Part I are [123, 124, 125],
concerning ICN and [126], concerning P2P. Again, our approach is different.
First, while they consider ISPs as atomic entities and focus on an inter-ISP
view, we study the problem of cost saving from an intra-ISP perspective, and
propose a scheme that ISPs can use to manage their own networks. Additionally,
[124, 125] investigate new pricing models for ICN networks without looking
at the caching policy to be used. Our research is orthogonal: we focus on a
novel cache strategy and we study its impact on the pricing model currently
used in the Internet. Authors of [126, 123] study how ISPs can reduce the
transit traffic by sharing their cache content exploiting settlement-free peering
links: while this reduction is blindly computed among all transit links, in Part I
we instead explicitly exploit price heterogeneity, which we show to have an
important impact in practice.

2.5.4 Other Techniques to Reduce Cost

For the sake of completeness, we point out that other techniques, different from
caching, have been proposed to reduce the inter-domain traffic cost. Some
of them [62, 144, 145] are related to live streaming. Since this traffic is not
cacheable by nature, we do not report on that. We just observe here that the
control architecture of [62], composed of local and global control, is interesting
for us, as we can embed our caching decisions in it, as part of our future work.

Castro et Al. [127] propose a collaboration between ISPs to aggregate their
traffic in order to benefit from economies-of-scale. While in our work we con-
sider ISPs as autonomous and non explicitly cooperating entities, an interesting
research direction could be to evaluate the margin for improvement we could
have by combining cost-aware caching with a collaboration like the one proposed
in [127].
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2.6 Delivery of Video Content

Video streaming over the Internet has become a mainstream research topic in
recent years: as such, several works focused on the problem of ensuring an
efficient video streaming in communication networks. Similarly, caching has
attracted a surge of attention in recent years through popularization of Content
Distribution and Information Centric Networks. However, as already discussed,
there is still lack of a unified viewpoint to alleviate the huge increase in required
bandwidth and to guarantee satisfactory Quality of Experience (QoE) for users.

2.6.1 Classic Caching versus Classic Video
Delivery Impairment

We recall that in what follows we will implicitly refer to Adaptive Streaming
(see Sec. 1.2.2), as our video delivery method. To confirm the impairment stated
above, classic caching directly applied to video streaming not only is inefficient,
but may even be harmful, since it may cause rate fluctuations [135], which ham-
per QoE. Another example of classic caching vs. classic video streaming impair-
ment is given in [138], which, by means of trace-driven simulations, finds that
an ICN cache deployment may not always lead to relevant QoE improvement in
video delivery. Yet we argue that such results understate the benefits achievable
via caching, since they are obtained by applying representation-blind policies,
which consider homogeneous objects, all encoded at a single quality. In Part II,
we instead leverage the possibility to serve different quality representations to
maximize user satisfaction, respecting capacity constraints.

2.6.2 Control Mechanisms

QoE maximization has been tackled in the classic literature on video deliv-
ery [136, 135, 137] by proposing control mechanisms that intelligently share
bandwidth among different users. While typically this kind of work assume that
the source of transmission is unique [137], more relevant for our work are recent
papers that take into account the existence of multiple sources (like caches and
repositories), like [135, 136]. However, these works evaluate control algorithms
under a given content allocation, whereas in Part II we look for the allocation
guaranteeing the best QoE.

2.6.3 Optimization Approach

Authors of [5] consider caching of videos in a heterogeneous network, assuming
that users can specify the minimum video quality they are willing to accept
and the network provider goal is to minimize delay and cost while providing at
least that quality. Our viewpoint is different, since we directly measure user
satisfaction in terms of quality provided, rather than delay, and our goal is
not just to satisfy a minimum requirement but to send videos at the maximum
possible quality. A similar viewpoint is adopted in [144], which however does not
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take caching into consideration, since it focuses on live streaming The closest
work to ours is perhaps [4], which employs caching, transcoding and routing
functions to minimize the networking cost in a video distribution context. A
two-step iterative approach is proposed, where, first, storage and computing
resources are allocated optimally, then the routing is configured in the second
phase. However, the model does not explicitly account for the utility perceived
by users downloading different video representations, which is the focus of our
study in Part II.

Maille et Al. [27] explore the consequences of replica placement on the QoE.
Their scenario includes one CDN and two ISPs and three CDN cache locations,
one inside each ISP and another, intermediate, outside but close to both. QoE
can assume 3 values: by assumption, if an object is cached inside an ISP, the
users of that ISP will enjoy a high QoE, while QoE is medium if the object
is retrieved from the intermediate cache and basic if it is not cached and it
must be retrieved from the origin server. The authors do not consider the
bandwidth needed for a transmission as well as the link capacity constraints. On
the contrary, in our model (Chapter 5) QoE, which we represent as user utility,
depends on the bit-rate that we are able to send to users, which is constrained
by the link capacities available in the network. Thanks to the realism of our
description, we can show that user utility not only depends on which node we
cache, as in the assumptions of [27], but also on the representation selection,
the routing and the topology.

2.6.4 Alternatives to Adaptive Streaming

In our work, we only consider Adaptive Streaming, as defined in Sec. 1.2.2. For
the sake of completeness we briefly report on some alternatives, which, to the
best of our knowledge, are not widely deployed in production networks, mainly
due to their complexity.

Some work has evaluated the benefits of using layered video coding, e.g.
Scalable Video Coding (SVC), with caches. With this coding, each chunk of
video is composed of a base layer and then other additional enhancement lay-
ers. The base layer is sufficient to reproduce the video at low quality. If more
bandwidth is available, the client can download also the enhancement layers ob-
taining a better quality. The results presented in the position paper [146] show
the advantage of SVC over Adaptive Streaming in terms of cacheability. SVC is
also considered by [5], while [130] introduces a new layered video encoding. Ob-
serving that layered video coding still have a high complexity which slows down
its adoption, differently from [146, 130, 5], our enhancement is obtained using
the currently most deployed technology, i.e. Adaptive Streaming, in which there
are different alternative representations of the same video, at different quality,
and one of them must be served to the users. Moreover, the context of our
model is a multi-AS environment, where the capacity of multi-hop paths lim-
its the rate of transmission (thus, the served quality), whereas in the wireless
context considered by [130] the limitation is due to the channel condition.
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Another alternative to adaptive streaming is on-the-fly transcoding which
allows to store just one of the available representations of a video and then
transform it to a lower quality, if it is more suitable for transmission. Since
this transformation is computationally expensive, such approaches have been
investigated by the research community [147, 148], but are difficult to implement
in real networks. To the best of our knowledge, big Content Providers and
Content Delivery network still use Adaptive Streaming, i.e. they “pre-encode
streams at various bitrates applying optimized encoding recipes” [149].

Although SVC and on-the-fly transcoding show potential for future devel-
opment, they are not widely deployed in the current Internet. For this reason,
we just focus in this thesis on Adaptive Streaming.

2.6.5 Impact of Different Quality Representations

The fact that a single video can be represented at different qualities has an
important impact on users’ experience, which [131] and [76] study in a CDN
and wireless scenario, respectively, investigating what is the subset of video
quality levels to make available in order to maximize QoE. Both make some
simplifications of the network settings. The former only considers the capacity
limitedness of the link connecting the user to the ISP, while we consider the
capacity of all the links inside the network. Therefore, while the topology is
ignored in [131], we take it into account and we are able to evaluate the in-
stantiation of a feasible path, i.e. a path between the user and the copy of the
requested object, in which the capacity constraints of all links are met. This
evaluation is not possible in the model of [131]. On the other hand, we observe
that [131] takes into account other details that we could also embed in our model
as future work, like the capacity constraint of the link connecting the user to
the ISP and the heterogeneity of devices from which users consume content. As
for [76], it only considers one cache and one video.

We overcome the limitations of the work above by considering in Part II
realistic networks, taking into account the limited storage at each node and the
limited bandwidth on each link. More importantly, we assume that the set of
the available quality levels is already established and look at the problem from
a network viewpoint seeking to select the representations to store among the
available ones.

Also Mukerjee et Al. [62] take into account the fact that a video can be rep-
resented at different bit-rates and propose an architecture to distribute content
in a CDN topology. As we do in Chapter 5, they aim to route videos in order
to respect link capacity constraints while maximizing the overall video bit-rate
(which translates in video quality). However, they do not consider caching,
which is at the core of our study, and they suppose that users specify the de-
sired bit-rate, while in Part II users only request the video and the network tries
to serve it at the best quality possible.
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2.6.6 Client-Based Decisions versus
Network-Based Decisions

From a technical point of view, current video delivery control algorithms
require the client to take all the decisions, e.g. the quality representation to
download, based on its measured metrics. Kleinrouweler et Al. [150] and
references therein pinpoint the limits of this set-up, due to the limited view
of the network that a client can have. Authors of [150] propose a Network-
Assisted Adaptive Streaming, in which network elements communicate with
the clients to help them in taking their decisions. In line with these findings, we
advocate giving the entire control of these decisions to the ISP, since it can more
easily know the state of the network and the resources available. This is not
unrealistic since, in either case, users do not make any explicit choice most of
the time [151], so that the selection mechanism, be it done in the Web browser
of their personal device, or at the proxy in the ISP premises, is completely
transparent to them. To support the plausibility of this switch, we point out that
a recent IETF draft [139, 152] describes a Server and Network Assisted DASH
(SAND), currently in an experimental phase, in which video-aware network
elements take the decisions and give directives to users, accordingly. In line
with our findings, moving from the client to the network itself the responsibility
to choose how to satisfy user requests is expected to be beneficial, particularly
in presence of caches.

2.7 Caching Encrypted Content

The problem of permitting ISP to cache despite the fact that content is en-
crypted by CPs, which we tackle in Part III, has not largely been investigated in
the literature. It has been mainly addressed by security mechanisms (Sec. 2.7.1).
Another branch of work relevant to the problem investigates, in a larger sense,
how to share the management of a cache system between the main actors in
content delivery, namely CPs, CDNs and ISPs, which we discuss in Sec. 2.7.1.
We also refer to some work close to ours as far as the methodology is concerned
in Sec. 2.7.3

2.7.1 Security Mechanisms

In order to contrast our work of Part III with a broader literature and with
current state of the art, it is useful to abstract it in the following terms: we
want a cache owner to be able to cache even if the content and the requests
are known only by the respective CPs. In our case, the cache owner is the
ISP, while in the CDN environment it is a CDN [153] and in some work a
cloud provider [141]. Note that the problem remains conceptually the same
in the three cases. In the current Internet, the problem is partially solved by
Digital Rights Management (DRM) technologies. CPs distribute to the cache
owner infrastructure objects encrypted with a symmetric key. Then the key is
distributed only to the authorized users, in a secure way. These techniques are
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used nowadays by the main CPs (Netflix, Spotify, etc. [153]), but have several
issues:

• Additional messages issue. They typically require different messages be-
tween the user and the CP, which slows down the delivery.

• Request visibility issue: They also require the cache owner to read and
understand the names of the objects requested by users, which we already
explained to be a sensitive information for CPs, which would hardly be
willing to provide it to ISPs. Therefore, our goal is to keep opaque not
only the objects, but also the requests.

A similar approach is presented in [141], in which a CP arranges its users
in groups, each group having particular access rights. A symmetric key is as-
sociated to each group, with which the CP encrypts content before sending it
to the cache owner. This symmetric key is also distributed to the members of
the group via some secure channel. As a consequence, the cache owner cannot
read the content. When an authorized user requests for an object, it receives an
encrypted copy from cache, if present, and can decrypt it with the symmetric
key. The problem that arises with this technique is that a new symmetric key
must be issued every time a user joins or leaves a group. Moreover, all the
cached objects that were encrypted with the old key, must be encrypted again.
Another issue is the request visibility issue already mentioned above.

Interesting, though not much extended, a branch of literature aims to pro-
vide confidentiality and trackability in ICN. The mechanism proposed in [142]
requires the user to contact the cache owner to request for an object, then the
cache owner to contact the CP to ask if the user is entitled to receive it. These
communications must occur at every download. It should be clear that the same
issues underlined above raise.

Mangili et Al. [102] devise a specific encryption mechanism to be imple-
mented by CPs. In addition to the previous underlined issues, the authors also
show a trade-off between the security strength and the cache efficiency: it is
impossible to have high hit-ratios while assuring the maximum trackability and
confidentiality. Moreover, the user is forced to receive all the chunks of the ob-
ject before decrypting it. Therefore the mechanism is effective for downloading
software or big pieces of data, but is not trivially applicable to video delivery,
which, by the way, represents most of today traffic (Sec. 1.2.2). Indeed, users
start to watch videos immediately after some chunks are received, without wait-
ing to download them all, which is not possible with the mechanism of [102].

In the mechanism proposed by [154], to assure an object is only accessed
by a user, it is encrypted with its public key. If the authorized receivers are
more than one, a key pair is associated with this group of users and the object
encrypted with the public key of the group. In addition to the request visibility
issue, it is clear that managing the key pairs for all the possible groups is very
complex, particularly considering that such groups are volatile, with new users
continuously joining and other leaving.
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2.7.2 ISP/CDN/CP Responsibility Share in
Cache Management

A set-up similar to what we consider in Part III can be found in a recent
work [97], which proposes to share a cache managed by an ISP among different
CPs in order to achieve fairness. Partitioning of the storage is done using a
pricing scheme based on the value that each CP gives to cache space. Unlike [97],
our proposed algorithm aims to maximize the cache hit rate, and does not
involve payments, which may make its adoption less controversial considering
the disputes among ISPs and CPs in recent years [34]. To the best of our
knowledge, our work is the first to propose an effective way to maximize the
efficiency of an ISP-managed cache, by partitioning it among multiple CPs,
without being aware of the content that the CPs serve and without involving
payments.

Closer in scope to ours are worth mentioning a set of recent works that
target ISP/CDN/CP cooperation [128, 132, 55, 155, 34]. These not only show
that ISPs have strong incentive in investing in caching to reduce the traffic
on their critical paths, but also show that the other Internet actors, i.e. CPs
and users, would benefit from ISP in-network caching. The game theoretical
study in [128] shows that caches are inefficient when operated by CPs, since
CP content placement and ISP traffic engineering are often not compatible.
Solutions are proposed in [132, 155], which however require ISPs to share with
the CP confidential information, such as topology, routing policies or link states,
and as such are arguably highly impractical, since ISPs are typically not willing
to disclose information about the state of their network, i.e. congestion, available
bandwidth, etc. [34] Conversely, [55, 34] foster an ISP-operated cache system,
but requires the ISP to be able to observe every object requested by the users,
which is arguably equally impractical since CPs purposely hide this confidential
information via HTTPS. In contrast with these previous works, our solution
does not yield to any leaking of business critical information. Furthermore, our
solution is not limited to a single CP, unlike [132].

Finally, from a technical viewpoint, our work is aligned with recent industry
efforts in the Open Caching Working Group (OCWG) [140]. The mission of
the OCWG is to develop standards, policies and best practices for a new layer
of content caching within ISP networks, which can coexist with HTTPS and
provide shared access to storage for many CPs. Our work fits the OCWG
requirements and as such is, we believe, of high practical relevance.

2.7.3 Work Related to our Methodology

As concerns the methodology, our partitioning algorithm is based on stochastic
optimization. A stochastic optimization based algorithm, although different
from ours, is also used in [93] to partition a CPU cache among competing
processes. Clearly, the cache workload created by CPU jobs, the cache size and
all the other characteristics of the CPU cache scenario are completely different
from the network cache case we target in this manuscript. This makes their
algorithm inapplicable to our study, as we realized in an early stage of our
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investigation, simulating it and remarking that the time needed to converge to
a good result was intolerably long.



Part I

Cost-Aware Caching
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Introduction to Cost-Aware
Caching

In this part, we investigate caching strategies, which we define “cost-aware”,
aimed at optimizing a very relevant and practical objective for ISPs, i.e. inter-
domain traffic cost minimization. We contrast them with the classic strategies
aimed at maximizing hit ratio.

In Chapter 3 we formulate two optimization problems under ideal assump-
tions, namely a problem whose objective is to maximize hit ratio and a problem
aiming at minimizing cost. Numerical results show that there is a trade-off be-
tween the two objectives and that, as a consequence, classic caching techniques,
aiming at the first objective, fail to achieve all the potential cost-saving that
caching can bring.

In Chapter 4 we remove the idealized assumptions above and we propose
an online distributed policy, implementable in real networks, that approaches
the optimal cost-minimizing solution. We give a probabilistic model of the
policy. By means of large scale simulation, we compare the achieved benefits
with respect to the state of the art classic caching techniques, which are blind
to cost, and with respect to the theoretical optimal cost-minimizing solution
found with the optimization. We also evaluate the robustness of our online
policy when changing scenario, we study the sensitivity with respect to internal
parameters and we discuss implementation constraints.

Overall, we find that embedding cost-awareness in network caching brings a
sizeable saving for ISPs.

We summarize in Tab. 2.3 the notation used throughout this part.
Most of the content of this part is extracted from [17, 16, 12].
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Table 2.3: Summary of the notation used in this part.

Variable Meaning
Place of
definition

Sets:

L Set of external links

O Catalog

Parameters of the optimization model:

λi Request rate for object i (3.23)

K Cache size Sec. 3.4.2

π(l) Price paid by the ISP for every object
crossing the external link l

Sec. 3.1

Ξ
(l)
i

Binary variable indicating whether object i
is retrievable through link l

Sec. 3.1

Decision variables:

λ(l) Rate of requests crossing external link l (3.2)

f
(l)
i

Fraction of demand for object i directed to
external link l

Sec. 3.1

πi
The price of the link which gives access to
object i

(3.12)

xi
Binary variable denoting if we cache the
object i

Sec. 3.1

Parameters of the evaluation scenarios:

α
Skew parameter of the Zipf popularity
distribution

(3.23)

s = (s(1), . . . , s(N))
Split vector; s(l) is the fraction of objects
that is behind external link l

Sec. 4.3.2

π
Price ratio, i.e. the ratio between the
expensive and cheap links

Sec. 3.4.2

Metrics:

hi Cache hit ratio for object i Sec. 4.2

H Hit ratio (3.1), (3.20)

C Cost (3.3), (3.15)

CF Cost fraction (3.26)

PS,AS Potential Saving and Achieved Saving
(4.10),
(4.11)

Online algorithm parameters:

ψ(·), ψ̄ Popularity based module in the
metacaching policy and its default value

Sec. 4.1.1,
(4.1)

β(·), β̄ Price based module in the metacaching
policy and its average

(4.2), (4.3)

ψβ Average acceptance ratio (4.4)

M Normalization factor (4.5)

W Simplification factor (4.7)



Chapter 3

Optimal Cost-Aware
Caching

We start our investigation of the potential cost-benefits of caching leveraging
optimization techniques. Despite the ideal assumptions, they consent to for-
malize the problem of cost in a systematic way, to understand the structural
differences in the caching choices that occur when minimizing cost instead of
classically maximizing hit ratio and to seize the potential benefit that a cost-
aware policy can bring in theory.

The chapter is organized as follows. In Sec. 3.1 we describe the system model
and in Sec. 3.2 we provide two Integer Linear Programs (ILPs), one maximizing
hit ratio and the other minimizing cost. Among all the possible optimal solu-
tions, we focus on a subset with simple structural properties in Sec. 3.3, which
are computable in linear time by simple greedy algorithms. Finally, we discuss
numerical results obtained by the model to show the cost-hitratio trade-off and
the potential benefit of cost-aware strategies.

3.1 System Model

Fig. 3.1 illustrates the model adopted in this chpater: an ISP serves a rate λi
of requests for an object i belonging to the catalog O. Tab. 2.3 summarizes the
notation used throughout this chapter. To serve these requests, the ISP may
need to retrieve the object through one of its available external links (we use
the set L to denote them), connecting it to other ISPs, or CPs or CNDs, paying
a related cost.

In case the ISP is operating caches, some of these requests can be served
within the ISP network. Denoting with xi a binary variable indicating if object
i is cached, we can define the hit ratio, i.e. the rate of requests served by cache,
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Figure 3.1: Model of the ISP. The ISP is connected to third party networks through
external links l1, l2, . . . , l5.

as:

H ,
1∑
i∈O λi

∑
i∈O

λi · xi. (3.1)

The maximization of the cache hit ratio, irrespective of the link through
which the requests exit the ISP network, has usually been the objective of ICN
research. In contrast, we argue that the primary goal of an ISP is to minimize
the cost associated to external links’ utilization. In other words, by installing a
limited amount of cache storage within its network, the ISP may not want to
blindly maximize the hit ratio independently of the object cost: rather, the ISP
aims at caching objects that lead to a larger cost saving, i.e., objects that are
accessible through the most expensive links.

To capture this objective, we first specify that the demand for an object i
that is not cached, may be split in different flows, each one sent to one of the

external links that give access to that object. A binary variable Ξ
(l)
i indicates

if object i is reachable through the external link l. We denote with f
(l)
i the

fraction of demand directed to the external link l. It follows that the load on l
is (using unit object size for the sake of simplicity in the formulation):

λ(l) =
∑
i∈O

λi · (1− xi) · f (l)
i . (3.2)

Hence, unlike current literature that evaluates the cache vs. bandwidth
tradeoff within ISP boundaries [156], we instead do not associate any cost to
the traffic on the internal links, as in [126, 125], since we focus on the inter-
domain traffic cost, assuming capacities of internal links are sufficient to carry
the required traffic, as in [25, 125, 124, 126, 123]. Moreover, as [123, 126], we
do not consider the cost of cache installation, because (i) it is a capital expen-
diture that is not related to the inter-domain traffic cost, which is the subject
of our investigation, and (ii) we start from the assumption that a fixed amount
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of cache is already installed in the ISP network and we quantify the benefits
achievable switching from classic cost-blind cache policies to our proposed cost-
aware mechanism, with no difference in the cost of deployment of the cache
infrastructure, thanks to the simplicity of our solution.

The 95% charging model is the most widely used among ISPs (see [157, 158,
159]): traffic volume on a provider link is sampled every period, e.g. every five
minutes, and the 95th percentile of the samples, computed over a larger time
span, e.g. one month, is charged. However, as usually assumed in the literature,
our traffic model is stationary, i.e. its statistics do not change over periods, and
thus the 95% charging model is equivalent to the proportional one, in which the
cost incurred in retrieving objects from a certain link is directly proportional to
the traffic volume flowing on that link. Therefore, we will use the proportional
charging model, conforming to literature (see [157, 25, 126, 125, 124, 123, 133]).
Ultimately, the cost of inter-domain traffic jointly depends on the traffic load
λ(l) crossing any given link l and the link price π(l):

C ,
∑
l∈L

π(l) · λ(l) =
∑
l∈L

π(l)
∑
i∈O

λi(1− xi) · f (l)
i . (3.3)

We argue that an interesting objective for ISPs is to minimize the above overall
cost (3.3), considering not only the popularity λi but also the link prices π(l),
as opposed to maximizing the overall hit ratio in a cost-blind fashion – that we
show to be contrasting objectives in Sec. 3.4.4.

3.2 Optimization objectives and constraints

An ISP may design the cache system in order to minimize the cost C or to
maximize the hit-rate H. We model these two conflicting goals with two dif-
ferent multi-objective Mixed Integer Linear Programs (MILPs), which we call
respectively MaxHit and MinCost:

MinCost : min [C, 1−H] (3.4)

MaxHit : min [1−H,C] (3.5)

Both are subject to the following constraints:∑
i∈O

xi ≤ K (3.6)

f
(l)
i ≤ Ξ

(l)
i ∀i ∈ O, l ∈ L (3.7)

f
(l)
i ≤ 1− xi ∀i ∈ O, l ∈ L (3.8)∑
l∈L

f
(l)
i + xi = 1 ∀i ∈ O (3.9)

f
(l)
i ∈ [0, 1] ∀i ∈ O, l ∈ L (3.10)

xi ∈ {0, 1} ∀i ∈ O (3.11)
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where the input parameterK is the cache storage, i.e. the number of objects that

can be cached inside the ISP. The decision variables are xi and f
(l)
i . Equation

(3.6) represents the limitedness of the cache space, (3.7) imposes to retrieve
objects only from links that give access to them, (3.8) allows only demand for
non-cached object to be sent to an external link, while (3.9) forces all the demand
for a non-cached object to be satisfied, either by the cache or through external
links. The last two constraints specify the type of the decision variables.

Note that the order of the functions we minimize in the two problems is
important: in MinCost the primary goal is the minimization of the cost while
the secondary goal is the maximization of the hit-ratio (that we express as
the minimization of the miss-ratio, 1 − H). On the contrary, in MaxHit the
sequence of objective functions is inverted. Note also that it is not relevant
for our problem to look at how the ISP cache system is deployed. We are
only interested in knowing whether an object is cached or not. It makes no
difference to us whether the cache system is composed by one cache server only
or a network of caches and, in the latter case, the placement of the replica has
no impact on the model.

3.3 Greedy Algorithm

Before providing the greedy algorithm that solves the optimization problem,
which is the main goal of this section, we will characterize the set of optimal
solutions.

We define the price of an object i as:

πi , min{π(l)|Ξ(l)
i = 1},∀i ∈ O (3.12)

i.e. price of the cheapest among the links that give access to that object.

Proposition 1. The optimal solution of MinCost sends all the request miss
stream of an object to the cheapest links among the ones that give access to that
object. In other words, at optimum

f
(l)
i > 0 ⇐⇒ π(l) = πi,∀i ∈ O, l ∈ L (3.13)

Moreover, there always exists a solution of MaxHit that satisfies (3.13).

Proof: First, we observe from (3.1) that the hit ratio does not depend on

f
(l)
i . Let us consider a solution of MinCost . From (3.3), the overall cost can

be expressed as:

C =
∑
i∈O

λi(1− xi) ·
∑
l∈L

π(l)f
(l)
i . (3.14)

Let us suppose, by contradiction, that there exists a link l′ such that π(l′) > πi
and f

(l′)
i > 0. It is straightforward to note that moving the fraction of demand
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f
(l′)
i from l′ to one of the cheapest links giving access to i, which have price πi,

decreases the overall cost by leaving the hit ratio unchanged and still satisfying
the constraints (3.6)-(3.11). Therefore, the solution considered at the beginning
of this proof cannot be the optimal. The same arguments apply on MaxHit .

By simple calculation, we obtain the following corollary.

Corollary 2. Both in MinCost and MaxHit , at optimum, the cost is:

C =
∑
i∈O

(1− xi) · λiπi. (3.15)

Proof: Thanks to the previous proposition, we know that we can compute
the cost at optimum in both MinCost and MaxHit , assuming that (3.13)
holds. Therefore, from (3.15), the cost becomes

C =
∑
i∈O

λi(1− xi) · πi ·
∑
l∈L

f
(l)
i . (3.16)

Applying the constraint (3.9), we obtain the result.
The previous corollary means that, as long as we send all the requests that

are not satisfied by the cache to links among the cheapest ones that give access

to it, the value of f
(l)
i makes no difference. This allows us to remove this decision

variable from our formulation. The optimization problems can thus be simplified
as 0-1 Integer Linear Programs (ILPs):

MinCost : min [C, 1−H] (3.17)

MaxHit : min [1−H,C] (3.18)

Both are subject to the following constraints:

C =
∑
i∈O

(1− xi) · λiπi (3.19)

H = 1− 1∑
i∈O λi

∑
i∈O

λi · xi (3.20)∑
i∈O

xi ≤ K (3.21)

xi ∈ {0, 1} ∀i ∈ O (3.22)

where the only decision variable is xi, which represents caching.
The solution of these problems is easily found by the simple greedy algo-

rithms described in the following propositions.

Proposition 3. A solution of MinCost is found by caching the K objects with
the highest product λiπi. If several objects have the same product, we break the
ties by caching the ones with the highest λi.
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Proposition 4. A solution of MaxHit is found by caching the K objects with
the highest request rate λi. If several objects have the same request rate, we
break the ties by caching the ones with the highest λiπi.

The time complexity to select those K objects is O(|O|) in both cases, where
|O| is the total number of objects. Considering the MinCost problem, for
instance, 1 it suffices first to select the object whose product πiλi is the K-
th largest. To this aim, we can use the algorithm of Sec. 9.3 of [160], whose
complexity is O(|O|). Then, for each object, we insert it into the cache only if
its product πiλi is larger than or equal to the K-th object’s. This requires also
a time O(|O|).

3.4 Numerical results

We now provide and discuss numerical results, obtained through a GNU Oc-
tave [161] implementation of our greedy algorithm, aimed at both (i) quantita-
tively assessing the economic savings that an ISP can potentially get by target-
ing MinCost instead of classically targeting MaxHit and (ii) understanding
structural differences in terms of cached content.

3.4.1 Content Popularity

We identify the objects with the natural numbers i = 1, 2, . . . |O|. As in most
literature, we leverage the Independent Reference Model (IRM), first introduced
by [162]. It can be expressed (see Sec. 2.1 of [163]) by saying that the arrival
process of the requests of a certain object i ∈ O is a Poisson process with a rate
λi. We emphasize that, under this model, each request is independent from the
previous. Content popularity obeys to the Zipf distribution [164, 165, 166]:

λi∑
j∈O λj

=
1

H
(α)
|O|

· 1

iα
,∀i ∈ O (3.23)

where α is a positive real parameter, called exponent, and H
(α)
|O| is called gener-

alized harmonic number, i.e. H
(α)
|O| =

∑|O|
j=1

1
jα , whose role in the equation above

is to make the sum of (3.23) over all objects equal to 1.

3.4.2 Scenario

While our framework is general and can be applied to every type of ISP, in
this section we focus on a Local ISP with three external links: a peering link
lfree, a “cheap link” lcheap and an “expensive link” lexp with respective prices
π(lfree) = 0, π(lcheap) = 1 and π(lexp) = π, where π ∈ {1, 2, . . . , 10} denotes the

1We borrow the idea from http://www.geeksforgeeks.org/

k-largestor-smallest-elements-in-an-array/

http://www.geeksforgeeks.org/k-largestor-smallest-elements-in-an-array/
http://www.geeksforgeeks.org/k-largestor-smallest-elements-in-an-array/
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Figure 3.2: Relative size allocated by MinCost to cheap and expensive objects. The
95% confidence intervals are shown.

price ratio between the cheap and the expensive link. 2 Note that the scenario
is also equivalent to having more than three links, whose prices fall in the set
{0, 1, π}, since the problem formulation (3.17)-(3.22) does not change in this
case.

We consider a realistic Internet-scale catalog [110], consisting of |O| =
107 objects whose popularity obeys to Sec. 3.4.1 with exponent values α =
{0.8, 1.2} [108], while the total cache budget is K = {102, 103, 104} objects.
For each configuration we generate 40 scenarios. In each scenario, objects are
assigned to each external link with 0.5 probability, so that an object can be
reachable through more than one link. If there are unassigned objects, each
of them is uniformly assigned to one of the links. We then compute the 95%
confidence intervals shown in the plots. In each experiment, we calculate the
cost-optimal configuration using the MinCost algorithm, obtaining an optimal
total cost Ccost (and a corresponding hit-ratio Hcost). We then calculate the
hit-ratio-optimal configuration using the MaxHit algorithm, obtaining an op-
timal hit-ratio Hhit (and a different cost Chit). We finally define the hit-ratio
loss as

(Hhit −Hcost)/Hhit (3.24)

and the cost saving as
(Chit − Ccost)/Chit (3.25)

respectively. The former expresses how much the hit-ratio degrades in the Min-
Cost with respect to the MaxHit configuration. The latter, instead, gauges
the cost savings of MinCost that are lost in the MaxHit solution.

3.4.3 Price Breackdown

We analyze how the content cached by MinCost varies depending on the price
ratio π. As expected, MinCost does not cache objects retrievable through the

2The range of π is in accordance to Sec. 3.3 of [167], Sec. 4 of [157] and Sec. 2 of [127].
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Figure 3.3: Numerical results: (a) cost saving, (b) hit-ratio loss and (c) cache size as
a function of the price ratio π

free peering link lfree, while it caches more the objects that are more expensive,
i.e. the ones that lie behind more expensive links. Fig. 3.2 shows the percentage
of cache budget used to store cheap objects (retrievable through lcheap but not
lfree) and expensive objects (only retrievable through lexp). The overall results
depend on a combination of orthogonal factors such as prices, content popularity
and content availability behind each link.

At first, observe that each object may in theory be reachable through both
links. Proposition 1 ensures that, in this case, the copy on the most expensive
link is never used. This implies that the cheap link lcheap is more exploited since
it is used to retrieve the objects that it is the only one to provide, as well as
the objects that are provided by both links. On the contrary, lexp is used only
to retrieve objects that it is the only one to provide. As a consequence, more
objects are retrieved through lcheap rather than lexp. For this reason, for small
values of price ratio, meaning that object prices are close to be homogeneous,
a non-negligible cache size is used for cheap objects, showing, as expected, that
cache sizing is impacted by content availability more than by prices. On the
contrary, when prices’ heterogeneity grows, its influence prevails: the cache
allocated to expensive objects noticeably stands out. In this case, the cache
allocation is driven by prices more than by content availability. As for the
content popularity impact, while Fig. 3.2 only shows the results for α = 1.2, we
verify that for α = 0.8, the trend remains the same, but the difference between
the cache space allocated to cheap objects and the expensive objects is more
evident: the less the skewness in the popularity, the more the cache sizing is
impacted by the prices.



3.4. NUMERICAL RESULTS 61

 20

 25

 30

 35

 40

 30  35  40  45  50  55  60  65  70

C
o
st

 F
ra

c
ti

o
n
 (

C
F

) 
[%

]

Hit Ratio (HR) [%]

MIN-COST

MAX-HIT

Figure 3.4: Hit ratio vs. cost trade-off. Values are numerically computed over 20
instances of a scenario with catalog size |O| = 105, Zipf exponent α = 1, objects
uniformly distributed across the free, cheap and expensive links, price-ratio π = 10
and overall cache storage is K = 103. Each arrow is relative to a single instance
and shows how cost fraction and hit ratio change when switching from MaxHit to
MinCost .

3.4.4 Hit Ratio vs. Cost Tradeoff

In Fig. 3.3 we depict the cost saving and the hit ratio loss defined in (3.25) and
(3.24). From Fig. 3.3-(a) we observe that, as the price ratio increases, optimizing
the cost enables cost savings of up to 30%. As an expected side effect, this
induces a loss of caching efficiency in terms of cost-blind metrics (i.e., the hit-
ratio) up to 60%. Otherwise stated, if an ISP wants to get economical benefits
from the use of caches, hit-ratio optimization must be a secondary objective:
indeed, a loss of hit-ratio efficiency can translate into significant gains in terms
of cost savings. Moreover, this holds especially when the external links are very
heterogeneous in terms of prices (which we expect to be the common case), since
the cost savings increase as the price ratio increases.

Note that both cost savings and hit-ratio loss consistently increase with the
popularity skew (from α = 0.8 to 1.2). In addition, the cost savings also increase
consistently as the total cache size K increases from K = 102 to K = 104 (see
the different curves in the plot). Intuitively, this means that when the cache
budget is high, the operator has more freedom in its allocation, and the potential
gains are larger; as a consequence, choosing the right cache strategy is crucial
for attaining these potential gains. On the other hand, the hit-ratio loss is quite
unaffected by K (Fig. 3.3-(b)).
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To better illustrate the trade-off, we introduce the cost fraction CF of a
caching strategy (either MinCost or MaxHit ) as the ratio between the cost
incurred by that strategy and the cost incurred by a cache-less system in the
same scenario. Based on (3.15), we can easily compute:

CF ,

∑
i∈O(1− xi) · λiπi∑

i∈O λiπi
(3.26)

The MaxHit vs. MinCost trade-off is illustrated in Fig. 3.4, for the
scenario described in the caption. As previously observed, there is an inherent
variability across instances of the same scenario, which is tied to the different
breakdown of the objects among external links in each instance. Results clearly
show that cost fraction and hit ratio are conflicting goals: specifically, the arrow
implies that a cache fraction loss is necessary to achieve a cost reduction gain
in the corresponding random instance of the considered scenario.



Chapter 4

An Online Distributed
Policy for Cost Reduction

In the previous chapter we showed the cost vs. hit-ratio trade-off and the ben-
efits of targeting cost-minimization instead of classic hit-ratio maximization.
Nonetheless, the results were obtained through an optimization model under
idealized conditions, first of all assuming that we know in advance the request
rates λi of all objects i, and thus that it is possible to choose offline the ob-
jects to cache based on this knowledge. Unfortunately, this information is not
available in reality and the greedy algorithm described in Sec. 3.3 is not ap-
plicable. For this reason, we propose in this chapter an on-line caching policy
which approaches the optimal MinCost solution inferring the popularity of the
objects online, with no a priori knowledge. Moreover, in the previous chapter
we coarsely considered the caching system as a whole, without taking into ac-
count that it can be composed of different caches, deployed in different nodes
and connected in a certain topology. In other words, we were only interested in
establishing whether to cache or not an object in such caching system, without
looking at where to store it. What we propose here is a distributed policy that is
run by each node, autonomously and only leveraging local information, and we
study the overall cost saving it brings. Our policy is essentially a metacaching
policy (see Sec. 2.3.2) that we call Cost-Aware (CoA) policy.

The chapter is organized as follows. In Sec. 4.1, we describe our metacaching
policy. In Sec. 4.2, we give its probabilistic model and evaluate its accuracy com-
paring it with simulation results. In Sec. 4.3 we simulate CoA to find the benefits
achieved and comparing them with the theoretical optimal bounds found in the
previous chapter. In Sec. 4.4 we show that performance is robust under different
scenarios. Finally, in Sec. 4.5, we discuss the limitations that must be faced in
a real implementation and evaluate their impact in the performance. Tab. 2.3
summarizes the notation used throughout this chapter.

The notation used in this chapter is included in Tab. 2.3.

63
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4.1 The Metacaching Algorithm

We propose a novel Cost-Aware (CoA) design to achieve significant cost reduc-
tion, which we illustrate with the help of Fig. 4.1. As explained in Sec. 2.3.2,
any new object arriving at a caching node is either cached or discarded, ac-
cording to a metacaching policy (Sec. 2.3.2); in the first case, a replacement
policy is triggered to select a previously cached object to be evicted. We inject
cost-awareness in the metacaching policy. The motivations behind this choice
will be clearer after having described our design and will be discussed later in
this section.

4.1.1 Algorithm Parameters

Intuitively, to reduce costs, a cache has to not only store the most popular
objects (which results in caching efficiency) but also and especially those that
are obtained through the most expensive links (which results in cost reduction).
Otherwise stated, the aim of cost-aware caching is to bias the caching process
toward more expensive objects. However, it is not to be forgotten that, beyond
the price of individual links, content popularity still plays a paramount role.
Indeed, popularity and cost factors are independent and may even conflict: e.g.,
caching expensive but unpopular objects may not bring effective cost reductions
while, on the other hand, caching cheap but very popular objects may be worth-
while. This is due to the fact that the cost depends on the product of price and
popularity λiπi (3.15). Therefore, our goal is to consider price differences, but
still differentiate between popular and unpopular objects. We suppose in this
chapter that each object is retrievable through one and only one external link
and that the price of the object corresponds to the price of that link. 1 The
probability that, considering a generic object, it lies behind link l is s(l).

For this purpose, we design a modular metacaching policy, which is the
composition of a popularity-based module and a price-based one, represented
by the functions ψ(·) and β(·), respectively. The composition of the two modules
is achieved via product of the two functions, i.e. a new object is accepted with
probability ψ(·)β(·). This composition permits to jointly weight popularity and
price. ψ(·) can be any of the classic metacaching policies in the literature. We
consider a constant

ψ(i) = ψ̄,∀i ∈ O. (4.1)

We design the function β(·) whose specific role is to weight price, biasing the
acceptance toward expensive objects, as follows:

β(i) =
M∑

l∈L[π(l)]κ
· πκi (4.2)

The parameters M and κ have the following meaning:

1In case an object is potentially retrievable through more than one external link, we will
consider only the cheapest one, ignoring the others, according to what we have found in
Proposition 1.
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• The constant M is set such that the average value

β̄ ,

∑
i∈O β(i)

|O|
(4.3)

is 1. This guarantees that the average acceptance ratio is

ψβ ,

∑
i∈O β(i) · ψ(i)

|O|
= ψ̄ · β̄ = ψ̄ (4.4)

This means that the average accetance ratio is not modified by function
β(·). Otherwise stated, the cache accepts, on average, the same fraction
of objects as without the cost-aware module β(·), with the only difference
that it preferentially stores the expensive ones. Additionally, this ensures
that convergence rates of Prob and CoA are the same. In the single cache
case, the normalization factor can be computed as:

M =

∑
l∈L[π(l)]κ∑

l∈L s
(l) · [π(l)]κ

. (4.5)

• The exponent κ > 0 is used to tune the relative importance of popularity
vs. price in the decision: indeed, the larger κ, the larger the skew toward
expensive objects, while for κ < 1 the importance of price in the decision
diminishes.

We observe here that classic metacaching policies approximate MaxHit (3.18),
trying to infer λi by means of function ψ(·) in order to cache the (locally) most
popular objects. CoA approximates MinCost (3.17), trying to infer λiπi by
means of composition ψ(·)β(·) in order to cache the objects that would generate
the highest expenditure. For simplicity of notation, by plugging (4.5) into (4.2)
we can rewrite the CoA function as

ψ(i)β(i) = Wπκi (4.6)

where

W ,
ψ̄∑

l∈L si · [π(l)]κ
(4.7)

is a constant that depends on both uniform probabilistic decisions (numerator)
as well as on object cost (denominator).

At network set-up time, we estimate the constant W . Then, every time a
new object i crosses a cache, we consider its price πi and we cache it with the
probability computed in (4.6).

4.1.2 Design Choices and Properties

We now motivate our design choices and pinpoint the peculiarities of our meta-
caching policy.
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Figure 4.1: Cost-aware caching design, plugged within the metacaching policy of the
caching component.

Metacaching vs. Replacement policies. We motivate now why we introduce
cost-awareness in the metacaching policy rather than in the replacement policy.
First, a properly tuned metacaching policy avoids the proliferation of irrelevant
content along multiple caches, which would happen in case any new content were
systematically accepted in the cache, like with Leave a Copy Everywhere (LCE),
and which would lead to an excessive number of repeated evictions. Therefore,
deterministic [81, 88] or probabilistic [87, 88, 168, 109] metacaching policies, dif-
ferent from LCE, are preferable. By extension, it is better to bias the acceptance
toward more expensive objects in the cache, than to bias the replacement process
toward cheaper objects a posteriori: in the latter case, each cache should keep
additional state information of the cached objects (i.e., the price metadata),
which it would need to manage at line speed (e.g., perform complex computa-
tions that take into account the price of all the cached objects, to select the
cheapest one to evict). On the contrary, a cost-aware metacaching strategy, like
the one we propose, is simpler to implement since it is lightweight and stateless
(as price-related information can be inserted in some packet header field once
it enters the ISP boundary and exploited independently by any cache along the
path), allowing the rest of per-object operation to remain simple (e.g., Least
Recently Used or random eviction policies).

Implicit distributed coordination. In order to efficiently exploit the total cache
budget contained in a network of caches, a form of coordination is required,
to prevent, for example, a node to store objects already stored by some other
neighbors. Contrarily to mechanisms realizing explicit coordination by message
exchange over the control plane [115, 114], which has the downside of complexity
and communication overhead, our mechanism achieves distributed coordination
with implicit coordination. In other words, in our approach no information is
exchanged over the control plane, but rather a minimum amount of information
–i.e., a price indication– is carried via packet headers directly in the data plane.

In practice, only border routers, i.e. the ones that are in front of the external
links, know the link through which objects enter the ISP domain, and can thus
tag the packet with a price indication. All the other caches along the path
then take independent caching decisions based on the price information tagged
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by border routers. This price indication represents a negligible overhead, since
it is marked only once and it travels together with the object, requiring the
modification of only few bits of the header, as we will show in Sec. 4.5.

No additional cost. From the simplicity of our design, it follows that deploying
CoA does not imply higher installation and operation costs than a classic caching
policy (e.g., LCE+LRU). Therefore, the whole saving in the operational costs
comes for free, i.e., it does not require an increase in the capital expenditure, as
is often the case.

4.2 Che’s Approximation Model

Abstract models of caches and network of caches have been present in the lit-
erature since many years [169, 170, 171, 172, 173, 174, 175], under the IRM
hypothesis (Sec. 3.4.1). In recent years, a theoretical cache model, called Che’s
Approximation [176, 163] has imposed over the others thanks to its simplicity.
Initially proposed to describe a simple LCE+LRU (Sec. 2.3.2) cache, it has been
extended to the case of Prob and other cases by Leonardi et Al. [88]. We extend
their work to model our Cost-Aware Caching.

We first restrict our attention to the subset O′ ⊆ O of objects having a
chance to be cached, i.e. the objects whose price is non-zero, ignoring thus
all the objects retrievable through a free link. By definition, the probability
that CoA accepts an incoming object i ∈ O′ in the cache is ψ(i)β(i) = Wπκi .
Considering a single CoA cache of capacity c and whose incoming requests respect
the Independence Reference Model (IRM), the hit probability for object an
i ∈ O′ is:2

E(hi) =
Wπκi ·(1−e

−λiTc )

e−λiTc+Wπκi ·(1−e−λiTc )

= 1−e−λiTc

1−e−λiTc
(

1− 1
Wπκ

i

) (4.8)

where the characteristic time Tc is computed as in [176] by imposing that∑
i∈O′ E(hi) = c. Notice that (4.8) degenerates into the Che’s approximation

of Prob (formula (5) of [88]) ) for κ = 0, i.e., when cost information is ignored.
Clearly, for objects i ∈ O \ O′ retrievable through a free link, we instead have
E(hi) = 0. The overall hit-probability, i.e. the expected hit ratio, can then be
obtained over the whole catalog as:

E(H) =
1∑

j∈O λj
·
∑
i∈O

λi · E(hi) (4.9)

whose numerical solution is depicted in Fig. 4.2 alongside that of LCE [176]
and Prob [88] models. As for LCE and Prob, comparison against simulation
exhibit an excellent match (for CoA, we additionally remark for both model and
simulation the variability tied to the catalog split early noted in Fig. 3.4).

2The formula can be easily obtained like (5) of [88]
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Figure 4.2: Model vs. simulation. Average hit ratio values over 20 instances of the
default scenario (see Tab. 4.1) and 95% confidence intervals are depicted. The average
acceptance ratio for both Prob and CoA is ψβ = ψ̄ = 1% and κ = 1.

4.3 Simulation Results

We now assess the benefits of our proposed cost-aware design against cost-
blind and cost-optimum caching strategies. On the one hand, comparison with
cost-blind caching schemes can be viewed as a direct measure of the return of
investment following caching deployment, and more precisely sizes the additional
gain that can be attained by a cost-aware architecture. On the other hand,
comparison with the optimal cost strategies allows us to gauge the extent of
possible improvements in our design.

In this section we define the classic strategies that we contrast with CoA

(Sec. 4.3.1), the simulation set up and the evaluation metrics (Sec. 4.3.2). We
start our evaluation by considering the default scenario to cross compare, at
a glance, all the above strategies (Sec. 4.3.3). We next expose the deficiencies
of cost-blind strategies (Sec. 4.3.4) and finally verify that the CoA saving is
consistent over real ISP topologies as well as in synthetic topologies generated
with the Watts-Strogatz model (Sec. 4.3.5).

4.3.1 Terms of comparison

We contrast our design against several terms of comparison, which represent (i)
cache-less systems, (ii) traditional caching schemes where price heterogeneity is
not taken into account, (iii) ideal distributed metacaching policies with perfect
knowledge of object popularity and (iv) MinCost achieving provably mini-
mum cost, as in the previous chapter. As the following table illustrates, these
different designs provide an exhaustive coverage.
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Cache-
less

LCE Prob Ideal-
Blind

CoA Ideal-
CoA

MIN-
COST

Cost-aware X X X X
Implementable X X X X

Cache-less system. As naive benchmark, we consider costs incurred by systems
that do not employ any kind of caching. We point out that, other than provid-
ing an upper-bound of the costs incurred by the system, considering a common
reference significantly simplifies the assessment of the relative improvement be-
tween more sophisticated strategies.

Cost-blind caching. Following our design, a natural term of comparison for
cost-blind caching consists in considering state-of-the-art metacaching policies
that ignore the cost of inter-domain traffic (i.e., equivalent to setting β(·) = 1).
The popularity-driven decision component could use LCE, equivalent to setting
ψ(·) = 1 or Prob, where ψ(·) = ψ0, ψ0 being a fixed probability. To avoid
cluttering the pictures, we do not include in our comparison other metacaching
policies available in the literature, like Leave a Copy Down (LCD) [81] or policies
based on distance [168], graph properties [109], etc. Indeed, Prob is a reasonable
term of comparison, representative of state-of-the-art cost-blind decisions, since,
as already explained in Sec. 2.3.2, it tends already toward the optimal hit-ratio-
maximizing allocation, under opportune conditions. Comparison of CoA and
cost-blind Prob strategies can be done on a fair ground, i.e., on the same number
of acceptance decisions as stated in Sec. 4.1.1.

Ideal strategies. We additionally consider two strategies that have perfect knowl-
edge of global object popularity, and that thus constitute an ideal term of com-
parison on the single-cache scenario. Yet, we point out that since this knowledge
is not available in real situations, these policies cannot be implemented and are
introduced here only as benchmarks.

Specifically, the decision whether to cache or not a new object is assisted
by considering the eviction candidate, i.e. the object that would be removed
from cache to make room for the new one. We assume the replacement policy
is Least Recently Used (LRU), and thus the eviction candidate corresponds to
the object that was requested least recently. The new object is accepted only if
it is more “valuable” than the eviction candidate. This is expected to increase
the value of the overall cache content over time. We implement two notions
of value, depending on whether they limitedly consider object popularity, or
jointly consider popularity and link price.

The ideal cost-blind strategy (Ideal-Blind) strives to keep only the most
popular objects, deterministically admitting a new object i only if its arrival
rate λi is greater than the one of the LRU eviction candidate.

The ideal cost-aware strategy (Ideal -CoA), instead, jointly considers the ar-
rival rate and the price of the link through which the object has to be fetched.
The aim is clearly to cache only the objects that are expected to provide the
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largest saving, which happens by admitting only objects whose λiπi is larger
than that of the eviction candidate.

Optimal. We finally consider the minimal cost incurred by the ISP, obtained
via the MinCost strategy. As opposed to the ideal strategies mentioned ear-
lier, which take decisions on each packet arrival and are obtained via discrete
event simulation, the MinCost strategy is obtained via a centralized optimal
solution. A further difference between Ideal-CoA and MinCost is that Min-
Cost basically pre-fills caches, so that it provides a lower bound to the ISP
expenditures.

4.3.2 Scenario Settings and Metrics

To gauge the advantages introduced by CoA, we introduce two metrics beyond
the cost fraction CF (3.26). Specifically, denoting with CX the cost obtained
with policy X, computed as in (3.15), we denote with Potential Saving (PS) the
room for improvement of our proposal, i.e., the percentage of additional saving
that could be leveraged by switching to an Ideal -CoA policy:

PS =
CCoA − CIdeal−CoA

CCoA
(4.10)

We further denote with Achieved Saving (AS) the percentage of expenditure
which an ISP, currently running the state-of-the-art Prob policy, could save by
switching to CoA:

AS =
CProb − CCoA

CProb
(4.11)

To perform a conservative evaluation, we need therefore to set the proba-
bility ψ̄ in Prob, to avoid overestimating the achieved saving. We perform a
preliminary calibration and identify in ψ̄ = 1/100 a value that is favorable to
Prob in our scenarios, which we fix for the reminder of this work.

We point out that, since the average value of the price component is β̄ = 1
by design (see Sec. 4.1.1), the average acceptance ratio is ψβ = ψ̄ = ψ̄ = 1/100
in both Prob and CoA. This ensures a fair comparison: indeed, the differences
in performance cannot be ascribed to a different average cache admission prob-
ability, but are only due to cost-awareness, which is the main object of our
investigation. Additionally, as the number of cache acceptance decisions taken
by Prob and CoA is the same, their convergence speed is the same, despite the
attained saving is different.

As in Sec. 3.4.2, we consider a Local ISP with three external links: a peering
link lfree, a “cheap link” lcheap and an “expensive link” lexp with respective
prices π(lfree) = 0, π(lcheap) = 1 and π(lexp) = π, where π ∈ {1, 2, 5, 10, 100}
denotes the price ratio between the cheap and the expensive link. With slight
abuse of notation, we will refer to free, cheap and expensive objects, depending
on the link behind which they lie. Consequently, we partition the catalog O in
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Table 4.1: Parameters of the scenario. Bold values represent the default scenario used
throughout the chapter.

Parameter # Values
Zipf skew α 3 0.8, 1, 1.2
Price ratio π 5 1, 2, 5, 10, 100

Catalog split s 13 s(l) ∈ {1/3, h/4|h ∈ {0, 1, 2, 3, 4}}∑
l s

(l) = 1
System scale 5 102/104,103/105, 104/106,
K/|O| 105/107, 106/108

Cache/catalog ratio 5 103/105, 103/106,
K/|O| 103/107, 103/108

three subsets Ofree,Ocheap,Oexp the subset of objects lying behind the cheap
and the expensive link, respectively

To denote the breakdown of the objects across the three external links,
we introduce the split vector s , (sfree, scheap, sexp), where sfree, scheap, sexp
are the probabilities that, considering a generic object, it lies behind the free,
the cheap and the expensive link, respectively. An important point is worth
stressing: clearly, even in case that two partitions contain the same number of
objects, e.g. scheap = sexp), their aggregate request rates may differ, as objects
have skewed popularity (i.e.,

∑
i∈Ocheap λi 6=

∑
i∈Oexp λi). We cope with this

imbalance of the aggregate link load resulting from a catalog split vector s by
averaging results over multiple runs.

The parameters we will consider in the simulation campaign are listed in
Tab. 4.1.

4.3.3 Comparison at a glance

In this section, we refer to the default single cache scenario (detailed values are
highlighted with boldface in Tab. 4.1), setting κ = 1 and ψ̄ = 1/100. With
the exception of the MinCost solution, which we compute numerically, all
strategies are implemented in ccnSim. Results can be reproduced by running
the scripts available at the ccnSim website [11].

In the following we report the average results with 95% confidence intervals
gathered from 20 instances of scenario for each setting; the duration of each run
is sized to have statistically relevant results, and statistics are computed only
after the initial transient period needed for the cache hit metric to reach a steady
state. We underline that, even under the same scenario, one instance of the
scenario differs from the other, since each instance is generated using a certain
seed and, at each seed, we have a different distribution of objects across the
external links and a different request sequence (even if with the same statistical
properties). To evaluate the cost-effectiveness achieved by each caching strategy,
we consider the hit ratio and the cost fraction. Note that we already computed
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Figure 4.3: Benefits of cost-aware design. The cost fraction obtained by each strategy
is reported. Achieved and potential saving (expressions (4.11) and (4.10), respectively)
are annotated on the right y axis.

such quantities in (3.1) and (3.26) in previous chapter, directly using the values
λi. On the contrary, referring to LCE, Prob, Ideal-Blind, CoA and Ideal-CoA, we
compute those quantities in a different manner, without using λi directly, but
counting the discrete events, i.e. the number of hits and misses, experienced
during the simulation. In particular:

• The hit ratio H is the fraction of requests that are satisfied by the cache
system.

• The cost fraction CF is the cost achieved by the strategy in question
divided by the cost we would obtain without any cache in exactly the
same instance of the scenario.

Fig. 4.3 shows, at a glance, the cost fraction for cost-blind (left bars) and
cost-aware (right bars) strategies. Our strategy (CoA) brings sizable benefits
over state-of-the-art cost-blind metacaching (about 15% of achieved saving over
Prob), matching the performance of the Ideal-Blind strategy. This means that,
exploiting information already at hand, and that changes over relatively long
timescales (i.e., the prices negotiated with different ISPs), can bring benefits
that are at least as important as those relative to information that is highly
volatile and harder to infer (e.g., object popularity).

To interpret the practical relevance of the CoA benefits, consider the case of
an ISP in which a state-of-the-art caching system is already deployed, which
is tuned in a cost-blind fashion to maximize hit-ratio. If the ISP decides to
switch to CoA tuning, it will save about 15% of the inter-domain traffic cost,
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Figure 4.4: Comparison of cost-aware vs. cost-blind policies: Scatter plot of hit ratio
versus cost fraction, confirming that higher cache hit ratio does not necessarily imply
lower cost under a wider range of policies.

without facing any additional expense. Indeed, while the installation of the
caching infrastructure implies a capital expenditure (CAPEX), our CoA mech-
anism consists in a simple tuning and does not require additional capex. Yet,
CoA offers the ISP a consistent saving in the operational expenditure (OPEX),
which becomes sizable as it accumulates over the years.

At the same time, considering the distance from Ideal-CoA to MinCost
, we see that there is still additional room for improvement (11% of potential
saving), which is however hard to obtain, as it would require knowledge of object
popularity.

4.3.4 Root cause of cost saving

To understand the root cause of the performance gap, we extend the previous
representation of the MaxHit vs. MinCost tradeoff depicted in Fig. 3.4, to
include the LCE (L), Prob (P), CoA (C), Ideal-Blind (B) and Ideal-CoA (I) policies,
which we represent with a capital letter in the scatter of Fig. 4.4. We generate
20 instances of the default scenario and run the different strategies on each
instance. We observe that, despite the low hit ratio, cost-aware policies result in
a lower cost fraction: this confirms that cost reduction does not only come from
cache hit maximization, but is mainly due to price discrimination. This shows
also that the tradeoff discussed when considering optimal strategies (Sec. 3.4.4)
also holds in practical implementations. Similarly to Fig. 3.4, the dispersion in
Fig. 4.4 is caused by the object-to-link mapping randomly generated for each
instance of the scenario.

To further assess the impact of cost-aware caching on the network, in Fig. 4.5
we report the normalized traffic load of the free, cheap and expensive links, i.e.
the number of requests flowing on the link in question, divided by the total
number of requests coming from users. CoA and Ideal-CoA achieve structurally
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Figure 4.5: Scatter plot of hit ratio vs. load (normalized over the aggregate request
arrival rate) on free, cheap and expensive links. Note that cost-aware policies differ-
entiate loads on links with heterogeneous prices.

similar configurations; specifically, they reduce the load on expensive and cheap
links (circles and squares in the figure), while increasing the load on the free
link (triangles), since they both never cache free objects. Note that as the hit
ratio decreases, the load on the free link increases while the loads on the cheap
and expensive links are almost constant: this means that all the additional
miss stream drains into the free link. Finally, Ideal-CoA exhibits better perfor-
mance than CoA, in terms of both hit ratio and cost fraction, due to the perfect
knowledge of object popularity.

While cost-aware policies differentiate link load based on link prices, cost-
blind policies uniformly distribute the load, resulting in overlapping points in the
scatter plot. Note that, while reasonable, this result is not straightforward and
is due to the cache filtering effect: in other words, despite the load in a cache-less
scenario would not be uniform due to the variability of the aggregated demand
in each sub-catalog, the cache equalizes the miss-stream over these links. This is
intuitive, since in a uniform scenario, links with higher demand (before caching)
are those behind which the most popular objects are accessible, thus, they will
be most benefited by load reduction thanks to caching.

To summarize, the price differentiation operated by cost-aware policies per-
mits to cache only the objects that would result in a cost for the operator. This
has two consequences: (i) it reduces cache efficiency in terms of hit ratio but,
on the other hand, (ii) it limits ISP costs thanks to the diminished utilization
of the costly links.
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4.3.5 Performance on realistic network topologies

So far, we have analyzed the performance of a single cache operating with CoA.
In this section, we show that cost reduction is consistent even in a distributed
environment, consisting of a network of caches, each operating autonomously
with CoA. We conduct a simulation campaign on both realistic (as in [108, 118])
and synthetic (as in [112]) network topologies (described in Fig. 4.7 and an
example of which is depicted in Fig. 4.6) where, at each run, we attach the free,
cheap and expensive links to randomly selected nodes. We allocate the total
cache space uniformly among all routers (as in [82, 108]) and use the default
values for the other parameters (bold values of Tab. 4.1). We consider two
forwarding strategies:

• Shortest Path Routing (SPR): the path traversed by a request is the short-
est between the request source and the egress router. The egress router is
the one attached to the external link which gives access to the requested
object.

• ideal Nearest Replica Routing (iNRR) [108]: if there exists a cache that is
storing the requested object, and it is closer than the egress router, the
request is sent to that cache.

With SPR, an interest can be matched only with the copies cached in one of the
nodes along the shortest path. Therefore, a content may be downloaded through
an external link even if a copy is present inside the network, which happens
whenever the cached copies lay off the shortest path between the requestor
and the repository. Due to the increased redundancy, and reduced efficiency in
using a fixed cache space budget, we expect cost reduction in the SPR case to
be smaller than that estimated in the previous section on a single case scenario.

This limitation is overcome by iNRR [108], which is able to exploit all the
copies stored in the network. Even though iNRR is ideal, since it would require
the knowledge of the objects cached in all the nodes, it can be easily approxi-
mated [82] in caching and is thus worth considering. Opposite to the SPR case,
we expect the iNRR cost reduction to be in line with the one estimated in the
single cache case.

In complex topologies, interesting mutual effects among nodes arise, whereas
they are not observable when considering a single node. In particular, in the
distributed case there is a mismatch between the global popularity of any object
vs. its local popularity which accounts only for the requests received for that ob-
ject by a specific node. In particular, the local popularity of an object observed
by a node depends on (i) the routing policy, since not all the requests pass
through that node and (ii) the cache filtering effect, due to cache hit at neigh-
boring nodes. It follows that Ideal-Blind and Ideal-CoA policies are not effective
in these scenarios, as they base their decisions on global object popularity.

We therefore exclude Ideal policies from the analysis of this section, and
limit our attention to comparing policies (namely, probabilistic cost-blind vs.
cost-aware), under two routing schemes (namely, SPR vs. iNRR) on a range of
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Figure 4.6: Geant topology. Node size is scaled based on their contribution to the
overall saving when Prob (a) or CoA (b) is used. Objects are retrievable through the
links connected to the nodes labeled with 0, $ and $$$, which are free, cheap and
expensive, respectively.

both real and synthetic topologies. Fig. 4.7 illustrates the saving obtained in five
real topologies and synthetic topologies, generated with Watts-Strogatz model,
matching Geant’s characteristics. The achieved saving amount to 7.5% (4.7%)
on average with iNRR (SPR). These results suggest that the achieved reduc-
tion is consistent even in realistic networks of caches, the size of the reduction
depending on the topology. The advantages of CoA over Prob also depend on
the forwarding strategy and are more evident with iNRR, as expected. Another
interpretation of the SPR vs. iNRR performance gap can be given anticipating
that our sensitivity analysis will show gain to grow with the cache space (see
Fig. 4.12 in Sec. 4.4.5): under this light, the gap follows from the fact that
requests can leverage all the cache space under iNRR, while only the fraction
of cache space included in the shortest path is exploitable with SPR.

Finally, in order to quantify the contribution of each node to the overall
saving under the Prob vs CoA policies, we define the value of a cache node ν
as vν =

∑
i∈Cν λi · πi, where Cν is the set of objects stored by node ν, which

is clearly the cost absorbed by that node. Fig. 4.6 depicts the (rescaled) cache
value averaged over 20 simulation runs. Note that, when Prob is used, the
majority of nodes has a small cache value: on the contrary, CoA tends to equalize
cache values, allowing each node to give a substantial contribution to the overall
saving (despite topological constraints, e.g., nodes being closer to more valuable
content, still have a clear impact).
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Figure 4.7: Achieved saving on different topologies. 95% confidence intervals are
reported. The table reports the characteristics of the topologies.

4.4 Sensitivity analysis of cost-aware design

The previous sections have delved into benefits of cost-awareness into a sensi-
ble yet specific scenario. We now extend the reach of the above findings by
showing that CoA benefits are robust and consistent in a wide range of condi-
tions – Overall, we performed over 4000 simulation runs, accounting for O(1010)
requests.

Specifically, we perform a sensitivity analysis of scenario parameters that
are external and, in Sec. 4.4.6, we show benefits to be smoothly varying with
respect to internal CoA knobs, such as the κ parameter. We anticipate that our
proposed Cost-Aware scheme provides a consistent and robust saving in all the
considered network scenarios.

For what concerns evaluation scenarios, there are many factors that are un-
known at best, which will likely change in unpredictable manner, and that are
not under the control of either the manufacturers or the ISPs. We therefore per-
form a thorough sensitivity analysis of the CoA performance on scenarios other
than the default one investigated earlier. Tab. 4.1 reports the parameter values
we consider in this section. For the sake of simplicity, since CoA performance
under state-of-the-art iNRR routing is consistent with that of the single cache
scenario, in this section we limitedly consider the latter.

Clearly, each parameter concurs in determining the CoA performance: e.g.,
we expect the achieved saving to be marginal for very low skew values (α),
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or when most of the catalog is accessible only through the most costly link, or
when the cache is too small, etc. The impact of these parameters is summarized
in Fig. 4.8, which represents the mean value of the achieved vs. the potential
saving (Sec. 4.3.2) and their standard deviation obtained by making the single
parameters vary within their respective domains. We see that the gains resulting
from biasing the cache decision policy along the cost dimension are consistent
over all the parameter variations: on average, the achieved saving over Prob is
13%.

Hereafter, we investigate how each single parameter of the scenario impacts
the CoA performance. If not otherwise stated, each configuration is obtained
starting from the default one (see bold values in Tab. 4.1) and varying only the
parameter under analysis. Each configuration is evaluated providing the mean
value of saving and the 95th percentile over 20 runs.

4.4.1 Impact of catalog split

At each simulation run, we place each object behind one of the three external
links (free, cheap or expensive), on a probabilistic basis with s(l) the probability
that an object is assigned to link l. As a consequence, the catalog is split into
free, cheap and expensive objects: we distinguish pessimistic scenarios in which
at least half of the catalog is behind the expensive link, optimistic scenarios in
which at least half of the objects are free, and intermediate scenarios.

Fig. 4.9 represents the cost fraction in 10 different scenarios, each character-
ized by a catalog split vector s. The cost saving achieved by CoA over Prob is
reported besides the arrows. As expected, cost-blind policies are insensitive to
the catalog split, since they treat objects as they all had the same value. This
is why in Fig. 4.9 their cost fraction is constant (with the exception of a slightly
higher cost fraction in the pessimistic scenarios, which is due only to the fact
that they are less favorable). On the contrary, the impact on cost-aware policies
is evident. CoA performs better when a considerable part of the catalog is free
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Figure 4.10: Impact of price heterogeneity on cost fraction. Arrows indicate the saving
achieved by CoA over Prob.

or cheap: in this case, the achieved saving goes from 8% up to 27%. When half
of the catalog is behind the expensive link, cost reduction is more modest, and
this is due to the fact that there are inherently no gains to be exploited.

4.4.2 Impact of price heterogeneity

The price ratio π = πexp/πcheap is the ratio of the expensive over the cheap link
prices: the larger π, the higher the heterogeneity of the external link prices. We
consider values of price ratios ranging from 1 to 10, in line with values reported
by both [157] and [167], who gathered information from publicly available data
and from interviews with operators, respectively. We plot the cost fraction in
Fig. 4.10, where the arrows report the achieved saving of CoA over Prob. For
π = 1, cheap and expensive links have the same price: therefore, cost-aware
policies achieve cost reduction only by avoiding to cache free objects, while the
other policies tend to blindly cache them. The cost reduction of cost-aware
policies becomes more evident as price heterogeneity increases: while cost-blind
policies are insensitive to price ratio, cost-aware ones leverage it. Contrarily
to [111], we argue that to reduce the ISP costs it does not suffice to blindly
reduce inter-ISP traffic across external links, since price heterogeneity plays an
important role and must be exploited. In order to depict an asymptotic behavior
of the cost saving, we include in our analysis a price ratio of 100, showing that,
already for practical π = 10 values, our CoA proposal gets most of the asymptotic
benefits.

In addition, we observe that, for high price ratios, CoA equals or outperforms
Ideal-Blind. It is interesting to underline that this holds even if CoA requires
only the knowledge of the objects price (which changes very slowly in time and
is easily traced by ISPs, and thus of practical use) as opposed to Ideal-Blind
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Figure 4.11: Impact of popularity skew: (a) Cost fraction of Prob and CoA and
(b) achieved (AS) and potential (PS) saving, as defined in (4.11) and (4.10).

that requires a perfect and a priori knowledge of the popularity (which changes
rapidly and is very difficult to infer properly, and thus impractical to exploit).

4.4.3 Impact of popularity skew

We study how cost reduction is impacted by the popularity skew of the catalog.
We let the Zipf exponent α vary along the range of values that are reported in
recent work employing measurement from either a global CDN [108] or a local
PoP of an ISP [177]. As expected, increasing the popularity skew plays in favor
of caching, i.e. both Prob and CoA reduce their cost fraction, which can be seen
in Fig. 4.11-(a).

Nonetheless, CoA consistently outperforms Prob. Indeed, even if the cost
fraction of Prob decreases for an increasing skew, the CoA saving over Prob in-
crease further: this clearly emerges from Fig. 4.11-(b), and is due to the fact that
the denominator of the achieved saving (4.11) becomes smaller. Additionally,
we see that the potential saving saturates after α > 1, meaning that CoA is able
to efficiently take advantage of the favorable conditions to caching represented
by the high popularity skew.

4.4.4 Impact of cache-to-catalog size ratio

We next verify gain dependency on the relative scales of the cache vs. cata-
log sizes. We fix the cache size K = 103 and make the catalog size vary in
{108, 107, 106, 105}, thus getting, respectively, cache-to-catalog size ratios vary-
ing in the 0.01% to 1% range, in line with [108, 88, 82].

Results reported in Fig. 4.12-(a) show that the reduction achieved by CoA

increases with the cache-to-catalog size ratio: this means that the larger the
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Figure 4.12: Impact of system scale and cache-to-catalog size ratio: Achieved saving
of CoA over Prob.

cache budget available for the ISP, the more attention is worth paying to its
management, as the attainable cost saving is larger. The iNRR gain over SPR
routing policies is partly explained by the same observation.

4.4.5 Impact of system scale

Finally, maintaining the cache-to-catalog size ratio size fixed to the default value
K/|O| = 10−2, we change the scale of the simulation by varying simultaneously
the cache size and the catalog size. The considered catalog sizes are represen-
tative of content providers of different dimension, as Video on Demand services
or Youtube, and are based on previous work in literature [178, 179]. Results
summarized in Fig. 4.12-(b) show that the achieved saving diminishes as the
scale increases: yet, from the smallest to the largest scale (102/104 to 106/108),
gains remain consistent (17% to 11%).

4.4.6 Impact of CoA Settings

As discussed earlier, for an efficient cost reduction the item worth should jointly
weight popularity and price: the CoA parameter κ permits to tune this tradeoff
giving more weight to popularity (low κ) or to price (high κ). It is thus impor-
tant to perform a sensitivity analysis of κ, to assess to what extent its tuning
is crucial for the correctness of CoA operation and to achieve the gain shown so
far.

Fig. 4.13 illustrates the impact of κ on the achieved and potential saving,
for different scenarios and price ratios. In particular, Fig. 4.13-(a) evaluates the
impact in an optimistic scenario characterized by the prevalence of free objects
( 1

2 ,
1
4 ,

1
4 ), a uniform scenario ( 1

3 ,
1
3 ,

1
3 ) and a pessimistic scenario in which most of

the objects are behind the expensive link ( 1
4 ,

1
4 ,

1
2 ). In Fig. 4.13-(b) the impact

is measured varying the price heterogeneity, by letting π vary in {2, 10, 100}.
Briefly, we observe that the value κ = 1 guarantees a good performance in
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all different conditions: indeed, (i) the achieved saving over Prob is close to
the maximum value and (ii) the potential saving over Ideal-CoA is close to the
minimum. In more details, from Fig. 4.13-(a) we observe that, even for small
values of κ, price discrimination brings sizable gains over completely blind strate-
gies. Second, the parameter κ effectively tunes between three regimes (a mostly
popularity-driven regime, a balanced one and a mostly cost-driven regime). As
expected, gains are larger in the balanced regime (highlighted in gray in the
picture), as it is the one that better jointly weights popularity and price, better
inferring λiπi. Finally, while largest gains are achieved by κ ≈ 1, we also gather
that performance smoothly varies with κ, so that its setting is not critical. Sim-
ilar considerations hold by fixing the catalog split ( 1

3 ,
1
3 ,

1
3 ) and varying the price

ratio in Fig. 4.13-(b).

4.5 Implementation Constraints

Our metacaching policy requires to tag incoming objects with the information
about the price of the external link crossed by the object (Sec. 4.1.2). This
tagging operation is performed by the border routers, i.e. the routers to which
external links are attached.

We outline two possibilities to represent cost-related information in the data
packets carrying objects: (i) to use a simple but rigid syntax, using a fixed-size
field of a standard packet header format versus (ii) using a more complex but
flexible syntax as Type Length Value (TLV) encoding.

Both implementations have pros and cons: experience with TCP/IP tells
that while fixed-size fields are simpler (thus, faster) to handle, they also scale
badly over time, and tend to become critical resources (e.g., IP TOS field).
Moreover, while mechanisms to circumvent these limits exist (e.g., IP options),
however they happen to be rarely used in practice. Conversely, flexibility (e.g.,
of TLV) comes at a price of increased complexity: historically, following the
principle of pushing complexity to the edge, fixed framing has been preferred for
lower layers of the protocol stack, which need to be treated within the network
core, relegating syntactically more expressive formats to the application layer.

For our purpose, both solutions are in principle possible. For the sake of
simplicity, so far we have implicitly assumed that border routers can tag pack-
ets with arbitrary information. However, this may not be true in practice, as
the information bits available to express price differences may be limited. It fol-
lows that the architectural design should be stress-tested against such imposed
limitations.

In order to do so, we set the link prices of the free, cheap and expensive
link as πfree = 0, πcheap = ζ, πexp = 10 and we make ζ vary in 1, 2, . . . , 10.
Effects are expected to be non trivial: for instance, when a single quantization
bit is used (binary decision), objects of the cheap link are not cached (as if
they were attainable through the free link) when ζ < 5, and are instead cached
with the same probability of expensive objects when ζ ≥ 5. Additionally, the
magnitude of the impact, and not only the frequency of errors in the decision
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process, also depends on ζ. We thus represent the average cost fraction loss
(with standard deviation) in Fig. 4.14 for different amount of quantization bits
and ζ values w.r.t. the case when no quantization is applied: it can be seen
that the performance degradation is less than 1% (0.1%) with 2 (4) quantization
bits, which is an encouraging result.
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price), for different catalog splits (a) and different price ratios (b).
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Summary

In this part, we have tackled a fundamental question overlooked in current
landscape of network caching research: namely, the reduction of operational
costs as consequence of the reduced load on transit links due to caching. This
sheds new light on the caching problem, which is classically devoted to the
optimization of the hit ratio or other network related metrics. We show that
this classic approach may not be effective in optimizing more practical metrics,
the inter-domain traffic cost, in our case. Indeed, there is an inherent trade-off
between hit-ratio maximization and cost minimization and thus classic caching
cannot bring all the potential cost-saving.

We therefore design cost-aware mechanisms and we show sizable gains over
traditional cost-blind mechanisms under a large number of settings and network
topologies. Our results show that introducing a caching bias toward more ex-
pensive objects is a simple, scalable and robust solution, providing a significant
cost saving at practically no additional complexity.

The caching mechanisms proposed in this part of the thesis are particularly
tailored for CDNs and ICNs. As for the applicability to CDNs, we have to
consider that our proposal requires object replication based on the ISP’s goal
of inter-domain traffic cost reduction. This is a reasonable assumption when
considering CDNs operated by ISPs [59] or collaborating with them [155], so
that our proposal can also fit this purpose. As concerns ICN, requirements for
line of speed operation pose additional constraints, creating the need for simple
yet effective solutions – challenge that we believe to have successfully tackled in
this work.

While this part advocates considering economic implications of caching as
first class network caching citizen, it does so by simplifying the reality: indeed,
we are well aware that other aspects behind the monetary cost of inter-domain
traffic could be taken into account. These aspects include for instance the
latency incurred by users (QoE), the traffic flowing inside the ISP network or
to the repository (QoS), which are the very same aspects we decided to ignore
in the first place. Yet, while these issues are commonly studied in the literature
[114, 115, 116, 59, 118, 108, 112, 109, 111, 82], the economic aspects addressed
in this chapter are less common. As such, this part aims primarily at raising
interest on this so far neglected aspect, and designing a viable scheme that
achieve cost reduction. At the same time, our proposal is explicitly designed
to be modular, so that refinement of the policies can take into account a more
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holistic view, combining more classical QoS/QoE aspects with the notion of
cost.



Part II

Improving Video Delivery
through Caching
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Introduction to Video
Delivery Caching

The large majority of the Internet traffic currently consists of video delivery.
The related traffic is expected to explode due to increasing demand on the one
hand and in reason of the increasing quality expectations of users. Indeed, at the
Consumer Electronics Show in Las Vegas, “Beyond 4K Ultra HD” technologies
were shown that increase pixel density by 167% [180] over the previous year –
a much faster growth rate with respect to worldwide user population.

Caching video content, with either current Content Distribution Network
(CDN) technologies and their interconnection[181] or more futuristic and per-
vasive Information Centric Network (ICN) architectures, may help containing
this traffic deluge. However, the caching literature has, with few exceptions, fo-
cused on network-centric metrics like hit-ratio, hit-distance, server offload, etc.,
overlooking more important aspects related to the quality of user experience.

More importantly, except for some recent effort, video streaming and caching
have been mostly studied as orthogonal problems, often in different research
communities. Rephrasing the title of [135], caching and video are still not
friends: classic video streaming mechanisms assume that a client downloads a
video from a single source, which is not true in presence of caching, misleading
control loops. Moreover, caching techniques are designed with generic content
in mind, whereas we show in this part that video traffic has peculiarities that
demand for caching mechanisms specifically tailored for it. The most important
of these peculiarities is a different request-to-object mapping assumption: pre-
vious studies assume that a user request can be mapped to a single object, while
a request for a video can be served by providing one of the different representa-
tions of the same video, corresponding to different quality levels, and ultimately
different levels of user satisfaction.

As a first consequence, it is no longer sufficient to choose which object to
cache, but also which of its available representations. Therefore, we add a new
dimension to caching techniques: in addition to the classic object placement
problem, i.e., which object to cache and where, we also consider the representa-
tion selection problem, i.e. which quality representation to cache. As a second
consequence, the bandwidth required to satisfy a certain request is no more uni-
vocally determined by the object identifier, but depends on the quality at which
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we decide to serve that request. ISPs can leverage the possibility of serving the
same request by using different bandwidth amounts to efficiently exploit their
links and adapt to the dynamics of traffic, maximizing user satisfaction at the
same time.

We consider a scenario in which Autonomous Systems (AS) peer together
forming a coalition to collaboratively share their cache resources. We do not
investigate the coalition formation problem, and rather focus on providing a
strategy for the AS coalition to maximize the quality perceived by their users.
Our key contributions can be summarized as follows:

• In Chapter 5 we propose a novel representation-aware Mixed Integer Lin-
ear Program (MILP), which determines the object placement, quality rep-
resentation selection and routing, taking into account video quality in or-
der to maximize users’ experience, in a capacity and cache size-constrained
network scenario.

• The knowledge gained by studying the structure of the optimal solution in-
spires the design of a distributed caching strategy that we present in Chap-
ter 6. We implement it in an event-driven simulator to scale up the analysis
to network sizes of hundred nodes and catalog of hundred million objects.

Our key finding is that, despite the cache deployment considerably helps
in improving user quality of experience, utility maximization can be achieved
by (i) minimizing the number of representations stored per object (to increase
the cache efficiency), and (ii) selecting the most useful representation for each
object (which is at the heart of the representation selection problem). We
thus devise a simple yet effective distributed strategy that: (i) maintains a
single representation per object, and (ii) incrementally improves the quality of
cached objects at each new request, so that the average quality in steady state
is inversely related to the object popularity.

Most of the content of this part is extracted from [15].



Chapter 5

Optimal Video Caching

In this chapter we formalize the representation selection problem that consists
in selecting, whenever we cache an object, one of the available representations.
Then, we study the optimal solution in order to understand which choices must
be made in order to increase the user perception.

In more detail, we describe the system model in Sec. 5.1 and provide the
representation-aware MILP model in Sec. 5.2. We point out and justify the
assumptions behind our model in Sec. 5.3. In Sec. 5.4 we model some policies
which are simpler to realize with respect to the optimal solution. We model them
by simply adding appropriate constraints to the MILP. Finally, in Sec. 5.5 we
numerically evaluate the optimal solution, we compare its performance with the
policies described before and we study the structural properties of the optimal
solution.

5.1 System model

We illustrate the system model considered in our work, with the help of an
example scenario depicted in Fig. 5.1. We consider a set V = {1, 2, . . . ,V} of
Autonomous Systems (ASes), whose interconnection is represented by a graph,
composed of nodes and capacitated arcs. Nodes in the graph (ASes) can act
as content producers (when they are directly connected to some repositories),
transit ASes that merely participate in the content caching and diffusion, or
consumer ASes that additionally generate video requests. Repositories and
caches distributed in the ASes store objects (in particular, multimedia content
and videos), of which different representations (quality levels) exist, belonging
to a discrete set Q. Each of these quality levels is associated to a rate ς [q]

necessary to support and transmit the object at the given quality q, as well as
to a storage space s[q] that is necessary to cache it. AS users issue requests for
videos without specifying the quality representation, given that the model will
find the optimal one.
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Figure 5.1: Example scenario indicating the main variables employed in the MILP
model.

Each AS has upstream links through which data is retrieved from other
nodes and downstream links through which data is sent to users. ASes are en-
dowed with caching capabilities, and can store objects as well as route object
requests/data towards neighbor routers, the repository or clients. To be as gen-
eral as possible, we do not specify the details of the technology that provides
caching capabilities (ICN, CDN, Web proxy, etc.). Each object can be served
at different qualities, which may depend on the network characteristics (link
capacities, bottlenecks) and the clients position, and produce a utility that is
experienced by users. The aim of our work is to determine (i) optimal allo-
cations of objects to AS caches, (ii) optimal quality level(s) to store for each
cached object and to map to each request, as well as (iii) optimal routing strate-
gies, which collectively contribute in maximizing the overall utility perceived by
network users.

5.2 Representation-Aware MILP

We provide now the Representation-Aware model. We summarize the variables
we use in Tab. 5.1. The model is formalized as follows:

max
∑
i∈O

∑
q∈Q

∑
ν∈V

n
[q]
i,νU

[q] (5.1)

subject to:∑
q∈Q

n
[q]
i,ν = ni,ν , ∀i ∈ O, ν ∈ V (5.2)

d
[q]
i,νd

= n
[q]
i,νd
· ς [q], ∀i ∈ O, q ∈ Q, νd ∈ V (5.3)

d
[q]
i,νd

= z
[q]
i,νd,νd

+ w
[q]
i,νd,νd

+
∑

e∈BS(νd)

$
[q],(l)
i,ν −

∑
e∈FS(νd)

$
[q],(l)
i,ν , ∀i ∈ O, q ∈ Q, νd ∈ V

(5.4)
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Parameters of the Model
A Set of arcs
V Set of Nodes (Autonomous Systems, ASs)
O Set of objects
Q Set of qualities

FS(ν) Set of forward arcs (ν, ν′) ∈ A for node ν ∈ V
BS(ν) Set of backward arcs (ν′, ν) ∈ A for node ν ∈ V
b(l) Capacity of the arc l ∈ A
ni,ν Number of requests for object i, in AS ν ∈ V
ς [q] Rate required to retrieve an object at quality q ∈ Q
s[q] Storage space required to cache an object

at quality q ∈ Q
U [q] Utility gained to serve one request for an object

at quality q
Ξi,ν 0-1 Producers reachability matrix

Ξi,ν = 1 if AS ν has a producer for object i ∈ O
(it can serve whatever quality of object o)

cν Max caching storage that can be installed at AS ν
K Max caching storage that can be installed in the

network
beν Max egress capacity for AS ν ∈ V,

beν = max

( ∑
l∈FS(ν)

b(l);
∑
i∈O

ni,ν ·maxq∈Q ς
[q]

)

Decision Variables of the Model

n
[q]
i,ν Number of requests for object i at quality q satisfied

at AS ν

x
[q]
i,νs

0-1 Caching variable, if the source AS νs ∈ V caches

i at quality q

$
[q],(l)
i,νd

Flow on arc e ∈ A for object i ∈ O,

at quality q sent to the destination AS νd ∈ V
d

[q]
i,νd

Rate requested at AS νd ∈ V, for object i at quality q

z
[q]
i,νs,νd

Rate provided by the source AS νs ∈ V, for object i,

at quality q for the destination νd ∈ V, when νs
behaves as a producer (Ξi,νs = 1)

w
[q]
i,νs,νd

Rate provided by the source AS νs ∈ V, for object i,

at quality q for the destination νd ∈ V, when νs

behaves as a cache (x
[q]
i,νs

= 1)

Table 5.1: Summary of the notation used in this chapter.
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z
[q]
i,νs,νd

+ w
[q]
i,νs,νd

+
∑

e∈BS(νs)

$
[q],(l)
i,νd

=
∑

e∈FS(νs)

$
[q],(l)
i,νd

, ∀i ∈ O, q ∈ Q, νs ∈ V, νd ∈ V, νs 6= νd

(5.5)

∑
i∈O

∑
q∈Q

∑
νd∈V

$
[q],(l)
i,ν ≤ b(l), ∀e ∈ A (5.6)

∑
q∈Q

∑
νd∈V

z
[q]
i,νs,νd

≤ Ξi,νs · beνs , ∀i ∈ O, νs ∈ V (5.7)

∑
νd∈V

w
[q]
i,νs,νd

≤ x[q]i,νs · beνs , ∀i ∈ O, q ∈ Q, νs ∈ V (5.8)

∑
i∈O

∑
q∈Q

x
[q]
i,νs
· s[q] ≤ cνs , ∀νs ∈ V (5.9)

∑
i∈O

∑
q∈Q

∑
νs∈V

x
[q]
i,νs
· s[q] ≤ K (5.10)

x
[q]
i,ν ∈ {0, 1} , ∀i ∈ O, q ∈ Q, ν ∈ V (5.11)

n
[q]
i,ν ∈ Z+, ∀i ∈ O, q ∈ Q, ν ∈ V (5.12)

$
[q],(l)
i,ν ∈ R+, ∀i ∈ O, q ∈ Q, νd ∈ V, e ∈ A (5.13)

d
[q]
i,νd
∈ R+, ∀i ∈ O, q ∈ Q, νd ∈ V (5.14)

z
[q]
i,νs,νd

, w
[q]
i,νs,νd

∈ R+, ∀i ∈ O, q ∈ Q, νd ∈ V, νs ∈ V. (5.15)

In particular, objective function (5.1) represents the overall utility experi-
enced by network users, which is maximized by our model. The set of constraints
(5.2) makes sure that all the requests are served at one (or more) quality level(s).
In the problem instances we add a “special” quality level q = 0, which represents
unserved traffic demands: when serving quality q = 0, no bandwidth is required
(ς [q] = 0); moreover, no utility is generated, U [0] = 0. Constraints (5.3) set the
value of the rate requested at AS νd, for object i, at quality q. Such demand
is satisfied in (5.4). In particular, it can be satisfied because: (i) the AS is a

producer for that object (i.e.: z
[q]
i,νd,νd

= d
[q]
i,νd

), (ii) the AS caches the object

(i.e.: w
[q]
i,νd,νd

= d
[q]
i,νd

), or (iii) the AS retrieves the object (i.e.: the sum of flows
on incoming links).

Flow balance constraints are imposed in (5.5) and we bound the arc capacity
in (5.6). Similarly, in (5.7) and (5.8), we limit the maximum emitted flows the
AS sends when it behaves as a producer and a cache, respectively. The overall
caching storage that can be deployed by an AS is bounded in (5.9), and we
extend the same limit to the entire topology in (5.10). Finally, integrality and
non-negativity constraints are imposed in (5.11)-(5.15).

5.3 Discussion

The optimal solution of the MILP can be seen as an offline policy: we take an
optimal decision based on some a-priori knowledge (the input of the MILP) and
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we push it on all the nodes of the network. As such, our offline policy has the
pros and cons already discussed in Sec. 2.3.1. Nonetheless, in this chapter our
goal is not to provide a ready-to-use policy and evaluate it in realistic scenarios.
Our aim here is to give an understanding of the representation selection problem.
What we learn from this chapter will be the base of the next chapter, in which
we devise and online policy and evaluate it in realistic scenarios.

We now discuss the goal of our MILP. While related work usually aims
to minimize delay in order to improve user perception, we focus instead on
maximizing the provided quality for two reasons: i) we want our contribution
to be complementary to this related work, ii) the packet delay can be absorbed
by playout buffers and be invisible to the user. The only exception to this
is when this delay is excessively high or variable, causing high startup times
or rebuffering episodes. This happens in case of congestion. For these reasons,
rather than looking at the delay, we focus on caching content at the right quality,
such that it can be transmitted using the available bandwidth on the path, thus
avoiding congestion.

Another aspect worth underlining is that in today’s video delivery plugins
in the user Web browser select the quality representation to request, while we
assume that ISPs choose the best possible quality to serve its users. We discuss
this assumption in Sec. 2.6.5.

Additionally, we remark that, while a vast literature on video streaming
has focused on congestion control algorithms to make the client choose the
right representation to download, our study focuses on caching and aims at
finding the performance bounds from a more abstract viewpoint. The findings
we provide here should be considered what an optimal caching strategy can
theoretically achieve, supposing a perfect congestion control mechanism at the
bottom. For this reason, we can adopt the snapshot approach, as in other
notable works on video delivery [131].

It is worth noticing that our model can be easily extended to have a fine-
grained representation, considering heterogeneity of video type and user device.
As for the former, it is known that videos with different subjects (sport, movies,
TV shows), even if encoded at the same bit-rate and resolution, are perceived in
a different way[131]. As for the latter, a user watching a video on a smartphone
may be perfectly satisfied with a resolution and a bit-rate lower than the one
demanded by a user using a ultra-HDTV 4K screen. However, this level of detail
is beyond our scope and such directions can be incorporated at a later step in
the model.

5.4 Model of offline AS policies

Jointly deciding the optimal representations that each node should cache and
serve to users is a hard task to be performed by a distributed online strategy, in
which each node makes local decisions without having knowledge of the status
of the rest of the network and the overall set of requests. Nonetheless, our aim,
which we will finalize in the next chapter, is to give a feasible solution that can
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Table 5.2: Model variants implementing natural AS policies: additional constraints
for the MILP model (5.1)-(5.15)

Caching Policy Additional constraint in MILP model

NoCache x
[q]
i,ν = 0

CacheLQ x
[q]
i,ν = 0,∀q 6= LQ

CacheHQ x
[q]
i,ν = 0,∀q 6= HQ

AllQ x
[qh]
i,ν = x

[qk]
i,ν ,∀qh, qk ∈ Q

Partitioned
∑
i∈O

x
[q]
i,ν · s[q] ≤ cν · s[q]∑

q′∈Q s
[q′]

be deployed in a real network, providing a good performance at least close to
the optimal one.

We thus constrain our model to give solutions with a simpler structure and
we verify how far they are from the optimum. The constrained variants of
the model, detailed hereafter, are easier to approximate in distributed, online
algorithms and, as our numerical results will show, some of them exhibit indeed
very good performance, close to optimality in several situations. Thanks to the
flexibility of our MILP model, modeling AS policies is as simple as adding a
single constraint for each strategy.

Such constraints, specified in Tab. II, include: a No Cache strategy, which
never caches videos; CacheLQ and CacheHQ, which exclusively cache the lowest
(highest) quality representation available, indicated with quality level LQ (HQ),
respectively; AllQ, which caches all quality representations for any cached ob-
ject; finally, Partitioned stores the same number of objects for each quality
representation (while their buffer occupancy depends on the quality of the cor-
responding representation). Note that the constraints only concern caching, and
do not force to serve a request with a specified quality representation. For ex-
ample, a HQ video can still be served, even when CacheLQ is employed; in such
case, given that HQ videos cannot be cached, they must be retrieved directly by
a repository and cross all links between this latter and the user. In this work,
we assume that all ASes in the coalition use the same policy, chosen among the
ones described above.

5.5 Numerical Results

This section evaluates the impact of caching on the overall video quality per-
ceived by users, showing the validity of the caching strategies proposed so far.
To this aim, we provide numerical solutions of the MILP model via the CPLEX
12.5 solver. After describing the scenario in Sec. 5.5.1, we investigate perfor-
mance and properties of the proposed strategies in an incremental fashion.

Focusing on a single AS, we first illustrate the advantages of optimal video
caching and the structure of the optimal solution in Sec. 5.5.1. In Sec. 5.5.3
we analyze which fraction of the provided videos are served by the cache and
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which fractions flows through the upstream link and we study the breakdown of
the served quality in the two cases. In Sec. 5.5.4 we evaluate the performance
of the policies introduced in Sec. 5.4 and their structural differences. Moving
to a multi-AS scenario, we finally confirm MILP results to hold on a 10-node
topology in Sec. 5.5.5

5.5.1 Scenario

We consider five quality levels [182] in the set Q as reported in Tab. 5.3. Each
quality corresponds to a given resolution and bitrate, which both increase for
increasing quality levels. We only report the bitrate as this is more pertinent to
our optimization goal: video bitrate correlates to both cache storage space, as
well as network bandwidth. Resolution, instead, does not come into play directly
in the system model, apart from determining a different user perception, which
is accounted for in the utility function.

The utility function must be an increasing function of the provided quality,
since the higher the quality provided to a user is, the better the utility. Moreover,
it must be concave to express the diminishing return in the experience of human
vision when providing improved quality [183]. The exact shape of such an
utility function is still subject to debate, and there is no unanimously accepted
function. Indeed, gathering this function is a hard task that requires intensive
experimentation with real users, which is far from the scope of this thesis. To
gather results that are not tied to a specific function, we consider two shapes
at the broad end of the spectrum of plausible utility functions, tabulated in
Tab. 5.3. Specifically, we define u1(q) as a model with linear return with respect
to the quality: the model likely underestimates contributions of low quality
videos, and does not exhibit diminishing returns [183], so that it is biased toward
high-quality content. We next define u2(q) as a power function with a higher
concavity: this model does exhibit diminishing returns and sits at the other side
of the spectrum as it possibly overestimates contributions of low-quality videos
(notice indeed that u2(q = 1) > 3u1(q = 1)). In the following, we will report
the average system utility as the average per-request utility, i.e. the total utility
as in (5.1) divided by the total number of requests.

Unless otherwise stated, we consider the single AS scenario depicted in
Fig. 5.4: at a logical level, in the cache-stream we include the flows of videos
downloaded from the cache, while up-stream includes the flows retrieved through

Table 5.3: Quality levels and corresponding transmission rates, cache occupancy and
perceived utility (linear/concave).

Quality Rate (Kbps) Utility u1(q) Utility u2(q)

1 300 0.2 0.67
2 700 0.4 0.80
3 1500 0.6 0.88
4 2500 0.8 0.95
5 3500 1 1
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Figure 5.2: Benefits of optimal caching and impact of the utility functions.

other ASes. The cache represents the aggregate of several cache nodes within
the AS, and similarly the up-stream resource represents a single logical link,
aggregating all physical links where the request can be satisfied (i.e., all the
links except the one where the request is coming from).

Also, unless otherwise stated, the catalog comprises |O| = 104 objects whose
popularity conforms to Sec. 3.4.1. The exponent of the Zipf distribution we
consider here is α = 1. The cache space at each AS is sufficient to store 1/100
of the catalog objects at the highest quality, HQ. Observe that the size of each
object depends on its quality, i.e. an object at quality q is sHQ/s[q] times
smaller than an object at the highest quality, with sHQ/sLQ exceeding one
order of magnitude as can be seen in Tab. 5.3.

All links have the same capacity b. We express the number of user requests
as a load factor Υ, i.e. the factor by which we should multiply b in order to
transmit all the requested objects at the lowest quality, LQ. Otherwise stated,
if the load factor is Υ = 1, even if no cache is deployed in the network, we can
satisfy all requests at quality LQ, by fully utilizing the network capacity. Notice,
however, that due to cache space, it makes sense to consider a normalized load
larger than Υ > 1, since part of the endogenous requests can be served from the
cache without consuming upstream bandwidth.

5.5.2 Utility Gains and Structural Properties of
the Optimum

We first start assessing the dependency of our results on the particular per-
ceptual model in the single cache scenario. We contrast two extremes, namely
the optimal solution against the case in which the system is not equipped with
caches (so that this latter can sustain a load at most equal to Υ = 1). The
average utility is shown in Fig. 5.2 for both linear u1(q) and concave models
u2(q): while quantitative results are of course affected by the peculiar function,
qualitative results are instead independent of the utility function considered.
In particular, the improvement of user experience provided by optimal caching
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Figure 5.3: Percentage of requests served at different quality levels, with and without
cache, for a varying load, in the single cache scenario.

Figure 5.4: Single-AS scenario: Videos can be downloaded from the cache (cache-
stream), while up-stream includes the flows retrieved through other ASes.

is notable at high load, where caches at the AS absorb a large fraction of the
requests, alleviating the impact of the upstream bandwidth limitation. Since
the qualitative results between u1(q) and u2(q) remain unchanged, and to avoid
cluttering the pictures, we only consider the concave profile of u2(q) in what
follows.

A breakdown of the quality levels served to users is reported in Fig. 5.3,
which helps to better understand the structure of the optimal solution – thus,
ultimately, where the utility gain comes from. Without any cache, all the de-
livered videos must cross the upstream link, and the bandwidth is hardly avail-
able to transmit them at high quality, unless the input load is particularly low
(Υ = 1/10). At high load, the bandwidth is not sufficient to serve all the
requests, not even at the lowest quality, and a growing fraction remains unsat-
isfied. The situation is drastically improved by optimal caching, which stores a
significant fraction of videos, and especially the most popular ones, at high qual-
ity. Since the requests for these videos account for a large part of the overall
requests, the upstream link is relieved of a considerable amount of traffic. As
a first consequence, we are able to satisfy all the requests coming from users.
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Figure 5.5: Single-AS scenario: Contributions of cache and upstream links. Circle
size reflects relative cache vs upstream contribution, and the breakdown reports the
qualities of both contributions.

Moreover, the most popular objects are served at high quality, which as net
effect increases the average utility perceived by users.

5.5.3 Contributions of cache and upstream link

To better understand the relative contribution of storage vs bandwidth, we
decompose the video flows arriving at users in cache-stream and up-stream,
where the former is the stream of data retrieved from the cache, whereas the
latter is the flow coming from the upstream links, as illustrated in Fig. 5.4. We
represent the breakdown of the utility provided by content retrieved from cache
vs content retrieved from upstream in Fig. 5.5, where the sizes of the circles
represent the relative contribution of the two utility values. Circles additionally
report the quality breakdown of the two contributions.

From Fig. 5.5 we first observe that, in the scenarios under consideration, the
cache is responsible of the most part of the utility (storage circles are bigger
than upstream ones), as it stores the most popular objects (thus intercepting a
large fraction of traffic) at a furthermore high quality.

Second, an interesting specialization arises between the cache-stream and
up-stream: the highest quality levels (darker colors) are served by the cache
and only low representations cross the upstream link. Indeed, it would not be
beneficial to serve high quality objects through the upstream link, since the high
bandwidth cost should be paid repeatedly, at each request. On the contrary,
placing them in the cache permits to pay only once the cost in terms of memory,
and to still repeatedly gather utility at each request.
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Third, the load has an evident impact on the breakdown. At high load,
both streams must carry lower quality representations. Indeed, in this case, the
average quality of the upstream must be low, to fit the link capacity. At the
same time, we need to reduce the number of transmissions on the upstream by
intercepting more requests with cached copies. To do so, we need to cache a
larger number of different videos and, since the cache space is limited, we need
to store smaller copies of them, i.e. lower quality representations. This explains
why, at high load, the quality of the cache-stream decreases.

Fourth, we observe the impact of cache size on the breakdown: as expected,
when the cache size increases, its relative contribution to the overall utility
increases as well. Yet, more interestingly, also the breakdown of the stored
video quality changes as well: in particular, the larger the cache, the higher the
quality, which is intuitive.

Finally, observe that the cache size has a side effect on the breakdown of
the upstream video quality: indeed, the average quality increases for increasing
cache size, which can be explained with the fact that the larger the cache, the
larger the fraction of absorbed traffic. As a consequence, at any given load the
upstream link has to serve less requests and can afford to do it at higher quality.

5.5.4 Performance of Offline Policies

We next compare the performance of the five strategies discussed in Sec. 5.4
(viz., NoCache, CacheLQ, CacheHQ, AllQ, Partitioned), with the solution that
maximizes the quality of experience perceived by network users (Optimum).
Utility is reported in Fig. 5.6, whereas the structure of the solution is reported
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Figure 5.7: Quality levels cached by offline strategies (MILP variants) in the single-AS
scenario.

in Fig. 5.7, which depicts the quality level of each stored object under the offline
strategies.

Note that, when the network caches only low quality objects (CacheLQ),
their small size permits to store a large number of them, intercepting a large
fraction of the requests. This already provides robustness with respect to load,
guaranteeing at least a minimum quality (the CacheLQ curve is above the q = 1
reference quality), which is not possible without cache. However, CacheLQ does
not exhibit cache efficiency because higher quality objects, necessary to increase
the average utility, can only be retrieved through the upstream link. Rigidly
storing all quality representations (AllQ) further improves the performance but
is still far from the optimum. Indeed, for each object we must waste cache
space for all the representations, although only a subset of them will be actually
served to users. This limits the number of different objects that can be actually
cached. CacheHQ performance approaches to the Optimum, suggesting that
storing few (due to their large size) popular objects at HQ already provides a
notable payoff (due to the product of their popularity times their utility at high
quality).

Yet, Partitioned performance is even closer to the Optimum: the root cause
is that the quality representation selection is similar to the optimal one, as
Fig. 5.7 shows. In particular, the optimal behavior in terms of overall utility is
to store a number of objects at each quality, preferring to store more popular
objects at higher quality, and Partitioned implements this behavior. This in-
creases the overall cardinality of cached content and assigns to each object the
“right” quality, i.e. the one such that the cost in terms of occupied memory is
compensated by the pay-off in terms of utility provided to the set of requests for
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it. The difference between Partitioned and Optimum is in the number of objects
stored at each quality. While Partitioned constrains this number to be the same
for each quality, Optimum does not incur this constraint and prefers, in this
scenario, roughly two quality levels. So doing, the Optimum strategy caches
more objects than CacheHQ (but less than Partitioned), a significant fraction
of which is at lower quality than CacheHQ (but higher than Partitioned).

From the above observations, we infer that the quality at which each object
must be cached should increase with its popularity. This is the observation we
will leverage in the design of our online policy, in the next chapter. Note that a
fairness concern may arise, since popular content is served better than the rest.
In any case, bandwidth is limited and it is impossible to serve all the content
at high quality. Therefore, a network provider has two choices: i) being fair
and lowering the quality of all the served videos or ii) differentiating based on
popularity. While the former case is admissible, we have shown that the latter
permits utility maximization, which is our target. On the other hand, a network
provider may wish to provide always a quality above a certain threshold higher
than LQ. We can easily model this by removing from the set Q of the admissible
levels the lowest ones.

5.5.5 Multi-AS Scenario

We now consider a multi-AS environment, where each AS operates a cache
system with a storage space sufficient to cache 1/100 of the catalog at the
highest quality. We solve the MILP model for a coalition of 10 ASes and a
103 objects catalog and we show results in Fig. 5.8. The multi-AS graphs are
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generated in accordance to the Barabasi-Albert model [184], which is considered
to approximate the AS interconnection in Internet [112].

Observe that results are coherent with the observations on the single-AS
case. Specifically, we notice that while the average quality is very similar among
CacheHQ, Partitioned and Optimum, however the fraction of content that is not
served is largely different. In the case of CacheHQ, about 5% of the videos are
not served, which is 2.3 times larger than the fraction of non-served videos in
the Optimum case. In contrast, the Partitioned strategy limits to +30% the
amount of additional videos not served with respect to Optimum.

While this fact does not appear in the perceptual model we used (where a
non served content has a utility 0 and does not generate any penalty) never-
theless it can be argued that the impact of service denial can be much worse.
Indeed, from loss aversion models commonly used in prospect theory [185], not
receiving a video at expected quality q generates a negative utility, which could
be accounted for in the model. Yet, repeatedly receiving denial of requests
could lead users to change ISPs on a long timescale, which can have disastrous
consequences on the ISP business, for which limiting the fraction of non-served
content is primordial.

A second important observation is that gains are structurally equivalent to
what early shown in the single-AS case.



Chapter 6

An Online Distributed
Caching Strategy for Video
Delivery

The strategies proposed in the previous chapter are offline policies and, as al-
ready explained in Sec. 2.3.1, are not realistically implementable. Nonetheless,
by studying the results obtained via the MILP, we learned two important guide-
lines. First, to manage more efficiently the resources deployed in the network,
i.e. link capacities and caches, we do not have to cache all the available represen-
tations of the objects, but just the “right” ones. Second, the right representation
should obey to the following: the most popular objects should be cached at high
quality and then the quality should decrease with the popularity. In this chapter
we devise an online algorithm, which we call QImpr, that complies at regime
with these guidelines.

In the previous chapter the only objective was to maximize user experience.
While this allowed us to present the representation selection problem and gain-
ing insights on caching strategies specifically tailored for video delivery, we are
aware that user maximization is not the sole goal of ISPs. If it were the case,
they would risk to incur too large cost, due to excessive bandwidth usage. In
reality, an ISP seeks to guarantee good quality of experience to users while lim-
iting its operational cost. To investigate this aspect, we also evaluate in this
chapter the trade-off between user experience maximization and the bandwidth
usage.

The chapter is organized as follows: we describe the algorithm in Sec. 6.1
and the simulation setup in Sec. 6.2. Then we show that the behavior of our
online algorithm approaches the the optimum in Sec. 6.3. Finally, in Sec. 6.3
we present simulation results in large topologies and discuss the user experience
vs. bandwidth usage trade-off, showing that QImpr efficaciously balances the
two.
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6.1 QImpr Algorithm

We propose a Quality Improvement (QImpr) strategy that reactively incremen-
tally improves quality of stored replicas at each new request, and opportunely
balances bandwidth and user utility. QImpr operates as follows. Each request
req(q) carries a value q specifying the minimum required quality, which is always
set to q = 1 at the ingress of the network (either by the user browser or the ISP
proxy) meaning that any quality is accepted (i.e., we assume that receiving a
LQ representation is preferable to not receiving the video at all). When a new
request req(q) arrives at any cache, if a copy at quality qcached ≥ q is found, the
request is served with that copy. At the same time, if qcached is less than the
maximum quality, the AS node issues another request req(qcached + 1) for the
same object. If no cached copy is found, req(q) is normally forwarded.

Caches maintain objects in an ordered list. Whenever an object i at quality q
arrives, if a better quality qcached ≥ q of that object is already cached, the incom-
ing object is discarded. Otherwise, the new object representation (i) is placed
at the head of the list, (ii) any lower quality representation of i is evicted, (iii)
if further space is needed to store i, this is obtained by evicting cached objects
starting from the least recently used one, up toward the head, until a sufficient
space to accommodate i at quality q is available. Shortly, expected benefits
of this policy are that unpopular objects will only be cached at low quality,
whereas popular objects will quickly escalate quality levels. On the downsides,
popular objects will be requested at multiple quality levels, generating a slight
overhead in the quality improvement process.

Note that in reason of size heterogeneity between representations at different
levels, caching a new object causes the eviction of a variable number of least-
recently-used objects sufficient to make room for the incoming higher quality
representation. This is in contrast with what usually assumed in the caching
literature that assumes all chunks having equal size.

6.2 Simulation Setup

We implement our algorithm in ccnSim, an Omnetpp-based simulator of network
of caches, available and opensource in [11]. We consider the scenario already
described in Sec. 5.5.1 and Sec. 5.5.5, with the difference that we first consider
one only node in Sec. 6.3 and for the rest of the chapter we will consider much
larger networks, with 100 nodes (an example of which is depicted in Fig. 6.3),
and a much larger catalog, with 108 objects.

Results are collected in steady state over 10 runs for each scenario. The
bandwidth utilization is computed considering that, every time an object at
quality q crosses a link, it occupies a bandwidth ς [q]. The bandwidth that we
represent in the plots is averaged over time and over all the links of the network.
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Figure 6.1: Example large-scale topology

6.3 Comparison with the Optimal Solution

We analyze what the breakdown of the quality of the content cached by QImpr
is at regime and compare it with the optimal breakdown in Fig. 6.2.

Notice that while solving the optimization problem of the previous chapter
returns exactly one object quality, in the simulation case the representation of
an object stored in the cache varies over time, so that we report the average
quality for an object sampled at 100 random times during the simulation. It
can be seen that QImpr tends to store only the popular objects at high quality,
thus approaching a solution that is structurally similar to Partitioned or Optimal
strategies – which confirms the mechanism of improving the object quality at
each new hit to pay off.

6.4 Distributed policy: Bandwidth-Utility
Trade-Off

In the MILP of the previous chapter our only objective is to maximize the
utility. To do so, we let the model use the links at their full capacity. In
practice, ASes may tend to limit link utilization, in order to avoid the occurrence
of congestion, to ensure low end-to-end latency and bound operational costs
associated to traffic transmitted toward transit providers. Therefore, a trade-off
arises between the utility provided to users and the bandwidth used to guarantee
it, which we investigate via simulation.

Aiming at assessing the utility vs. bandwidth trade-off, we use two addi-
tional reference points where only low-quality (OnlyLQ), or high-quality objects
are cached and transmitted in the system (OnlyHQ), and caches employ stan-
dard Least Recently Used (LRU) replacement. OnlyLQ corresponds to a crude
attempt to minimize the bandwidth, but, as a consequence, brings low user
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Figure 6.2: Breakdown of the quality cached at optimum and by the online policy
QImpr.

utility. On the other hand, OnlyHQ maximizes the user utility but incurs in
high bandwidth usage.

Note that the points in Fig. 6.3 are well clustered, meaning that the perfor-
mance of OnlyLQ, OnlyHQ and QImpr is coherent and our findings do not vary
with the scale of the problem. QImpr nicely fits halfway the extreme bounds
represented by OnlyLQ and OnlyHQ, realizing a smooth tradeoff between band-
width and quality.

The picture finally shades an area where the performance of interesting dis-
tributed algorithms lays: i.e., those that achieve a more convenient bandwidth-
quality tradeoff. QImpr design can be ameliorated to move performance in the
upper-left part of Fig. 6.3 by (i) reducing the overhead (i.e., move left) and
(ii) improving the utility (i.e., move up). As far as (i) overhead is concerned,
recall that whenever a request hits a cached copy at quality q, the cache im-
mediately triggers a request to improve the content quality to q + 1. These
cache-originated requests constitute an overhead, which could be limited by
probabilistically reducing the rate at which they are issued – much as in proba-
bilistic metacaching. As far as (ii) utility is concerned, recall that the Optimal
solution implicitly quantized the quality levels to a subset of all the available
ones, which should be easy to implement.

Notice however that overhead reduction and utility maximization are con-
flicting goals, since e.g., slowing down the rate at which quality of content is
improved from q to q + 1 by a given factor also implies that the amount of
requests served at quality q instead of q + 1 grows by the same factor. While
this observation affects only the transient but vanishes in the steady state, it
can however be argued that it has practical relevance in real scenarios where
popularity is time-varying and there is no steady state. Additionally, the choice
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Figure 6.3: Simulation results showing the utility vs. bandwidth trade-off

of the best subset may depend on the utility, cache/upstream ratio, topology,
request load, popularity skew, etc. which requires future work.
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Summary

In this part we tackled the problem of optimal content distribution in cache-
enabled networks, by explicitly taking into account multiple representations
of the same video, each having a different utility perceived by users. Despite
its relevance, this has not sufficiently been investigated so far. The need for
caching techniques that, apart from the general ones, are optimized for video
traffic is enforced by the prevalence of this traffic on the other types and its
inherent cacheability. We find the optimal caching solution that maximizes
user utility and we contrast it against several candidate strategies along the
user experience angle. We study the fundamental properties of the solution to
infer important guidelines to optimize object-level caching in video delivery. We
leverage these guidelines in designing a distributed solution that we benchmark
via event-driven simulation. Our key findings suggest that (i) the quality at
which each object should be cached is inversely related to its popularity, (ii)
a balance between user perceived utility and bandwidth usage is possible by
means of intelligent caching distributed policy of which QImpr, the one proposed
in Chapter 6, is an example.
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Part III

Caching Encrypted Content
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Introduction to Caching of
Encrypted Content

It is widely known that content delivery over the Internet represents a sizeable
and increasing fraction of the overall traffic demand. Furthermore most of the
content, including video, is carried over HTTP connections: this evolution of
the last decade was not among those forecasted for the IP hourglass model evo-
lution [186], and is rather a choice of practical convenience. This evolution has
a tremendous practical relevance, to the point that HTTP was overtly recog-
nized [187] and proposed [188] as the new de facto “thin waist” of the TCP/IP
protocol family.

In very recent times, we are on the verge of yet another shift of the thin
waist: we indeed observe that the fraction of traffic delivered through HTTPS
has already passed 50% [9], and it is expected to increase, as the IETF In-
ternet Architecture Board (IAB) recommends “protocol designers, developers,
and operators to make encryption the norm for Internet traffic” [10]. Besides
the IAB recommendation, Content Providers (CP) are already heavily relying
on encryption to both protect the privacy of their users, as well as sensitive
information (related to user preferences) of their own business.

This evolution toward an all-encrypted Internet creates a tussle between
security and efficiency. Today’s Internet heavily relies on middleboxes such
as NATs (to combat the scarcity of IPv4 addresses) and transparent or proxy
caches [189] (to relieve traffic load). However, some of these middleboxes will
simply fail to operate in tomorrow’s Internet with end-to-end encryption: for
example, end-to-end encryption renders caching useless, since multiple transfers
of the same object generate different streams if the same object is encrypted with
different keys. At times where the design of the new 5G architecture strives to
reduce latency, increase the available bandwidth and better handle mobility, this
tradeoff is especially unfortunate, as distributed caches represent a natural way
to reduce latency, reduce bandwidth usage and to cope with mobility avoiding
long detours to anchor points.

This architectural evolution calls for a redesign of the current operations
involving both Internet Service Providers (ISP) and Content Providers (CP):
by design, the solutions should preserve business-critical CP information (e.g.,
information about content popularity, user preferences) on the one hand, while
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allowing for a deeper integration of caches in the ISP architecture (e.g., in 5G
femto-cells) on the other hand.

In this part we address this issue by proposing a content-oblivious algorithm
that manages the storage space of an ISP cache that delivers encrypted content :
the algorithm dynamically partitions the cache storage among various CPs so
as to maximize the cache hit rate (hence, the bandwidth savings). The most
important feature of the algorithm is that in order to protect business-critical
information of the CPs, the ISP only needs to measure the aggregated miss rates
of the individual CPs. In Chapter 7, we analytically prove that relying on the
measurement of aggregated miss rates only, our algorithm converges close to
the optimal allocation that maximizes the overall cache hit rate, and provide
a bound on the gap to the optimal allocation. In Chapter 8, we show via
simulations under realistic scenarios the feasibility and good performance of the
proposed algorithm.

Most of the content of this part is extracted from [14].



Chapter 7

Analysis of Caching of
Encrypted Content

This chapter covers the theoretical aspects of our content-oblivious mechanism.
We define the model of the system we envisaged and the underlying assumptions
in Sec. 7.1. In Sec. 7.2, we present our Stochastic Dynamic Cache Partitioning
(SDCP) algorithm, whose goal is to iteratively adjust the allocation of the cache
space among CPs, based on the measurement of the miss rate, in order to
improve the overall hit ratio. The rest of the chapter is devoted to prove the
convergence of SDCP. We first present some mathematical background Sec. 7.3,
selecting from the literature on Convex Optimization, Stochastic Optimization,
Control Theory and Operation Research the results that we need for our proof.
Then we show in Sec. 7.4 that the algorithm makes all the variables vary in a
correct way, i.e. during all the iterations each variable assumes values belonging
to the respective admissible set, which is important to assure the correctness
of the algorithm. The main convergence result is presented in Sec. 7.5, while
we bound the distance between the allocation to which the algorithm converges
and the optimal one in Sec. 7.6.

7.1 System Model

We consider a cache with a storage size of K slots (e.g., in units of MB) main-
tained by an operator and shared by P content providers (CPs). The operator
is not aware of what content the individual slots store and only decides how to
partition the slots among CPs.

We denote by θp ∈ Z≥0 the number of cache slots allocated to CP p, which
it can use for caching its most popular contents. We define the set of feasible
cache allocation vectors

Θ , {θ ∈ ZP≥0|
P∑
p=1

θp ≤ K} ⊂ ZP≥0. (7.1)
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We consider that the arrival of requests for content can be modeled by a
stationary process, and the number of arrivals over a time interval of length T
can be bounded by some positive constant A(T ). This assumption is reasonable
as requests are generated by a finite customer population, and each customer
can generate requests at a bounded rate in practice. Upon reception of a request
for a content of the CPs that share the cache, the request can either generate
a cache hit (for content stored in the CP partition at time of the request) or a
cache miss (otherwise). Formally, we denote the expected cache miss rate (i.e.,
expected number of misses per time unit) of CP p when allocated θp slots of
storage by Lp(θp). We make the reasonable assumption that Lp is decreasing
and strictly convex on [0 . . .K]. This assumption corresponds to that having
more storage decreases the miss intensity (in expectation) with a decreasing
marginal gain, and each CP would in principle have enough content to fill the
entire storage. For convenience we define the cache miss intensity vector

~L(θ) , (L1(θ1), . . . , LP (θP ))
T

(7.2)

Finally, we define the overall expected cache miss intensity

L(θ) ,
P∑
p=1

Lp(θp). (7.3)

Motivated by the increasing prevalence of encrypted content delivery, we
assume that the operator cannot observe what content an individual request is
for, but it can observe the number of content requests received by a CP and the
corresponding number of cache misses.

Given a static cache partitioning θ ∈ Θ, the observed number of content
requests and the number of cache misses would form a stationary sequence
when measured over subsequent time intervals. The objective of the operator is
to find the optimal allocation θOPT that minimizes the overall expected cache
miss intensity, i.e.,

θOPT ∈ arg min
θ∈Θ

L(θ) (7.4)

based on the measured cache miss intensity. In what follows we propose the
Stochastic Dynamic Cache Partitioning (SDCP) algorithm that iteratively ap-
proximates the optimal allocation.

7.2 Partitioning Algorithm

The proposed SDCP algorithm is an iterative algorithm that is executed over
time slots of fixed duration T . The pseudo code of the algorithm is shown in
Alg. 1. For simplicity we present the algorithm assuming that P is even, but
the case of an odd number of CPs can be handled by introducing a fictitious
CP with zero request rate.
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Table 7.1: Frequently used notation (with place of definition)

P Number of content providers (CP)
K Available cache slots
K ′ Allocated cache slots (7.6)
θ Cache configuration
Θ Set of feasible cache allocations (7.1)
C Set of allowed virtual cache allocations (7.5)

L(θ) Expected cache miss intensity (7.3)
~L Miss intensity vector (7.2)

L̄(θ) Interpolant of the miss intensity (Lemma 12)
θ∗ Unique minimizer of L̄ (Lemma 12)

D(k) Perturbation vector (7.8)
T Time slot length
ϕ Euclidean projection (7.10)

ĝ(k) Stochastic subgradient (line 1 of Alg. 1)
ḡ(θ) Subgradient of L̄ (7.21)

At time slot k the algorithm maintains a virtual cache allocation θ(k). The
virtual allocation is an allocation of K ′ storage slots among the CPs, i.e.,

θ(k) ∈ C ,
{
θ ∈ Rp|1TP · θ , K ′

}
(7.5)

where

K ′ = K − P/2 (7.6)

We will justify the introduction of K ′ and of C in the proof of Lemma 10.
Observe that, while a feasible allocation is a discrete vector, a virtual allocation
may be real. This is due to the computation we will perform to obtain it.
Therefore, the virtual allocation needs to be discretized before being used in
our algorithm, as we will explain later.

In order to obtain from θ(k) an integral allocation that can be implemented
in the cache, we define the center-point function Γ : RP → RP , which assigns
to a point in Euclidean space the center of the hypercube containing it, i.e.,

γ(x) , bxc+ 1/2 ∀x ∈ R
Γ(θ) , (γ(θ1), . . . , γ(θP ))

T
, ∀θ ∈ C

(7.7)

where we use b·c to denote the floor of a scalar or of a vector in the component-

wise sense. Furthermore, we define the perturbation vector D(k) = (D
(k)
1 , . . . , D

(k)
P )T

at time slot k, which is chosen independently and uniform at random from the
set of −1,+1 valued zero-sum vectors

D(k) ∈ Z ,
{
z ∈ {−1, 1}P

∣∣zT · 1P = 0
}
. (7.8)
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Algorithm 1: Stochastic Dynamic Cache Partitioning Algorithm

Choose an initial allocation θ0 ∈ C ∩ RP≥0

for k = 0; ; k + + do

Generate D(k)

+θ(k) = Γ(θ(k)) + 1
2
D(k)

−θ(k) = Γ(θ(k))− 1
2
D(k)

Set the configuration to +θ(k) for time T/2
Measure +~y(k)

Set the configuration to −θ(k) for a time T/2
Measure −~y(k)

δ~y(k) =+ ~y(k) −− ~y(k)

ĝ(k) = δ~y(k) ◦D(k) − 1
P
· (δ~y(k)T ·D(k))1P

θ(k+1) = ϕ(θ(k) − a(k)ĝ(k))
end

Given Γ and D(k) the algorithm computes two cache allocations to be imple-
mented during time slot k,

+θ(k) , Γ(θ(k)) + 1
2D(k),

−θ(k) , Γ(θ(k))− 1
2D(k).

(7.9)

The algorithm first applies allocation +θ(k) for T/2 amount of time and mea-

sures the cache miss rate +y
(k)
p for each provider p = 1, . . . , P . It then ap-

plies allocation −θ(k) during the remaining T/2 amount of time in slot k and

measures the cache miss rates −y
(k)
p . The vectors of measured cache misses

−~y(k) , (−yk1 , . . . ,
− y

(k)
P )T and +~y(k) , (+yk1 , . . . ,

+ y
(k)
P )T are used to compute

the impact δy
(k)
p ,+ y

(k)
p −− y(k)

p of the perturbation vector on the cache miss
intensity of CP p, or using the vector notation δ~y(k) ,+ ~y(k) −− ~y(k).

Based on the measured miss rates, the algorithm then computes the alloca-
tion vector θ(k+1) for the (k + 1)-th step. Specifically, it first computes (line
1, where ◦ denotes the Hadamard product) the update vector ĝ(k), which we
show in Corollary 16 to match in expectation a subgradient of the miss-stream
interpolant L̄, defined in the statement of Lemma 12. The (k + 1)-th allocation
moves from the k-th allocation in the direction of the update vector ĝ(k), op-
portunely scaled by a step size a(k) > 0. Additionally, denoting with R≥0 the

set of non-negative numbers, θ(k+1) is computed using the Euclidean projection
ϕ : C → C ∩ RP≥0, defined as

ϕ(θ) , arg min
θ′∈C∩RP≥0

‖θ− θ′‖ (7.10)

Several remarks are worth making. First, we will show in Lemma 9 that the
equation above admits a unique solution and thus the definition is consistent.
Second, we will show in Lemma 10 that ĝ computed as in line 1 guarantees that
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the update θ(k) − a(k)ĝ(k) at line 1 lies inside C. Nonetheless, this update may
have some negative components and we need to project it into C∩R≥0 by apply-

ingϕ, to ensure that the subsequent virtual allocation θ(k+1) is valid. Third, the
step size a(k) must be chosen to satisfy

∑∞
k=1 a

(k) = ∞ and
∑∞
k=1(a(k))2 < ∞

in order to guarantee convergence (see Theor. 17). Fourth, although the conver-
gence of the proposed algorithm is guaranteed, for stationary content popularity,
irrespectively of the choice of a(k) satisfying the above conditions, we point out
that the step size plays an important role in determining the convergence speed,
which we will numerically investigate in Chapter 8.

7.3 Preliminaries

Let us start by introducing the forward difference defined for functions on dis-
crete sets.

Definition 5. For a function F : Zq1 → Rq2 , q1, q2 ≥ 1 the forward difference
is

∆nF(x) , F(x + n · 1q1)− F (x),∀x ∈ Zq1 , n ∈ Z \ {0}

By abuse of notation, we will simply use ∆F(x) to denote ∆1F(x).

The forward difference is convenient for characterizing convexity using the
following definition [190].

Definition 6. A discrete function F : Z→ R is strictly convex iff x→ ∆F (x)
is increasing.

Furthermore, for a class of functions of interest we can establish the following.

Lemma 7. Let F : Z→ R decreasing and strictly convex, x ∈ Z and n ∈ Z\{0}
we have

∆nF (x) > n∆F (x), (7.11)

Proof:
We first show that ∀x, y ∈ Z such that y > x, the following holds

∆nF (y) > ∆nF (x) if n > 0 (7.12)

∆nF (y) < ∆nF (x) if n < 0 (7.13)

For n > 0 we can use Def. 6 to obtain

∆nF (y) =

n−1∑
i=0

[F (y + i+ 1)− F (y + i)] =

n−1∑
i=0

∆F (y + i)

>

n−1∑
i=0

∆F (x+ i) = ∆nF (x). (7.14)

which proves (7.12).



124CHAPTER 7. ANALYSIS OF CACHING OF ENCRYPTED CONTENT

For n < 0 algebraic manipulation of the definition of the forward difference
and (7.14) gives

∆nF (y) = −∆|n|F (y − |n|) < −∆|n|F (x− |n|) = ∆nF (x),

which proves (7.13). To prove (7.11) for n > 0, observe that, thanks to Def. 6,
each of the n terms of the last summation in (7.12) is lower bounded by ∆F (x).
For n < 0 via algebraic manipulation we obtain

∆nF (x) = −
|n|∑
i=1

∆F (x− i) > −
|n|∑
i=1

∆F (x) = −|n| ·∆F (x),

which proves (7.11) as |n| = −n.
Since SDCP generates virtual configurations whose components are not nec-

essarily integer, we have to extend the discrete functions Lp to real numbers.
Thanks to Theor. 2.2 of [191], we have the following existence result.

Lemma 8. Given a discrete decreasing and strictly convex function F : Z→ R,
there exists a continuous and strictly convex function F̄ : R → R that extends
F , i.e., F (x) = F̄ (x),∀x ∈ Z. We call F̄ the interpolant of F .

Finally, we formulate an important property of the Euclidean projection ϕ.

Lemma 9. There is a unique function ϕ satisfying (7.10). Furthermore, ϕ
satisfies

‖ϕ(θ)− θ′‖ ≤ ‖θ− θ′‖,∀θ ∈ C,θ′ ∈ C ∩ RP≥0, (7.15)

i.e., ϕ(θ) is no farther from any allocation vector than θ.

Proof: Observe that C ∩ RP≥0 is a simplex, and thus closed and con-
vex. Hence, the Euclidean projection ϕ is the unique solution of (7.10) [192].
Furthermore, the Euclidean projection is non-expansive (see, e.g., Fact 1.5 in
[193]), i.e., for θ,θ′ ∈ C it satisfies ‖ϕ(θ)−ϕ(θ′)‖ ≤ ‖θ− θ′‖. Observing that
if θ′ ∈ C ∩ RP≥0 then ϕ(θ′) = θ′ proves the result.

7.4 Consistency

We first have to prove that during each time slot the configurations −θ(k),+ θ(k)

that SDCP imposes on the cache are feasible. This is non-trivial, as the opera-
tors used in computing the allocations are defined on proper subsets of Rp. The
following lemma establishes that the allocations computed by SDCP always fall
into these subsets.

Lemma 10. The allocations θ(k) are consistent in every time slot, as they
satisfy

1. θ(k) − a(k)ĝ(k) ∈ C,

2. θ(k+1) ∈ C ∩ RP≥0,
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3. +θ(k),− θ(k) ∈ Θ.

Proof: Recall that θ0 ∈ C ∩ RP≥0. To show (a) observe that

ĝ(k) · 1P =

P∑
j=1

δy(k)
p ·D(k)

p −
P∑
j=1

δy(k)
p ·D(k)

p = 0 (7.16)

and thus if θ(k) ∈ C, then θ(k) − a(k)ĝ(k) ∈ C. The definition of the Euclidean
projection (7.10) and (a) together imply (b). Finally, observe that

1 ·+ θ(k) = 1 · bθc+
P

2
≤ 1 · θ+

P

2
≤ K ′ + P

2
= K, (7.17)

which proves (c). Note that the above motivates the choice ofK ′ in the definition

of the set of virtual allocations C, as if K ′ > K − P
2 then +θ(k),− θ(k) ∈ Θ may

be violated due to the use of the mapping γ and D(k) in (7.9).

7.5 Convergence

To prove convergence of SDCP, we first consider the relationship between the

measured miss rates +y
(k)
p and −y

(k)
p and the expected miss intensities Lp(

+θ
(k)
p )

and Lp(
−θ

(k)
p ), respectively. We define the measurement noise

+ε(k) ,+ ~y(k) − ~L(+θ(k))
−ε(k) ,− ~y(k) − ~L(−θ(k)),

(7.18)

and the corresponding differences

δε(k) , +ε(k) −− ε(k)

δ~L(k) , ~L(+θ(k))− ~L(−θ(k)).
(7.19)

Observe that D(k), +~y(k) and −~y(k) are random variables and form a stochastic
process. Using these definitions we can formulate the following statement about
the measured miss rates.

Lemma 11. The conditional expectation of the measurement noise and its dif-
ference satisfy

E[δε(k)|θ(k)] = 0p (7.20)

Proof: Observe that due to the stationarity of the request arrival pro-
cesses we have E[+ε(k)|θ(k)] = 0 and E[−ε(k)|θ(k)] = 0, which due to the additive
law of expectation yields the result.

Intuitively, this is equivalent to saying that the sample averages provide an
unbiased estimator of the miss rates. In what follows we establish an analogous
result for the update vector ĝ(k) with respect to a subgradient of the interpolant
L̄ of the expected miss intensity L, which itself is a discrete function. We define
and characterize L̄ in the following lemma, which recalls known results from
convex optimization.
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Lemma 12. Given the interpolants L̄p of the expected miss intensities Lp of

the CPs and defining the interpolant of L as L̄(θ) ,
∑P
p=1 L̄p(θp),∀θ ∈ RP≥0, L̄

is strictly convex and admits a unique minimizer θ∗ in C ∩ RP≥0.

Proof: Recall that each interpolant L̄p of Lp is strictly convex as shown in
Lemma 8. The strict convexity of L̄ can then be obtained applying Theor. 1.17
of [194]. Then, we observe that θ∗ is the solution to a convex optimization
problem with a strictly convex objective function, which is unique (Sec. 4.2.1
of [195].

For completeness, let us recall the definition of a subgradient of a function
from (see, e.g., [196]).

Definition 13. Given a function L̄ : Rp → R, a function ḡ : C ⊆ RP → RP is
a subgradient of L̄ over C iff

L̄(θ′)− L̄(θ) ≥ ḡ(θ)T · (θ′ − θ),∀θ,θ′ ∈ C

We are now ready to introduce a subgradient ḡ(θ) for the interpolant of the
expected cache miss intensity L̄.

Lemma 14. The function

ḡ(θ) , ∆~L(k)(bθc)− 1

P
·∆L(bθc) · 1P . (7.21)

is a subgradient of L̄ over C ∩ RP≥0.

Proof: Observe that for θ,θ′ ∈ C

ḡ(θ)T · (θ′ − θ) = ∆~L(k)(bθc)T · (θ′ − θ)

− 1

P
·∆L(bθc) ·

[
1TP · (θ

′ − θ)
]
.

At the same time, for θ,θ′ ∈ C we have

1TP · (θ
′ − θ) = (1TP · θ

′ − 1TP · θ) = K ′ −K ′ = 0.

Therefore, for any θ,θ′ ∈ C

ḡ(θ)T · (θ′ − θ) = ∆~L(k)(bθc) · (θ′ − θ) (7.22)

Thus, according to Def. 13, in order to show that ḡ is a subgradient of L̄ it
suffices to show that

P∑
p=1

[
L̄p(θ

′
p)− L̄p(θp)

]
≥

P∑
p=1

∆Lp(bθjc) · (θ′p − θp). (7.23)
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We now show that this holds component-wise. If bθ′pc − bθpc = 0, then the
above clearly holds. Otherwise, if n = bθ′pc − bθpc 6= 0 we apply a well known
property of convex functions (Theor. 1.3.1 of [197]) to obtain:

L̄p(bθ′pc)− L̄p(bθpc)
(bθ′pc − bθpc)

≤
L̄p(θ

′
p)− L̄p(θp)

(θ′p − θp)

≤
L̄p(bθ′pc+ 1)− L̄p(bθpc+ 1)

(bθ′pc+ 1− (bθpc+ 1))

which, by Def. 5, can be rewritten as:

∆nLj(bθjc)
n

≤
L̄p(θ

′
p)− L̄p(θp)
θ′p − θp

≤ ∆nLj(bθj + 1c)
n

(7.24)

For n > 0 we can use the first inequality of (7.24) and Lemma 7 to obtain

L̄p(θ
′
p)− L̄p(θp) ≥ ∆Lj(bθjc) · (θ′p − θp). (7.25)

For n < 0 we can use the second inequality of (7.24) and Lemma 7 to obtain

L̄p(θ
′
p)− L̄p(θp)
θ′p − θp

≤ ∆Lj(bθj + 1c) ≤ ∆Lj(bθjc), (7.26)

and by multiplying the first and the second term of (7.26) by θ′p − θp (which is
negative since n = bθ′pc − bθpc is negative), we obtain the result.

The subgradient ḡ will be central to proving the convergence of SDCP, but
it cannot be measured directly. The next proposition establishes a link between
the update vector ĝ(k), which we compute in every time slot, and the subgradient
ḡ.

Proposition 15. The update vector ĝ(k) is composed of the subgradient ḡ plus
a component due to the noise,

ĝ(k) = ḡ(θ(k)) + δε(k) ◦D(k) − 1

P
·
[
δε(k)T ·D(k)

]
1P .

Proof: We first apply (7.19) to obtain

ĝ(k) = δ~L(k) ◦D(k) − 1

P
· (δ~L(k)T ·D(k))1P (7.27)

+ δε(k) ◦D(k) − 1

P
· (δε(k)T ·D(k))1P

Consider now a particular realization of the random variable D(k). We can

express component p of δ~L(k) ◦D(k) =
[
~L(+θ(k))− ~L(−θ(k))

]
◦D(k) as[

Lp

(
Π
(
θ(k)
p

)
+

1

2
D(k)
p

)
− Lp

(
Π
(
θ(k)
p

)
− 1

2
D(k)
p

)]
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·D(k)
p

=

[
Lp

(
Π
(
θ(k)
p

)
+

1

2

)
− Lp

(
Π
(
θ(k)
p

)
− 1

2

)]
=
[
Lp

(
bθ(k)
p c+ 1

)
− Lp

(
bθ(k)
p c

)]
,

where the first equality can be easily verified assuming that D
(k)
p = −1 and then

assuming that it is D
(k)
p = 1. We thus obtain

δ~L(k) ◦D(k) = ∆~L(bθ(k)c)

and in scalar form

δ~L(k)T ·D(k) = ∆L(bθ(k)c).

By substituting these in (7.27)

ĝ(k) = ∆~L(bθ(k)c)− 1

P
·∆L(bθ(k)c) · 1P

+δε(k) ◦D(k) − 1

P
· (δε(k)T ·D(k))1P ,

and using (7.21), we obtain the result.
Furthermore, thanks to Lemma 11, the second term of (7.27), which is due to
the noise, is zero in expectation, which provides the link between the update
vector ĝ(k) and the subgradient ḡ(θ(k)).

Corollary 16. The conditional expectation of ĝ(k) is E[ĝ(k)|θ(k)] = ḡ(θ(k)) and

thus ĝ(k) is a stochastic subgradient of L̄, i.e. E[ĝ(k)] = ḡ(θ(k)).

This leads us to the following theorem.

Theorem 17. The sequence θ(k) generated by SDCP converges in probability
to the unique minimizer θ∗of L̄, i.e., for arbitrary δ > 0

lim
k→∞

Pr{‖θ(k) − θ∗‖ > δ} = 0.

Proof:
The proof of convergence is based on supermartingales, similar to (Theor. 46

in [196]), with the difference that our proof holds for Euclidean projection-based
stochastic subgradients. Let us compute

‖θ(k+1) − θ∗‖2 = ‖ϕ(θ(k) − a(k)ĝ(k))− θ∗‖2

≤ ‖θ(k) − a(k)ĝ(k) − θ∗‖2

= ‖θ(k) − θ∗‖2 − 2a(k) · (ĝ(k))T · (θ(k) − θ∗)
+(a(k))2 · ‖ĝ(k)‖2, (7.28)
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where the first inequality is due to Lemma 9. Thanks to cor 16 and Def. 13(
E[ĝ(k)|θ(k)]

)T
· (θ(k) − θ∗) =

(
ḡ(θ(k))

)T
· (θ(k) − θ∗) ≥ 0.

Recall that the number of arriving requests per time slot A(T ) is bounded, and
thus ‖ĝ(k)‖2 is bounded, i.e., ‖ĝ(k)‖2 ≤ c for some 0 < c <∞. Hence, applying
the expectation to (7.28)

E
[
‖θ(k+1) − θ∗‖2

∣∣∣θ(k)
]
≤ ‖θ(k) − θ∗‖2 + c(a(k))2. (7.29)

Defining the random variable

zk , ‖θ(k) − θ∗‖2 + c
∑∞
s=k(a(s))2,

it can be easily verified that (7.29) is equivalent to the inequality E[zk+1|zk, . . . , z1] ≤
zk. Consequently, {zk}∞k=1 is a supermartingale and converges almost surely to
a limit z∗. Recalling now one of the required properties of the step size sequence,
i.e., limk→∞

∑∞
s=k(a(k))2 = 0, we have that the sequence {‖θ(k) − θ∗‖2} also

converges to z∗ with probability one.

We now show by contradiction that the limit z∗ is equal to zero. If this were
not true, then one could find ε > 0 and δ > 0 such that, with probability δ > 0,
‖θ(k) − θ∗‖ ≥ ε for all sufficiently large k, and thus

∞∑
k=0

a(k) · (E[ĝ(k)|θ(k)])T · (θ(k) − θ∗) = +∞,

with probability δ, which would imply

E

[ ∞∑
k=0

a(k) ·
(
ḡ(θ(k))

)T
· (θ(k) − θ∗)

]
= +∞.

However, this would contradict the following relation (which is obtained by a
recursion on (7.28 and then applying the expectation))

E[‖θ(k+1) − θ∗‖2] ≤

‖θ(0) − θ∗‖2 − 2E

[
k∑
s=0

a(s) · (ĝ(s))T · (θ(s) − θ∗)

]
+

E

[
k∑
s=0

a(s) · ‖ĝ(s))‖2
]
,

as the left hand side cannot be negative. This proves the theorem.
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7.6 Optimality Gap

It is worthwhile to note that the minimizer θ∗ of L̄ over C∩RP≥0 may not coincide

with its minimizer θOPT over Θ for two reasons: i) K ′ < K and ii) θOPT is
forced to have integer components while θ∗ is can be a real vector. In what
follows we show that the optimality gap ‖θOPT − θ∗‖∞ is bounded by a small
number, compared to the number of cache slots available.

Lemma 18. The gap between the optimal solution θOPT and the configuration
θ∗ to which SDCP converges is ‖θ∗ − θOPT ‖∞ ≤ (3/2)P

Proof: We observe that θ∗ is the optimal solution of the continuous

Simple Allocation Problem (SAP), expressed as max
(
−
∑P
p=1 Lp(θp)

)
, subject

to
∑P
p=1 θp ≤ K ′ with θ ∈ RP≥0. K ′ usually referred to as volume and we denote

with SAPcont(K ′) the problem above. The integer version of the SAP, which we
denote by SAPint(K ′), is obtained from the problem above with the additional

constraint θ ∈ Zp. According to Cor. 4.3 of [198] there exists a solution θ̂ of

SAPint(K ′) such that ‖θ∗− θ̂‖∞ ≤ P . The solution of the integer SAP can be
constructed via the greedy algorithm presented in Sec. 2 of [198]. In our case,
it consists of iteratively adding storage slots, one by one, each time to the CP
whose miss intensity is decreased the most by using this additional slot. Based
on this, it is easy to verify that a solution θOPT can be obtained starting from
θ̂ and adding the remaining K − K ′ slots. Therefore, ‖θOPT − θ̂‖∞ ≤ P/2,
which implies

‖θOPT − θ∗‖∞ ≤ ‖θ∗ − θ̂‖∞ + ‖θOPT − θ̂‖∞ ≤ (3/2)P



Chapter 8

Performance of Caching of
Encrypted Content

In this chapter, we evaluate the performance of SDCP through simulations per-
formed in Octave. We first describe the evaluation scenario (Sec. 8.1) and show
how the convergence speed is impacted by the choice of the step size sequence
(Sec. 8.2). We then evaluate the sensitivity of SDCP to various system param-
eters (Sec. 8.3). Finally, recognizing that content catalogs are rarely static in
the real world, we investigate the expected performance in the case of changing
content catalogs (Sec. 8.4).

8.1 Evaluation Scenario

We consider a content catalog of 108 objects, in line with the literature [199] and
recent measurements [200]. We partition the catalog in disjoint sub-catalogs, one
per each CP. We assume that the content popularity in each sub-catalog follows
Zipf’s law with exponent α = 0.8, as usually done in the literature [201]. We use
a cache size of K ∈ {104, 105, 106} objects (which corresponds to cache/catalog
ratios of 10−4, 10−3 and 10−2 respectively). In practice, the request arrival rate
may depend on several factors such as the cache placement in the network hier-
archy, the level of aggregation, the time of day, etc. Without loss of generality,
we set the request arrival rate to λ = 102req/s, according to recent measure-
ments performed on ISP access networks [200]. We compare the performance of
SDCP to that of the optimal allocation θOPT (Opt), and to that of the naive
solution in which the cache space K is equally divided among all the CPs and
is unchanged throughout the simulation (Unif ).

While we proved convergence of SDCP, the speed of convergence is crucial
to let the algorithm also be of practical use: we thus consider three step size
sequences, as follows. In the Reciprocal scheme, the step size is a(k) = a/k,

where a = 1
‖ĝ(1)‖ ·

K′

p . Observe that, with this choice, the Euclidean norm of
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Algorithm 2: Conditional Step Size Sequence Computation

a = p

‖ĝ(1)‖1
· K
′

p

b = a/10
if k ≤ kBS ; // Bootstrap Phase

then

a(k) = a
else if k ≤M ; // Adaptive Phase

then

Compute the miss-ratio m(k) during the current iteration
Compute m5th, i.e. the 5th percentile of the previous miss ratios
m(1), . . . ,m(k−1)

â(k) = a(k−1)/2

ã(k) = a(k−1) − a(k−1)−b
M−k+1

a(k) =

{(
min(â(k), ã(k)), b

)
m(k) ≤ m5th

ã(k) otherwise

else

a(k) = a(k−1) ·
(

1− 1
(1+k)

) 1
2
+ε

; // Moderate Phase

end

the first update a(1) · ĝ(1) is K′

p . This step size allows to change this amount of
slots in the allocation, thus obtaining a broad exploration of the cache allocation
space at the very beginning.

In the Moderate scheme, step sizes decrease slowly, to avoid confining the
exploration only to the beginning. We resort to guidelines of [202], and define

the step size as a(k) = a(k−1) ·
(

1− 1
(1+M+k)

) 1
2 +ε

, where a is computed as above

andM, ε are positive constants, which can be tuned to modify the decrease slope.

The third step size sequence, which we refer to as Conditional, is defined in
Alg. 2. It consists of a Bootstrap phase (up to iteration kBS) in which step sizes
remain constant, thus allowing broad exploration. Then an Adaptation phase
follows, up to iteration M , in which step sizes decrease, by default, linearly
from an initial value a to a final value b. This decrease is steeper than linear
when the miss ratio measured at the current iteration is smaller than the 5-
th percentile of the miss ratio values observed so far. In this case the step
size is halved, unless it already equals b. The intuition behind this phase is
that we try to reduce the exploration extent every time we encounter a “good”
allocation, i.e., an allocation that shows a small miss ratio compared to what we
experienced so far. Note that we do not start immediately with the Adaptation
phase, since we need to collect enough samples during the Bootstrap phase in
order to correctly evaluate the quality of the current allocation. Finally, we
continue with a Moderate phase, in which step sizes are updated as above and
are asymptotically vanishing, thus guaranteeing convergence.



8.2. CONVERGENCE 133

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

0 1 2 3 4

C
ac

h
e 

A
ll

o
ca

ti
o
n
 (

%
)

Time (h)

CP1 CP2 CP3 CP4

A
v
g

O
p
t

U
n
if

Figure 8.1: Evolution of the allocation of cache slots across CPs, with cache size K =
105 and Conditional step sizes. The three bars on the right represent the component-
wise average of the allocated slots under SDCP allocation with Conditional steps
(Avg), the Optimal (Opt) and Uniform (Unif) allocations.

After a preliminary evaluation, we set ε = 1/100 as in [202] and b = a/10. We
set kBS and M , i.e., the duration of the bootstrap and adaptive phases, to the
number of iterations in 6 minutes and 1 hour, respectively. While the duration of
these phases is clearly tied to the arrival rate, and are expected to require tuning
when ported to a different scenario, we point out that performance achieved with
these choices remains satisfying under the different scenarios we consider.

8.2 Convergence

We first consider a cache size of K = 105 and 4 CPs, receiving 13%, 75%, 2%
and 10% of requests, respectively. From Fig. 8.1, we can observe that, after
a first exploration phase, the algorithm converges to a stable allocation. It
is interesting to note that the average allocation (Avg), which is obtained by
averaging each component of the allocation vector throughout the iterations, is
very close to the optimal one, unlike the näıve uniform allocation policy.

Second, we consider a larger scenario with cache size K = 106 and p = 10
CPs, one of which we is a popular CP, to which 70% of requests are directed,
followed by a second one receiving 24% of requests, other 6 CPs accounting for
1% each and the remaining two CPs receiving no requests. Fig. 8.2 shows the
step sizes and the inaccuracy of the algorithm, i.e. the distance to the optimal
allocation, measured as:

Error(θ) ,
‖θOPT − θ‖∞

K
=

maxj=1...p |θp − θOPTp |
K

(8.1)

Observe that Reciprocal steps decrease too fast, which immediately limits
the adaptation of the allocation, significantly slowing down convergence. Con-
versely, Moderate steps remain large for an overly long time, preventing the



134CHAPTER 8. PERFORMANCEOF CACHINGOF ENCRYPTED CONTENT

1.10
6

2.10
6

3.10
6

4.10
6

S
te

p
 S

iz
e

Reciprocal
Moderate

Conditional
Unif

         0
        10
        20
        30
        40
        50
        60
        70
        80

 0  5  10  15  20  25  30  35

E
rr

o
r 

(%
)

Total Time (min)

Figure 8.2: Error and step size sequence with cache size K = 106.

algorithm to keep the allocation in regions that guarantee good performance.
Conditional steps show the best performance since in the Adaptation phase the
step sizes are sharply decreased if the current allocation is providing a small
miss ratio.

8.3 Sensitivity Analysis

We next study how the performance of SDCP is affected by the algorithm pa-
rameters and the scenario. We first focus on the time slot duration T . On the
one hand, a small T implies that only few requests are observed in each time
slot, which may result in a high noise +ε(k),− ε(k), and ultimately affects the
accuracy of the update. On the other hand, a large T decreases the measure-
ment noise, but allows updates to be made less frequently, which possibly slows
down convergence.

To evaluate the impact of T , Fig. 8.3 shows the miss ratio measured over 1h
for the default scenario. We consider SDCP with the three step size sequences,
and compare it to the Uniform and to the Optimal allocations as benchmarks.
The figure shows that SDCP with the Conditional step size sequence enhances
the cache efficiency significantly. We also observe that an iteration duration
of T = 10s (corresponding to 100 samples on average per CP) represents a
good compromise between a more accurate miss ratio estimation based on more
samples (with large T ) and a larger number of iterations at the cost of lower
accuracy (with small T ).

Fig. 8.4 shows the cache miss rate measured over 1h for a time slot length
of T = 10s and for various cache sizes K ∈ {104, 105, 106} and arrival rates
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Figure 8.3: Impact of time-slot duration T on the average miss ratio (bars represent
the 95% confidence interval over 20 runs).

λ ∈ [1, 104]. The figure confirms that the gains of SDCP hold for different
cache sizes, and shows that the gain increases for large caches. To interpret the
results for different arrival rates, recall that for any given time slot duration T ,
the average request rate affects the measurement noise. Fig. 8.4 confirms that
the miss rate increases when the measurement noise is higher, i.e., for lower λ,
but it also shows a very limited impact: the number of time slots in a relatively
short time (in 1h, there are 360 time slots of duration T = 10s) allows SDCP to
converge to a good cache configuration, in spite of the noise and the consequent
estimation errors.

8.4 Changing Content Popularity

Recent studies [203] have observed that the catalog statistics vary over time. We
show in this section that in order for SDCP to be robust to these variations, it
suffices to periodically reinitialize the step sequence. To model changing content
popularity, we adopt the model of [203], in which each object is characterized
by a sequence of ON and OFF periods, with exponentially distributed duration
TON and TOFF , respectively. At each time instant, an object can be ON or
OFF, and only ON objects attract requests. As in [203], we set the catalog size
to 3.5 · 106 and the cache size to K = 104 objects. We set the average ON
and OFF duration to 1 and 9 days, respectively. On average, we maintain the
overall request rate of active objects equal to our default value λ = 100req/s.

In Fig. 8.5 we compare Unif and Conditional(τ) that reinitialize the step
sequence every τ amount of time. We consider τ ∈ {3h, 1d,∞}, i.e., 8 reini-
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Figure 8.4: Miss rate measured over 1h for various average request rates λ and cache
sizes K.

tializations per day, daily reinitialization, or no-reinitialization, respectively.
As expected, reinitialization improves cache efficiency. Indeed, already after
3 hours of simulation, the evolution of the catalog misleads Conditional and
Conditional(1d) (that overlap in this time interval) causing them to have per-
formance worse than Unif. This is expected, since Conditional(∞) tries to
converge to the optimal allocation, which is problematic in a non-stationary
scenario. At the same time, it also shows that reinitializing step sequences as
in Conditional(3h) is sufficient to respond to the catalog dynamics.
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Summary

One of the main challenges of in-network caching nowadays is its incompatibility
with encrypted content. Our work represents a first step in solving this chal-
lenge by proposing a simple and therefore appealing system design: Stochastic
Dynamic Cache Partitioning requires solely the knowledge of aggregated cache
miss-intensities, based on which it provably converges to an allocation with a
small optimality gap. Simulation results show the benefits of the proposed al-
gorithm under various scenarios, and results obtained under complex content
catalog dynamics further confirm the algorithm to be applicable in scenarios of
high practical relevance.
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Part IV

Conclusion
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Chapter 9

Summary of our
Contribution

Network caching is one of the most promising techniques (i) to cope with the
Internet traffic deluge, (ii) to meet the increasing expectation of the users in
terms of quality of experience and (iii) to help ISPs and CPs contain their cost
incurred to fulfill (i) and (ii). Nonetheless, most of the work in the current
literature is about incremental improvements of proposals conceived during the
90s, when the Internet was very different from today’s. Starting from this
observation, we aim to provide new viewpoints on the subject in order to make
caching i) efficient in enhancing the metrics that are the most relevant for the
actors of the Internet, in particular ISPs and users, ii) suitable for the type of
data that largely dominates the traffic today, i.e. video and iii) feasible and
harmoniously integrated in the ecosystem.

In this thesis, we tackled three problems that are tightly coupled with the
goals above, namely i) the reduction of the ISP operational cost, ii) caching
decisions to properly handle the different quality representations available for
videos and iii) caching of content encrypted by CPs, to maintain the secrecy of
their business-sensitive information. Overall, we showed that network caching is
a flexible tool whose benefits go beyond the classic hit ratio maximization, the
hop reduction and the latency minimization, classically studied in the literature.

9.1 Cost Reduction

Part I is devoted to the problem of minimizing the inter-domain traffic cost for
ISPs. When an ISP with caching capabilities receives a request for an object, it
can serve it with a replica cached inside its network or, if no replica exists, it must
retrieve it generating traffic on some inter-domain link. The ISP pays for the
traffic generated there. Previous work has mainly aimed to maximize hit ratio
and, as a consequence, minimize the inter-domain traffic. At first sight, cost
minimization may appear as a direct consequence. We showed that it may not
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be true, due to the price heterogeneity among inter-domain links. Indeed, there
are links regulated by settlement-free agreements, which can be used for free,
and other links with different prices. Therefore, blindly reducing traffic across
all of them do not bring all the potential saving. We showed that there is a trade-
off between hit ratio maximization and cost reduction. In other words, if we
manage to deploy a cache strategy that maximizes hit ratio, we are necessarily
losing in terms of cost saving. Intuitively, to achieve cost minimization, we must
preferentially store the expensive objects, i.e. the ones that we can only retrieve
from expensive links. To show this trade-off we provide an optimization model
and a greedy algorithm to solve it. While hit ratio maximization is achieved
by storing the most popular object, cost minimization is obtained by storing
the objects with the highest product of price and popularity. Doing this would
require an omniscient offline policy that knows in advance the popularity of
all the objects, which is unrealistic. For this reason, we also devised an online
caching policy, which is distributed and stateless, each node taking decisions
every time it is traversed by an object, independently from the other nodes and
the previous objects observed. In more detail, we proposed a metacaching policy
that accepts each objects with a probability proportional to its price. We gave
a probabilistic model of our policy and compare it with simulation results to
check its accuracy. We showed by means of large scale simulation that the online
policy approximates the optimal solution and that the achieved cost saving is
remarkable.

9.2 Caching of Video

In the second part we studied caching mechanisms specifically tailored for video
delivery. Video represents most of the Internet traffic and is cacheable by na-
ture. Therefore, caching is potentially particularly beneficial if applied to it.
Nonetheless, video delivery is more complex than other types of transmission,
in that we do not simply have to move video frames from the source to the users,
but we have to move them in a “proper” way, with the appropriate quality level
and the appropriate timeliness. These transmissions are regulated by intelligent
control mechanisms, which are mostly conceived without having caches in mind.
Therefore, the interaction between such mechanisms and caches is not easy to
capture and to manage. More importantly, except some recent effort, caching
and video delivery have not been jointly studied and have been investigated by
different communities. As a consequence, caching mechanisms are not typically
tailored for video. The main impairement lies in the basic assumptions: classic
caching assumes that a user request can be satisfied by one and only one file.
This assumption does not hold in the context of video delivery. Indeed, a video
can have different representation, i.e. different files at different bit-rates and
resolutions. Therefore, it is no more sufficient to decide whether to cache or not
an object, since we must also select one of the available representations. To this
aim, we introduced the representation selection problem as a new dimension
to the cache design space. We first provide a MILP that jointly decides which
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objects to cache in a network of nodes, at which location, which representation
to select and how to route objects toward users. The objective is to maximize
the overall user utility, which depends on the quality served to users and is con-
strained by the limited available storage and link capacities. We obtained the
optimal solution by running the MILP on a solver and we evaluated the perfor-
mance, which represents the theoretical bound achievable. We also studied the
structural properties of the optimum, learning two important and simple guide-
lines: i) we must not cache all the representations of the objects (that is what
CDNs likely do), but just the “right” ones and ii) the right representation of a
certain object depends on its popularity: cached quality must decrease with the
popularity. As discussed above, the optimum obtained from the MILP can be
seen as an offline policy, which is not implementable in reality. We thus devised
an online caching policy that can be implemented in a real network of caches.
To summarize its functioning, every time a request arrives for a video in the
cache, the cache itself, apart from satisfying the request, issues another request
for an improved representation of the same video. We checked, by means of
simulation, that at regime the cache breakdown of this policy approximates the
optimal one, i.e. it tends to cache at higher quality the objects that are more
popular. We also explore by means of large scale simulation the trade-off be-
tween bandwidth and user utility: in order to provide the maximum utility, we
risk to incur in a too large bandwidth usage, which may imply an excessive cost.
We showed in our simulation that our online policy manages to find a balance
balance between these metrics, guaranteeing a satisfying utility without having
excessive bandwidth requirements.

9.3 Caching of Encrypted Content

Finally, we observed that the applicability range of classic caching techniques is
becoming smaller and smaller due to the increasing adoption of HTTPS. Indeed,
classic techniques require the visibility of the user requests and of the objects
being sent. Given that most of the traffic is encrypted by the CPs and thus
opaque to ISPs, the ISP cannot perform any cache operation. To solve this
problem, we proposed Content Oblivious caching, whose contribution consist in
the architecture and the algorithm to manage it. In more detail, in our vision
caching is a service that ISP can provide to CPs. The cache space is partitioned
in separated segments, each assigned to a CP. The CP can exclusively control
its segment via a remote proxy process running on the cache server. All the
objects are stored encrypted, with only the proxy of the respective CP being
able to decrypt it. This allows at the same time CPs to maintain their exclu-
sive control on their content and ISPs to enjoy the benefits of caching. This
architecture let an interesting problem arise: how to allocate the cache space to
the different CPs. Clearly, assigning the same space to all the CPs is inefficient,
due to the difference in their catalog popularities. For this reason we devised a
cache partitioning iterative algorithm, which, by only observing the miss rate,
continuously adjusts the allocation. We analytically proved, leveraging stochas-
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tic subgradient-based techniques, that the algorithm converges boundedly close
to the optimum, i.e. the allocation that guarantees the highest overall hit ratio.
By means of simulation, we studied the performance of the algorithm, showing
that it converges in an amount of time sufficiently small to permit to adapt to
a time-changing catalog popularity. We also performed a study on the set up of
the algorithm parameters, in order to get the best performance.

9.4 Final Remarks

Overall, we showed that, despite its more than twenty years of history, network
caching still offers interesting research challenges, also very relevant for the
business of the Internet companies.



Chapter 10

Discussion and Future
Work

We point out that the goal of our research was not to provide ready-to-use solu-
tions for production networks, but to reveal a potential of network caching that
has not been sufficiently investigated so far. In other words, we are not aiming
at enhancing techniques that already exist and are already mature. Rather,
we provide new viewpoints on the caching problem and novel mechanisms (as
repeatedly acknowledged during the process of peering review of our articles),
which, as such, are not necessarily meant to be self-complete and represent the
first step in their respective directions. In this chapter, we discuss and somehow
“criticize” our proposals in order to reason about what the next steps should
be toward their real deployment.

Before going into the details of the single proposal, we emphasize that we
tackled three problems (each corresponding to a part of this thesis) separately
and proposed independent respective solutions. Since we repeatedly claimed in
this thesis that each of these problems are relevant, we would not support in a
real network the adoption of the proposals in isolation. Rather, we would envis-
age to deploy them jointly. For this reason, an interesting future research direc-
tion would be to combine the three proposals together. For example, in Part I
we only target cost minimization and we ignore the fact that objects, video in
particular, have multiple representations. On the other hand, in Part II we
aim to maximize user utility, ignoring the heterogeneity of inter-domain link
prices. It would be interesting to investigate the trade-off that we expect to
have between cost and user utility. Along this direction, we just examined the
trade-off between the bandwidth and the user utility in Sec. 6.3 but considering
bandwidth reduction, blindly across all the links and not considering their price,
is not enough to include the cost into the picture, as already showed in Part I.
Similarly, while in Part III we maximize hit ratio, we could embed there the
user utility and the cost. These are all interesting future direction of our re-
search that, furthermore, could also turn the research in a solution ready to be
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deployed on production networks. At the same moment, we do not regret the
choice of having tackled the problems separately, as it was the only way to make
them emerge clearly and to give strong, clean and simple claims about them.

It is unavoidable in research to start from simplifying assumptions, to make
problems formalizable and tractable. As future research, we can incrementally
remove them in order to obtain a more fine-grained description of the reality.
In what follows, we individuate some details that could be added to our models.
As an example, we assume all over this thesis that the objects have the same
size, which is an assumption of most work on caching, but which does not hold
in reality. We could study the impact of considering the size of the objects. We
now highlight the possible improvement on each of the three proposals.

10.1 Cost Reduction

In Part I we suppose the cost of the inter-domain traffic on a certain link is
proportional to the number of objects sent, which is an assumption of most
related work. In reality, more complex price models rule payment between ISPs
(like the 95% price model), which we could embed in our models.

In Chapter 3, we also look at the cache as a monolithic system, without
considering how it is deployed, whether it is a unique server or a network of
cache servers and, in the latter case, where these servers are placed and what
are the bandwidth limits of the links connecting them. We could enrich our
formulation by taking these other aspects into account.

Moreover, there are other techniques, orthogonal to caching, aimed at cost
reduction, like the ones commented in Sec. 2.5.4. We could investigate if asso-
ciating our caching techniques with them would further improve cost reduction
capabilities or, on the contrary, some conflict among them would emerge. An-
other possible enhancement could be combining our metacaching policy with
some cost-aware replacement policy.

In Part I, an intra-domain view is provided. All the nodes of the considered
topologies are routers or caches inside an ISP boundary. We could zoom-out
our study to observe what is the result of applying our intra-ISP policies to a
network of ISPs. The analysis should also take into account the heterogeneity
between ISPs. Indeed, as already pointed out in Sec. 2.1.2, only Local ISPs
(and not Transit ISPs) have interest in caching. Moreover, we consider in this
part a stationary popularity, while we could evaluate the performance in case
of time-varying popularity, like we did in Sec. 8.4, when studying the problem
of caching encrypted content.

We also point out that in this thesis we consider cache space to be a fixed
value. We could instead consider the amount of storage as a variable. We could
investigate how to choose the right amount, considering the cost of deployment
and the advantages in terms of inter-domain traffic cost reduction and better
service to users. We could also model the competition between ISPs, taking
into account the possible abandonment of users toward other ISPs, in case of
poor service, which is expected to represent an incentive to deploy caches.
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10.2 Caching of Video

As for Part II, we assume that all the ISPs collaborate sharing their cache
storage with no fees. It would be interesting to study the incentive of forming
ISP coalitions or to revisit our model putting payment among ISPs into the
picture. We could also investigate how cache content differentiates with respect
to the node position in the network, due to the interaction and the filtering effect
of neighbors. Moreover, while we assume that all the ISPs use the same cache
policy, we could examine the case where policies are heterogeneous. As for the
goal, we already discussed that fairness concerns may arise, due to the fact that,
in order to increase the overall perceived utility, we must privilege the popular
content, while serving the rest at lower quality. We could investigate more
on this aspect especially considering that our MILP is suitable for this sort of
investigation, being flexible enough to, for example, impose a minimum quality
threshold to be met. As regards our online representation aware policy, QImpr,
it forces the cache to issue a new request every time an object is requested and
is not yet stored at the highest quality. Even a very unpopular object, requested
just once, triggers this cache-generated request. We plan to consider to let the
cache issue such requests not always, but with a certain probability. In this
way, only the requests of popular objects have sufficient chances to trigger the
cache-generated requests. This is expected to i) limit the overhead due to the
transmission of such requests and the related objects retrieved and ii) reduce
the number of cache replacements due to the arrival of the objects downloaded
as a consequence of those cache-generated requests.

We also assume that the user perception is only related to the bit-rate of the
video, independently from its category, while in the related literature it has been
discovered that the perception changes depending on whether a video is about
sport, or a documentary, an action movie or a drama. We also suppose that the
devices from which users consume multimedia content are homogeneous, which
is not true, given the widespread access from smartphones, tablets, desktop
computers, HD televisions, etc. The utility perceived at a certain bit-rate when
using a smartphone is different from when using a HD television. We could
refine our model in order to take into account such heterogeneity.

Moreover, we could compare our results with other mechanisms based on
Scalable Video Coding (SVC), in which each video chunk is decomposed in a
base layer and several enhancement layers. If only the base layer is available,
the video will be watched at low quality, and will improve if the additional layers
are available. SVC is not widely used in current video distribution due to the
overhead it imposes and its complexity. Nonetheless, it would be interesting to
check if these negative aspects are compensated by a clear improvement in the
user perceived utility.

Another contribution we could give to the scientific community is to refine
the code of QImpr and make it available in a new version of the open source
software ccnSim (like we did for the cost-aware caching), in order to help other
researchers to investigate the caching of videos.
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The most important point of improvement that we recognize regards the
online policy, QImpr. Our goal in providing it was to show that the represen-
tation selection problem is addressable with implementable policies, but we are
aware that our design needs to be enriched a lot before being deployable in real
networks. The most relevant weakness is the lack of any control mechanism
that takes into account the available bandwidth of the traversed links and the
congestion condition. Therefore, the quality that is served to users is not dic-
tated by bandwidth measures, but is “cache-driven”, in that we serve to users
the quality that is available on the cache, if any, otherwise we just serve the
minimum. This may not always be the smartest choice. For example, suppose
that links are completely unoccupied and that it would be possible to transmit
across them all the requested objects at the highest quality. With QImpr, this
is not immediately possible, as the first time an object is requested, it is served
at the lowest quality, despite the availability of a larger bandwidth. Another re-
lated weakness is that, not taking into account the bandwidth available but only
the cache content, QImpr may try to retrieve objects stored at high quality in
a cache, even if the capacity available on the downstream link is not sufficient.
All these problems could be addressed enriching QImpr with control mecha-
nisms. We think that this could open other interesting problems related to the
transmission of objects with different representations and available at different
locations. We think the best way to evaluate such enriched QImpr would be
the realization of a small testbed, with some real player downloading chunks
and some real server serving them. The framework offered by TAPAS [204] is
an excellent framework for such experimentation. By means of such testbed,
we could also consider other metrics, like the probability of video reproduction
stalls, which we have neglected in this thesis, although they are relevant in
determining user perception.

10.3 Caching of Encrypted Content

In Part III, we suppose that each CP knows its most popular objects and it is
able to place them in the assigned slots. This is an ideal assumption. We plan
to extend our analysis removing it. We could,, for example, suppose that CPs
have no information about the popularity, and they handle their allocated cache
space with an online policy, like LCE and LRU (see Sec. 2.3.2). If we find that
the expected miss-stream, computed via Che’s approximation (see Sec. 4.2),
respects the convexity assumptions we needed for the proof of the convergence
of our SDCP algorithm (Chapter 7), we may be able to affirm that the algorithm
still converges to the optimum.

Moreover, we can further improve the speed of convergence of the algorithm.
Indeed, as it was presented in Part III, the algorithm has to learn the CP popu-
larities from scratch. We are working on a revised version of our mechanism, in
which the CPs declare the popularity of their catalog and the ISP can immedi-
ately compute the optimal allocation based on these declarations. The problem
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to solve is to convince CPs to communicate truthful declarations, which can be
formalized in a game theoretical framework.

More generally, even if we tackle the specific problem of cache allocation
across multiple CPs, the mechanism we proposed in Chapter 7 can be in gen-
eral applied to the problem of minimizing a separable multi-variable convex
functions. In the future we plan to analyze our algorithm under this more gen-
eral light, showing that it performs better than other approaches that do not
exploit separability (like [205]), extending for example the theoretical analysis
of the convergence time of Chapter 5 of [202]. Our goal would be to make
our algorithm a stochastic optimization tool to be used in automatic control
problems, apart from the application that we presented here in Part III.

10.4 Beyond the Tackled Problems

It would be wrong to affirm that we covered in this thesis all the open problems
on network caching. First, we expect some margin for improvement for the
classic caching strategies. In particular, we would be interested in investigating
the offline vs. online caching strategy duality (see Sec. 2.3). The former assumes
that we know everything about content popularity, the latter assume we know
nothing. We believe that the former is too optimistic, while the latter is too
pessimistic. In reality, the a-priori knowledge lies somewhere in the middle.
Content Providers cannot exactly predict the future requests but, at least, they
have some information. For example Youtube can exploit its huge historical
data to this aim. Therefore, instead of considering pure offline policies vs.
pure online policies, we could consider a hybrid policy, which is able to exploit
the partial information on content popularity. An architecture like the content
oblivious one, proposed in Part III, is a good candidate to permit these kinds
of policies, since it leaves the caching decisions to the CPs, thus allowing them
to exploit their knowledge about the popularity of their content.

More importantly, caching may still have potential to achieve other goals,
apart from the ones classically investigated in the ones examined in this thesis
(cost reduction and user utility improvement). The most interesting contribu-
tion we expect from the research in network caching lies indeed, we believe,
in proposing these new achievable goals. We expect these goals to naturally
emerge due to the evolution of the Internet, like it was for the problems we
decided to tackle. Summarizing, we expect network caching technique to con-
tinuously evolve, as long as the Internet evolves.
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[104] N. Zhang, T. Levä, and H. Hämmäinen, “Value networks and two-sided
markets of Internet content delivery,” Telecommunications Policy, vol. 38,
no. 5-6, pp. 460–472, may 2014.

[105] A. Dhamdhere and C. Dovrolis, “The Internet is Flat: Modeling the Tran-
sition from a Transit Hierarchy to a Peering Mesh,” in ACM CoNEXT,
2010.

[106] E. Limer, “This Box Can Hold an Entire Netflix,” 2013. [Online].
Available: gizmodo.com/this-box-can-hold-an-entire-netflix-1592590450

[107] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung, “Cache
in the Air : Exploiting Content Caching and Delivery Techniques for 5G
Systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 131–139,
2014.

[108] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, and A. Ghodsi, “Less Pain ,
Most of the Gain: Incrementally Deployable ICN,” in ACM SIGCOMM,
2013.

[109] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache “Less for More” in
Information-centric Networks,” in IFIP Networking, 2012.

[110] G. Rossini and D. Rossi, “Evaluating CCN multi-path interest forwarding
strategies,” Computer Communications, vol. 36, no. 7, pp. 771–778, apr
2013.

[111] C. Barakat, A. Kalla, D. Saucez, and T. Turletti, “Minimizing Bandwidth
on Peering Links with Deflection in Named Data Networking,” in ICCIT,
2013.

gizmodo.com/this-box-can-hold-an-entire-netflix-1592590450


BIBLIOGRAPHY 163

[112] Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie, “Optimal Cache Alloca-
tion for Content-Centric Networking,” ICNP, 2013.

[113] J. Kangasharju, J. Roberts, and K. W. Ross, “Object replication strategies
in content distribution networks,” Computer Communications, vol. 25,
no. 4, pp. 376–383, 2002.

[114] S. Zaman and D. Grosu, “A Distributed Algorithm for the Replica Place-
ment Problem,” IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 22, no. 9, pp. 1455 – 1468, 2011.

[115] N. Laoutaris, O. Telelis, V. Zissimopoulos, and I. Stavrakakis, “Dis-
tributed Selfish Replication,” IEEE Transactions on Parallel and Dis-
tributed Systems (TPDS), vol. 17, no. 12, pp. 1401–1413, dec 2006.

[116] M. Badov, A. Seetharam, and J. Kurose, “Congestion-Aware Caching and
Search in Information-Centric Networks,” in ACM SIGCOMM ICN, 2014.

[117] G. Carofiglio, L. Mekinda, and L. Muscariello, “LAC: Introducing
Latency-Aware Caching in Information-Centric Networks,” in IEEE LCN,
2015.

[118] M. Mangili, F. Martignon, and A. Capone, “A Comparative Study of
Content-Centric and Content-Distribution Networks: Performance and
Bounds,” in IEEE Globecom, 2013.

[119] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching Algorithms,” in
Usenix symposium on internet technologies and systems, 1997.

[120] P. Marchetta, J. Llorca, A. M. Tulino, and P. Antonio, “MC3: A Cloud
Caching Strategy for Next Generation Virtual Content Distribution Net-
works,” in IFIP Networking, 2016.

[121] N. E. Young, “The K-Server Dual and Loose Competitiveness for Paging,”
Algorithmica, vol. 11, no. 6, pp. 525–541, 1994.

[122] C. Li and A. L. Cox, “GD-Wheel: A Cost-Aware Replacement Policy for
Key-Value Stores,” in EuroSys, 2015.

[123] V. Pacifici and G. Dan, “Content-peering Dynamics of Autonomous
Caches in a Content-centric Network,” in IEEE INFOCOM, 2013.

[124] T. Pham, S. Fdida, and P. Antoniadis, “Pricing in Information-Centric
Network Interconnection,” in IEEE IFIP Networking, 2013.

[125] F. Kocac, G. Kesidis, T. Pham, and S. Fdida, “The effect of caching on
a model of content and access provider revenues in information-centric
networks,” in IEEE SocialCom, 2013.



164 BIBLIOGRAPHY

[126] G. Dan, “Cache-to-Cache: Could ISPs Cooperate to Decrease Peer-to-
peer Content Distribution Costs?” IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 22, no. 9, pp. 1469–1482, 2011.

[127] I. Castro, S. Member, R. Stanojevic, and S. Gorinsky, “Using Tuangou
to Reduce IP Transit Costs,” IEEE/ACM Transactions on Networking,
vol. 22, no. 5, pp. 1415–1428, 2014.

[128] D. DiPalantino and R. Johari, “Traffic Engineering vs. Content Distribu-
tion: A Game Theoretic Perspective,” in IEEE INFOCOM, 2009.

[129] K. Katsalis, V. Sourlas, T. Papapioannou, T. Korakis, and L. Tassiulas,
“Content Placement in Heterogeneous End-to-End Virtual Networks,” in
ACM Symposium On Applied Computing (SAC), 2015.

[130] S. Yun, D. Kim, X. Lu, and L. Qiu, “Optimized Layered Integrated Video
Encoding,” in IEEE INFOCOM, 2015.

[131] L. Toni, R. Aparicio-pardo, G. Simon, A. Blanc, and P. Frossard, “Opti-
mal Set of Video Representations in Adaptive Streaming Categories and
Subject Descriptors,” in ACM MMSys, 2014.

[132] W. Jiang, R. Zhang-Shen, J. Rexford, and M. Chiang, “Cooperative con-
tent distribution and traffic engineering in an ISP network,” ACM SIG-
METRICS Performance Evaluation Review, vol. 37, no. 1, pp. 239–250,
2009.

[133] J. Roberts and N. Sbihi, “Exploring the Memory-Bandwidth Tradeoff in
an Information-Centric Network,” in IEEE ITC, 2013.

[134] S.-E. Elayoubi and J. Roberts, “Performance and Cost Effectiveness of
Caching in Mobile Access Networks,” in ACM SIGCOMM ICN, 2015.

[135] D. H. Lee, C. Dovrolis, and A. C. Begen, “Caching in HTTP Adaptive
Streaming : Friend or Foe ?” in ACM NOSSDAV, 2014.

[136] C. Liu, I. Bouazizi, M. M. Hannuksela, and M. Gabbouj, “Rate adapta-
tion for dynamic adaptive streaming over HTTP in content distribution
network,” Signal Processing: Image Communication, vol. 27, no. 4, pp.
288–311, apr 2012.

[137] G. Cofano, L. De Cicco, and S. Mascolo, “A Control Architecture for
Massive Adaptive Video Streaming Delivery,” in ACM VideoNext, 2014.

[138] Y. Sun, S. K. Fayaz, Y. Guo, V. Sekar, Y. Jin, M. A. Kaafar, and S. Uhlig,
“Trace-Driven Analysis of ICN Caching Algorithms on Video-on-Demand
Workloads,” in ACM CoNEXT, 2014.

[139] A. Begen, K. Streeter, I. Bouazizi, and F. Denoual, “MPEG DASH Re-
quirements for a webpush Protocol,” Tech. Rep., 2014.



BIBLIOGRAPHY 165

[140] “Open Caching: Problem Statement and Guiding Principles,” Streaming
Video Alliance, Tech. Rep., 2015.

[141] H. Xiong, X. Zhang, W. Zhu, and D. Yao, “CloudSeal: End-to-end content
protection in cloud-based storage and delivery services,” in Security and
Privacy in Communication Networks. Springer, 2012, pp. 491–500.

[142] N. Fotiou, G. F. Marias, and G. C. Polyzos, “Access control enforcement
delegation for information-centric networking architectures,” in ICN work-
shop on Information-centric networking, 2012, p. 85.

[143] M. S. Manasse, L. A. McGeoch, and D. D. Sleator, “Competitive algo-
rithms for server problems,” Journal of Algorithms, vol. 11, no. 2, pp.
208–230, 1990.

[144] R. Aparicio-Pardo, K. Pires, A. Blanc, and G. Simon, “Transcoding
live adaptive video streams at a massive scale in the cloud,” in ACM
MMSys, 2015. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2713168.2713177

[145] L. De Cicco, S. Mascolo, and V. Palmisano, “Feedback control for
adaptive live video streaming,” ACM MMSys, 2011. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1943552.1943573

[146] Y. Sánchez, C. Hellge, and T. Schierl, “Scalable Video Coding based
DASH for efficient usage of network resources,” in W3C Web and TV
Workshop, 2011.

[147] S. E. Elayoubi and J. Roberts, “Performance Evaluation of Video
Transcoding and Caching Solutions in Mobile Networks,” in ITC, 2015.

[148] D. K. Krishnappa, M. Zink, and R. K. Sitaraman, “Optimizing the video
transcoding workflow in content delivery networks,” in ACM MMSys,
2015, pp. 37–48. [Online]. Available: http://www.scopus.com/inward/
record.url?eid=2-s2.0-84942520755{&}partnerID=tZOtx3y1

[149] “Per-Title Encode Optimization,” 2015. [Online]. Available: http:
//techblog.netflix.com/2015/12/per-title-encode-optimization.html

[150] J. W. Kleinrouweler, S. Cabrero, R. Van Der Mei, and P. Cesar, “Model-
ing Stability and Bitrate of Network-Assisted HTTP Adaptive Streaming
Players,” in ITC, 2015.

[151] A. Finamore, “YouTube Everywhere: Impact of Device and Infrastructure
Synergies on User Experience,” in ACM SIGCOMM IMC, 2011.

[152] E. Thomas, M. O. V. Deventer, T. Stockhammer, A. C. Begen, and
J. Famaey, “Sand Dash,” Tech. Rep.

[153] C. a. Wood and E. Uzun, “Flexible End-to-End Content Security in CCN,”
in CCNC, 2014.

http://dl.acm.org/citation.cfm?id=2713168.2713177
http://dl.acm.org/citation.cfm?id=2713168.2713177
http://portal.acm.org/citation.cfm?doid=1943552.1943573
http://www.scopus.com/inward/record.url?eid=2-s2.0-84942520755{&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84942520755{&}partnerID=tZOtx3y1
http://techblog.netflix.com/2015/12/per-title-encode-optimization.html
http://techblog.netflix.com/2015/12/per-title-encode-optimization.html


166 BIBLIOGRAPHY

[154] X. Zhang, K. Chang, H. Xiong, Y. Wen, G. Shi, and G. Wang, “Towards
name-based trust and security for content-centric network,” in ICNP,
2011.

[155] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feldmann, B. M. Maggs,
J. Rake, S. Uhlig, and R. Weber, “Pushing CDN-ISP Collaboration to the
Limit,” ACM SIGCOMM CCR, vol. 43, no. 3, pp. 35–44, 2013.

[156] L. Muscariello, G. Carofiglio, and M. Gallo, “Bandwidth and storage shar-
ing performance in information centric networking,” ACM SIGCOMM,
ICN Workshop, 2011.

[157] M. Motiwala, A. Dhamdhere, N. Feamster, A. Lakhina, G. Tech, and
C. Guavus, “Towards a Cost Model for Network Traffic,” ACM SIG-
COMM CCR, vol. 42, no. 1, pp. 54–60, 2012.

[158] R. Stanojevic, N. Laoutaris, and P. Rodriguez, “On Economic Heavy Hit-
ters : Shapley value analysis of 95th-percentile pricing,” in ACM SIG-
COMM IMC, 2010.

[159] L. Gyarmati, R. Stanojevic, M. Sirivianos, and N. Laoutaris, “Sharing the
cost of backbone networks,” in ACM SIGCOMM IMC, 2012, p. 509.

[160] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, third edit ed. MIT Press, 2009, no. 2. [Online].
Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
2560149{&}tool=pmcentrez{&}rendertype=abstract

[161] “GNU Octave Web Page.” [Online]. Available: https://www.gnu.org/
software/octave/

[162] E. G. J. Coffman and P. J. Denning, “Probability Models of Computer
Sequencing Problems,” in Operating Sysytems Theory. Prentice-Hall,
1973, ch. 4, pp. 144–189.

[163] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approxi-
mation for LRU cache performance,” in ITC, 2012.

[164] G. Zipf, Human Behaviour and the Principle of Least Effort. Addison-
Wesley, 1949.

[165] M. E. J. Newman, “Power laws, Pareto distributions and Zipf’s law,”
Contemporary physics, vol. 46, no. 5, pp. 323–351, 2005.

[166] L. A. Adamic, “Zipf Power Law and Pareto: A Ranking Tutorial,”
2000. [Online]. Available: http://www.hpl.hp.com/research/idl/papers/
ranking/ranking.html

[167] V. Valancius, C. Lumezanu, N. Feamster, R. Johari, V. V. Vazirani, and
G. Tech, “How Many Tiers ? Pricing in the Internet Transit Market,” in
ACM SIGCOMM, 2011.

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2560149{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2560149{&}tool=pmcentrez{&}rendertype=abstract
https://www.gnu.org/software/octave/
https://www.gnu.org/software/octave/
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html


BIBLIOGRAPHY 167

[168] I. Psaras, W. K. Chai, G. Pavlou, and S. Member, “In-Network Cache
Management and Resource Allocation for Information-Centric Networks,”
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 25,
no. 11, pp. 2920–2931, 2014.

[169] E. Gelenbe, “A Unified Approach to the Evaluation of a Class of Replace-
ment Algorithms,” IEEE Transactions on Computers, vol. C-22, no. 6,
pp. 611–618, 1973.

[170] R. Fagint and T. G. Price, “Efficient Calculation of Expected Miss Ra-
tios in the Independent Reference Model,” SIAM Journal on Computing,
vol. 7, no. 3, pp. 288–297, 1978.

[171] B. Leonid and A. Yakov, “Some Results on Distribution-Free Analysis of
Paging Algorithms,” IEEE Transactions on Computers, vol. C, no. 7, pp.
737–745, 1976.

[172] R. Fagin, “Asymptotic Miss Ratios over Independent References,” Elsevier
Journal of Computer and System Sciences, pp. 222–250, 1977.

[173] I. Psaras, R. G. Clegg, R. Landa, W. K. Chai, and G. Pavlou, “Modelling
and evaluation of CCN-caching trees,” in Lecture Notes in Computer Sci-
ence, 2011, vol. 6640, pp. 78–91.

[174] J. Garcia-Reinoso, I. Vidal, D. Diez, D. Corujo, and R. L. Aguiar, “Anal-
ysis and Enhancements to Probabilistic Caching in Content-Centric Net-
working,” The Computer Journal, 2015.

[175] E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate Models for
General Cache Networks,” in IEEE INFOCOM, 2010.

[176] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems: mod-
eling, design and experimental results,” IEEE Journal on Selected Areas
in Communications, vol. 20, no. 7, pp. 1305–1314, sep 2002.

[177] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and S. Nic-
colini, “Temporal locality in today’s content caching,” ACM SIGCOMM
CCR, vol. 43, no. 5, pp. 5–12, nov 2013.

[178] M. Cha, H. Kwak, P. Rodriguez, Y.-y. Ahn, and S. Moon, “I Tube , You
Tube , Everybody Tubes : Analyzing the World ’ s Largest User Generated
Content Video System,” in ACM SIGCOMM IMC, 2007.

[179] H. H. Liu, Y. Wang, Y. R. Yang, H. Wang, and C. Tian, “Optimizing
cost and performance for content multihoming,” ACM SIGCOMM CCR,
vol. 42, no. 4, p. 371, sep 2012.

[180] “Sharp Website.” [Online]. Available: http://www.sharpusa.com/
ces-2015-recap.aspx

http://www.sharpusa.com/ces-2015-recap.aspx
http://www.sharpusa.com/ces-2015-recap.aspx


168 BIBLIOGRAPHY

[181] B. Niven -Jenkins, F. Le Faucheur, and N. Bitar, “Content Distribution
Network Interconnection ( CDNI ) Problem Statement,” IETF, Tech. Rep.
September, 2012.

[182] L. D. Cicco, V. Caldaralo, V. Palmisano, S. Mascolo, and S. Member,
“ELASTIC: a Client-side Controller for Dynamic Adaptive Streaming over
HTTP (DASH),” in IEEE Packet Video, 2013.

[183] H. Susanto, B. Kim, and B. Liu, “User Experience Driven Multi-Layered
Video Based Applications,” in IEEE ICCCN, 2015.

[184] A.-L. Barabasi and R. Albert, “Emergence of scaling in random networks,”
Science, vol. 286, no. 5439, pp. 509–12, 1999.

[185] D. Kahneman, Thinking, fast and slow. Macmillan, 2011.

[186] S. Deering, “Watching the Waist of the Protocol Hourglass,” in IETF51
Plenary Talk, 2001.

[187] D. Thaler, “Evolution of the IP Model,” in IETF73 Plenary Talk, 2008.

[188] I. Popa, Lucian and Ghodsi, Ali and Stoica, “HTTP as the Narrow Waist
of the Future Internet,” in ACM SIGCOMM HotNets Workshop, 2010.

[189] G. Barish and K. Obraczke, “World Wide Web caching: trends and tech-
niques,” IEEE Communications Magazine, vol. 38, no. 5, pp. 178–184,
2000.
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Titre : Conception et Évaluation de Systèmes de Caching de Réseau pour Améliorer la Distribution 
des Contenus sur Internet

Mots clés : Caching de Réseau ; Distribution des Contenus ; Optimisation de Réseau

Résumé : Le  caching  de  réseau  peut  aider  à
gérer  l'explosion  du  trafic  sur  Internet  et  à
satisfaire  la  Qualité  d'Expérience  (QoE)
croissante  demandée  par  les  usagers.
Néanmoins,  les  techniques  proposées  jusqu'à
présent  par la littérature scientifique n'arrivent
pas à exploiter tous les avantages potentiels. Les
travaux  de  recherche  précédents  cherchent  à
optimiser le hit  ratio ou d'autres métriques de
réseau,  tandis  que  les  opérateurs  de  réseau
(ISPs) sont plus intéressés à des métriques plus
concrètes,  par  exemple  le  coût  et  la  qualité
d'expérience  (QoE).  Pour  cela,  nous  visons
directement  l'optimisation  des  métriques
concrètes et montrons que, ce faisant, on obtient
des meilleures performances.
Plus  en  détail,  d'abord  nous  proposons  des
nouvelles techniques de caching pour réduire le
coût  pour  les  ISPs  en  préférant  stocker  les
objets qui sont les plus chères à repérer. 

Nous montrons qu'un compromis existe entre la
maximisation  classique  du  hit  ratio  et  la
réduction du coût.
Ensuite,  nous  étudions  la  distribution  vidéo,
comme  elle  est  la  plus  sensible  à  la  QoE  et
constitue  la  plus  part  du  trafic  Internet.  Les
techniques  de  caching  classiques  ignorent  ses
caractéristiques particulières, par exemple le fait
qu'une  vidéo  est  représentée  par  différentes
représentations, encodées en différents bit-rates
et résolutions. Nous introduisons des techniques
qui prennent en compte cela.
Enfin,  nous  remarquons  que  les  techniques
courantes assument la connaissance parfaite des
objets  qui  traversent  le  réseau.  Toutefois,  la
plupart  du trafic  est  chiffrée  et  du coup toute
technique de caching ne peut  pas fonctionner.
Nous proposons un mécanisme qui permet aux
ISPs de faire du caching, bien qu’ils ne puissent
observer les objets envoyés. 

Title : Design and Evaluation of Enhanced Network Caching Systems to Improve Content Delivery 
in the Internet

Keywords : Network Caching ; Content Delivery ; Network Optimization

Abstract  : Network  caching  can  help  cope
with today Internet traffic explosion and sustain
the demand for an increasing user Quality of
Experience.  Nonetheless,  the  techniques
proposed in the literature do not exploit all the
potential benefits. Indeed, they usually aim to
optimize  hit  ratio  or  other  network-centric
metrics,  e.g.  path  length,  latency,  etc.,  while
network operators  are  more focused on more
more practical metrics, like cost and quality of
experience. We devise caching techniques that
directly  target  the  latter  objectives  and  show
that this allows to gain better performance.
More  specifically,  we  first  propose  novel
strategies  that  reduce  the  Internet  Service
Provider  (ISP)  operational  cost,  by
preferentially caching the objects whose cost of
retrieval is the largest. 

We then focus on video delivery, since it is the
most sensitive to QoE and represents most of
the  Internet  traffic.  Classic  techniques  ignore
that  each  video  is  represented  by  different
representations,  encoded  at  different  bit-rates
and resolutions. We devise techniques that take
this into account.
Finally,  we  point  out  that  the  techniques
presented in  the  literature  assume the  perfect
knowledge of the objects that are crossing the
network. Nonetheless, most of the traffic today
is  encrypted  and thus  caching  techniques  are
inapplicable.  To  overcome  this  limit,  We
propose a mechanism which allows the ISPs to
cache, even without knowing the objects being
served. 
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