
An Ontology-based Context Model in Intelligent Environments

Tao Gu
2,1

, Xiao Hang Wang
2,1

, Hung Keng Pung
1
, Da Qing Zhang

2

1
Department of Computer Science, National University of Singapore, Singapore

2
Connected Home Lab, Institute for Infocomm Research, Singapore

gutao@comp.nus.edu.sg, xwang@i2r.a-star.edu.sg,
punghk@comp.nus.edu.sg, daqing@i2r.a-star.edu.sg

Keywords: Pervasive Computing, Context-awareness,
Context Model, Context Ontology, Context Reasoning

Abstract: Computing becomes increasingly mobile and
pervasive today; these changes imply that applications and
services must be aware of and adapt to their changing
contexts in highly dynamic environments. Today, building
context-aware systems is a complex task due to lack of an
appropriate infrastructure support in intelligent
environments. A context-aware infrastructure requires an
appropriate context model to represent, manipulate and
access context information. In this paper, we propose a
formal context model based on ontology using OWL to
address issues including semantic context representation,
context reasoning and knowledge sharing, context
classification, context dependency and quality of context.
The main benefit of this model is the ability to reason about
various contexts. Based on our context model, we also
present a Service-Oriented Context-Aware Middleware
(SOCAM) architecture for building of context-aware
services.

1 INTRODUCTION

The advanced deployment of wireless networks and
mobile devices is moving computing towards a new field
knows as pervasive computing in which devices and services
are seamlessly cooperated to support users’ tasks. Emerging
pervasive computing technologies provide "anytime,
anywhere" computing by decoupling users from devices and
viewing applications as entities that perform tasks on behalf
of users [1]. To avoid increasing complexity, and allow the
user to concentrate on his tasks, applications must be
capable to operate in highly dynamic environments.
Devices, services and agents in pervasive computing
environments must be aware of their contexts and
automatically adapt to their changing contexts - know as
context-awareness. By context, we refer to any information
that can be used to characterize the situation of an entity,
where an entity can be a person, place, or physical or
computational object [2].

Context-aware computing has been drawing much
attention from researchers since it was proposed about a
decade ago. A number of context-aware systems have been
developed to demonstrate the usefulness of this new
technology, such as Context Toolkit [3], HP’s Cooltown [4]
and MIT’s AIRE spaces [5], whereas some other systems are
still under research, such as Context Fabric [6], CoBrA [7]
and GAIA [8]. However, context-aware services have never
been widely available to everyday users. Building context-
aware systems is still a complex and time-consuming task
due to lack of an appropriate infrastructure or middleware-
level support. An appropriate infrastructure for context-
aware systems should provide support for most of the tasks
involved in dealing with contexts - acquiring context from
various sources such as physical sensors, databases and
agents; performing context interpretation; carrying out
dissemination of context to interested parties in a distributed
and timely fashion; and providing programming models for
constructing of context-aware services. To support these
tasks, a context model needs to be well established.

In this paper, we present a context model based on
ontology using OWL - Web Ontology Language [9] to
support various tasks in our context-aware middleware. It
supports semantic context representation by defining the
common upper ontology for context information in general;
and providing a set of low-level ontologies which apply to
different sub-domains. It models the basic concepts of
person, location, computational entity and activity; describes
the properties and relationships between these concepts. Our
context model captures various contexts by introducing a
classification scheme; captures relationships between
different context information by introducing dependency tag
to the property associated with a specified context class;
captures quality of context by annotating sensed context
with extensible quality constraints. It also supports the use
of different context reasoning engines to reason about
various contexts so that applications can be given a notion of
the confidence of different contexts before acting on it. In
this paper, we also present a Service-Oriented Context-
Aware Middleware (SOCAM) architecture for the building
and rapid prototyping of context-aware services in
intelligent environments.

The rest of this paper is organized as follows. Section 2
begins the discussion on related work. In section 3 we
review and discuss the OWL language. In Section 4 we
describe our modeling concept, followed by the architecture
design in Section 5. Finally, we conclude in section 6.

2 RELATED WORK
Much research has been done in the area of context-

aware computing in the past few years. In this section, we
review and discuss some important context models. We
classify the existing context models into three categories:

Application-oriented approach: Many existing context-
aware systems model and represent context only for specific
applications. These models typically are proprietary and
exploratory, and lack formality and expressiveness. The
HP’s Cooltown project proposed a web-based context model
in which each object (person, place and thing) has a
corresponding web description that can be retrieved using a
URL. The Context Toolkit project transmits low-level
context acquired from physical sensors to the form of XML-
encoded name-value pairs.

Model-oriented approach: This category of models
commonly uses conceptual modeling approaches to
represent context. A formal context model based on ER
model was proposed by several projects [10][11]; and
context can be easily managed with relational databases.
Henricksen et al. [12] model contexts and their additional
features (classification and temporal characteristics) using
both ER model and UML diagrams. This model was further
reformulated with the extended Object-Role Modeling
(ORM) [13].

Ontology-oriented approach: Some work in the field of
context-awareness ignore issues about quantitative concepts
including temporal characteristics and quality of context,
and focused more on constructing an ontology for context in
a specific domain to reach the goals of knowledge sharing
across distributed systems. The Comprehensive Structured
Context Profiles (CSCP) [14] was developed based on RDF
to represent context by means of session profiles. Chen et al.
defined a context ontology based on OWL to support
ubiquitous agents in their Context Broker Architecture
(CoBrA), this context ontology only covers contexts in
campus space, while has no explicit support for modeling
general contexts in heterogeneous environments.
Ranganathan et al. [8] developed a middleware for context
awareness and semantic interoperability, in which they
represented context ontology using DAML+OIL [15].

Of the above three categories, the application-oriented
approach lacks the formal basis and does not support
knowledge sharing across different systems. Though the
model-oriented projects support formality and some of them
capture temporal aspect of context information, they do not
address issues including knowledge sharing and context
reasoning. The ontology-oriented approach focuses on

context ontology and explores the potential capability of
context reasoning based on Semantic Web technologies.
However, the existing context ontologies lack of generality
and have not addressed important issues including context
classification, context dependency and quality of context
which will be useful in context reasoning. In this paper, we
present our ontology-based context model using OWL that
addresses these shortcomings.

3 OWL
OWL is a language for defining ontologies. Ontology is

referred as the shared understanding of some domains,
which is often conceived as a set of entities, relations,
functions, axioms and instances.

We have chosen OWL to realize our context model and
define our context ontologies for three reasons. First, it is
much expressive compared to other ontology languages such
as RDFS [16]. Second, it has the capability of supporting
semantic interoperability to exchange and share context
knowledge between different systems, i.e., contexts can be
exchanged and understood between different systems in
various domains; and enabling automated reasoning to be
used by automated processes. Last, we chose OWL rather
than DAML+OIL as DAML+OIL is merging into OWL to
become an open W3C standard.

4 AN ONTOLOGY-BASED MODEL
In this section, we will describe our design

considerations and modeling concepts, together with a
context-aware home scenario to be used to illustrate our
context model.

4.1 A Context-Aware Home Scenario

A context-aware home is a smart home environment
which is equipped with various networked sensors/actuator
devices such as cameras, microphones, RFID (Radio
Frequency Identification) based location sensors, X.10
curtain sensors, etc. In this section, we describe a typical
scenario in order to illustrate our modeling concept.

Daddy John carrying a cell phone has entered his house;
the face recognition system senses his presence and his
location information get updated. When John moves into the
bathroom to take a shower or goes to his bedroom for a nap,
his personal communication agent interprets his current
status by using the contexts acquired from various sensors
and decides to forward all phone calls to his voice mail box.

Mom Julia comes back from shopping with her baby girl
and her 5-years-old son -Tom. She settles down her baby in
the baby’s room, and then enters to the kitchen. An
audio/visual communication channel can be established
between the kitchen and her baby’s room. When she moves
around the rooms, the communication channel is able to
automatically switch and remain alive between Julia and her

baby. Thus, Julia is able to have a face-to-face talk with her
baby using the embedded video conferencing panel in each
room just like she is in her baby’s room.

Julia wants to have a Barbeque dinner outside the house
tonight. She quickly consults her meal arrangement agent
which is able to advise her whether it is possible. The meal
arrangement agent consults the networked fridge for
available food items based on their food preferences of all
family members and queries on an external weather service
for the weather condition tonight. After a while, she realizes
that the Barbeque dinner is not possible due to weather
condition. After dinner, when Julia sits on the sofa in the
living room and turns on the TV, the lighting begins to dim.

4.2 Design Considerations

A context-aware system requires context information to
be exchanged and used between different entities such as
users, devices and services in a same semantic
understanding. In other word, an appropriate context model
should support semantic interoperability which enables the
common schemas to be shared between different entities.
For example, in the above scenario, the representation of
John’s location should be understood between his personal
communication agent and his cell phone.

Context information exhibits a number of characteristics
in intelligent environments. First, context information has a
great variety. The definition of context includes any
information that describes physical objects, applications and
users in any domain. Second, context information varies in
different sub-domains. For example, we are more concerned
about device context such as fridge, TV and DVD player in
a home environment whereas workstation and PC in an
office environment. Third, context information is
interrelated. For example, in our scenario, Julia’s current
status (watching TV) are closely related to where she is
located (located at LivingRoom), where the TV is located
(located at LivingRoom), and her TV’s current status (ON).
Fourth, context information is inconsistent. For example, in
our scenario, Tom’s location context may quickly become
out-of-date when he is rushing into different rooms. Physical
sensors may also cause context conflict, for example, the
bedroom location sensor may sense Tom is not present in his
bedroom whereas the camera senses his presence.

4.3 Context Ontology

The basic concept of our context model is based on
ontology which provides a vocabulary for representing
knowledge about a domain and for describing specific
situations in a domain. Context ontology defines a common
vocabulary to share context information in a pervasive
computing domain; and include machine-interpretable
definitions of basic concepts in the domain and relations
among them. The main advantage of our context model is

sharing common understanding of the structure of context
information among users, devices and services to enable
semantic interoperability. It also enables reuse of domain
knowledge, i.e., building a large ontology by integrating
several ontologies describing portions of the large domain.
Most importantly, it enables formal analysis of domain
knowledge, for example, context reasoning becomes
possible by explicitly defining context ontology.

The context ontology should be able to capture all the
characteristics of context information. First, it is responsible
to capture a great variety of context. To capture various
contexts in a pervasive computing environment is indeed a
difficult task which many researchers face. As the pervasive
computing domain can be divided into a collection of sub-
domains such as home domain, office domain, vehicle
domain, open space domain, etc, it would be easy to specify
the context in one domain in which a specific range of
context is of interest. The separation of domain can also
reduce the burden of context processing and make it
possible to interpret context information on mobile thin
clients. Our context ontologies are divided into upper
ontology and domain-specific ontologies. The upper
ontology is a high-level ontology which captures general
context knowledge about the physical world in pervasive
computing environments. The domain-specific ontologies
are a collection of low-level ontologies which define the
details of general concepts and their properties in each sub-
domain. The low-level ontology in each sub-domain can be
dynamically plugged into and unplugged from the upper
ontology when the environment is changed, for example,
when a user leaves his home to drive a car, the home-domain
ontology can be automatically unplugged from the system;
and the vehicle-domain ontology can be plugged into the
system.

������� �	���
���� � �

� ��� ������ �����	� � �����������
���� � �
 � ��� � ��� �

�	� �! " �

#$�&% �! " �
'�(&(!) " * + ,&-

.�� + /�,&% 0
#$" 1!�!2&3!) �!2 '�" + �! + 4
�	�&2&3 " �!2 '�" + �! + 4

5 5 5 5 5 5 5 5 5 5 5 5
6�798�7�:9;	< , /=) > ?�) *&@ @ % 2 A @!> @ 3!B ?�) *!@ @ C�A
^

D=E�E�7$F
G :�H I$J I�89K L - 2!,!,&% #	(*!" �

C=3 + 2!,&,&% #	(*!" �

'�M&�&- +
NOI$P�Q	R :�S
T E979U9R V R U
G :�H I	J I�8$R 7�W

Figure 1. Class hierarchy diagram for our context ontologies

The upper ontology defines the basic concepts of person,
location, computational entity and activity as shown in
Figure 1. The class ContextEntity provides an entry point of
reference for declaring the upper ontology. One instance of
ContextEntity exists for each distinct user, agent or service.
Each instance of ContextEntity presents a set of descendant
classes of Person, Location, CompEntity and Activity. The

details of these basic concepts are defined in the domain-
specific ontologies which may vary from one domain to
another. We have defined all the descendant classes of these
basic classes in a smart home environment and a set of
properties and relationships that are associated with these
classes.

4.4 Modeling Classification and Dependency

We classify a wide range of contexts into two main
categories - direct context and indirect context based on the
means by which context is obtained. Direct context is
acquired from a context provider directly. A context
provider can be an internal source such as an indoor location
provider, or an external source such as a weather
information server. Direct context can be further classified
into sensed context and defined context. Sensed context is
obtained from physical sensors, for example, curtain’s status
context sensed by curtain sensors, or from virtual sensors,
for example, a web service. Defined context is typically
defined by a user. They may have different invariant periods
from days to years, for example a person’s name - "John"
and his date of birth are invariant over its lifetime whereas
John’s food preference may be changed over a couple of
months.

Indirect context is obtained by interpreting direct context
through aggregation and reasoning process. By aggregating
direct context, for example, John’s food preference and
Julia’s food preference in our scenario, we can obtain
aggregated context such as Smith family’s food preferences.
By using context reasoning engine, deduced context can be
obtained and inferred from other types of context, for
example, John’s current status context (Sleeping) is inferred
from his location context (MasterBedroom), his posture
context (LiedDown), the curtain’s status context (NotOpen)
and the door’s status context (Close).

Figure 2. A partial OWL/RDF graph notation for interreated contexts in
the scenario of Section 4.1. (John and Julia is type of the class Person,
LivingRoom and MasterBedroom is type of the class IndoorSpace, Garden-
Smith is type of the class OutdoorSpace, Barbeque is type of the class
ScheduledActivity, CellPhone-John and Fridge-Kitchen is type of the class
Device, Members-Smith is type of the class FamilyMember.)

By introducing context classification information in our
context model, we are able to perform context reasoning
based on confidence level of each type of context as we will
illustrate in Section 4.6. We present a graph representation
of our context model based on the scenario described in
Section 4.1 as shown in Figure 2.

To describe context classification information in our
context ontologies using OWL, we introduce an additional
property element - owl:classifiedAs in the property
restriction. This special element is able to capture the
properties of context classification associated with datatypes
and objects. In our context ontologies, this additional
property will have the values such as Sensed, Defined,
Aggregated or Deduced. Figure 3 shows an example of
describing classification information - Defined in the
ObjectProperty - hasChildren.

Figure 3. An OWL expression for describing classification information

Dependency is an important characteristic of context
information as we pointed out in section 4.2. A dependency
captures the existence of a reliance of property associated
with one entity on another. For example, in our scenario,
Julia’s current status depends on where she is located
(locatedAt), where the TV is located (locatedAt) and the
TV’s current status (status). To describe dependency
information using OWL, we introduce an additional
property elements -rdfs:dependsOn in both object property
and data property. This special element is able to capture the
dependency relationship of properties associated with
datatypes and objects. The example in Figure 4 shows the
feasible property of ScheduledActivity class depends on
where the person is located (locatedAt), weather condition
(weatherCond), etc.

Figure 4. An OWL expression for describing dependency information

4.5 Modeling Quality of Context

Context information is inconsistent due to highly
dynamic nature of pervasive computing systems and
imperfect sensing technology. The location context may
vary in a few seconds when a person moves around the
rooms. Physical sensors may produce incorrect or stale

context data due to poor reliability and processing delay of
converting low-level sensor data to high-level context.

Our context ontology allows the properties of entities to
be associated with quality constraints that indicated the
quality of context. We have constructed an extensible
ontology for quality of information. As shown in Figure
5(a), Quality Constraints are used as quality indicators of
OWL properties. Quality Constraints are associated with a
number of quality parameters, which capture the dimensions
of quality relevant to the attributes of entities and
relationships between entities. Each parameter is described
by one or more appropriate quality metrics, which defines
how to measure or compute context quality with respect to
the parameter. Besides a value, a metric contains a type and
a unit.

X Y Z [\] X X ^ _

` a b c d e `
` f g

h i j k i l i m n o
n l p q r s q t q u v w v t

Figure 5. Ontology and an example instant for Quality Constraint

We have defined four types of quality parameters that
are most commonly used: accuracy - range in terms of a
measurement; resolution - smallest perceivable element;
certainty - the probability to describe the state of being
certain and freshness - production time and average lifetime
of a measurement. The example in Figure 5(b) illustrates the
use of quality constraint to define the quality information
about a person’s location - a piece of sensed context which
provides location information in terms of coordinates with a
resolution of 50 meters and an accuracy of 79%.

4.6 Context Reasoning

The important feature of our context model is the ability
to support automated context reasoning which is the process
of reasoning about various types of contexts and their
properties. Context reasoning broadens context information
implicitly by introducing deduced context derived from
other types of context. It also provides a solution to resolve
context inconsistency and conflict that caused by imperfect
sensing.

By reasoning context, deduced context can be inferred
from sensed, defined or aggregated context based on our
context classification scheme. For example, in our scenario,

Deduced context (John’s current status) can be inferred from
sensed context (John’s location and posture, Door’s and
Window’s status) as illustrated below using first-order logic
predicates.

Location(John, MasterBedRoom)� Posture(John,
LiedDown)� Status(Door, Close) � (� Status(Curtain,
Open)) ��Status(John, Sleeping)

A more complicated example below shows deduced
context (Barbeque is not feasible) can be inferred from
sensed context (Rainy, Fridge’s food items), defined context
(John’s food preference) and aggregated context (All family
members’ food preferences).

WeatherCond(Weather, Rainy)� FoodPreference(Members,
FoodItems)� Available(Fridge, FoodItems)
Feasible(Barbeque, NO)

By reasoning context classification information and
quality information based on our context model, we are able
to detect and resolve context conflict. Different types of
context have different levels of confidence and reliability,
for example, defined context is more reliable compared to
sensed and deduced context; and also have different levels
of quality, for example, a RFID-based location sensor may
have a 80% accuracy rate whereas a Bluetooth-based
location sensor may only have a 60% accuracy rate.

5 ARCHITECTURE OVERVIEW
In this section, we describe our service-oriented context-

aware middleware (SOCAM) architecture. Our architecture
aims to help application programmers to build context-aware
services more efficiently. The SOCAM architecture consists
of the following components as shown in Figure 6:

Figure 6. Overview of the SOCAM architecture

Context Providers: Context Providers abstract contexts from
different sources - External Context Providers or Internal
Context Providers; and convert them to OWL representation

so that contexts can be shared and reused by other SOCAM
components.

Context Interpreter: Context Interpreter consists of Context
Reasoning Engines and Context KB (Knowledge Base). The
Context Reasoning Engines provide the context reasoning
services including inferring deduced contexts, resolving
context conflicts and maintaining the consistency of Context
KB. Different inference rules can be specified and input into
the reasoning engines. The context KB provides the service
that other components can query, add, delete or modify
context knowledge stored in the Context Database.

Context-aware Services: Context-aware Services make use
of different level of contexts and adapt the way they behave
according to the current context.

Service Locating Service: Service Locating Service provides
a mechanism where the Context Providers and the Context
Interpreter can advertise their presences; users or
applications can locate and access these services.

Based on the SOCAM architecture, we currently
implementing a prototype system that aims to realize the
context-aware home scenario that we have described in
Section 4.1. It consists of an OSGi-compliant residential
gateway which connects the home network to the Internet;
and various computing devices and physical sensors in a
smart home environment. The Context Interpreter will be
running on the OSGi gateway and implemented based on
HP’s semantic web toolkit - Jena2 [17]. The Service
Locating Service has been developed in our service
discovery project [18].

6 CONCLUSION
In this paper, we have presented a formal and extensible

context model based on OWL to represent, manipulate and
access context information in intelligent environments. Our
context model represents contexts and their classification,
dependency and quality information using OWL to support
semantic interoperation, context knowledge sharing and
context reasoning. We are looking at different context
reasoning mechanisms for reasoning about various contexts
such as first-order probabilistic logic, high-order logic and
Bayesian networks. We will also continue our work on
building a prototype system in a smart home environment.

7 REFERENCES

[1] Henricksen K, Indulska J, Rakotonirainy,
"Infrastructure for Pervasive computing: Challenges",
Workshop on Pervasive Computing INFORMATIK 01,
Viena, September 2001.

[2] Dey, A. and Abowd, G., "Towards a Better
Understanding of Context and Context-Awareness",
Workshop on the what, who, where, when and how of
context-awareness at CHI 2000, April 2000.

[3] Dey, A.K., Salber, D. Abowd, G.D., "A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications", Human-

Computer Interaction (HCI) Journal, Vol. 16(2-4), pp.
97-166, 2001.

[4] T. Kindberg and J. Barton, "A Web-based Nomadic
Computing System", Computer Networks, 35(4):443-
456, 2001.

[5] http://www.ai.mit.edu/projects/aire/projects.shtml#835.
[6] Jason I. Hong and James A. Landay, "An Infrastructure

Approach to Context-Aware Computing", Human-
Computer Interaction, Vol. 16, 2001.

[7] Harry Chen and Tim Finin, "An Ontology for a Context
Aware Pervasive Computing Environment", IJCAI
workshop on ontologies and distributed systems,
Acapulco MX, August 2003.

[8] Anand Ranganathan and Roy H. Campbell, "A
Middleware for Context-Aware Agents in Ubiquitous
Computing Environments", In Proceedings of
ACM/IFIP/USENIX International Middleware
Conference, Rio de Janeiro, Brazil, June 2003.

[9] M.Smith, C. Welty, and D. McGuinness, Web Ontology
Lanugauge (OWL) Giude, August 2003.

[10] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward,
Paul Webster, "The Anatomy of a Context-Aware
Application", Wireless Networks 8(2-3): 187-197
(2002).

[11] H. Wu, M. Siegel, and S. Ablay, "Sensor Fusion for
Context Understanding", Proceedings of IEEE
Instrumentation and Measurement Technology
Conference, Anchorage, USA, May 2002.

[12] Henricksen K, Indulska J, Rakotonirainy A., "Modeling
Context Information in Pervasive Computing Systems",
In Proceedings Pervasive Computing, Zurich, August
2002.

[13] Karen Henricksen, Jadwiga Indulska, and Andry
Rakotonirainy, "Generating Context Management
Infrastructure from High-level Context Models", In
Proceedings of the 4th International Conference on
Mobile Data Management, Melbourne, January 2003.

[14] Held, A., Buchholz, S., Schill, A., "Modeling of
Context Information for Pervasive Computing
Applications", In Proceedings of the 6th World
Multiconference on Systemics, Cybernetics and
Informatics (SCI), Orlando, FL, July 2002.

[15] Ian Horrocks, "DAML+OIL: a Reason-able Web
Ontology Language", In Proceedings of the 8th
International Conference on Extending Database
Technology (EDBT), Prague, March 2002.

[16] Dan Brickley, R.V. Guha, RDF Vocabulary Description
Language 1.0: RDF Schema, World Wide Web
Consortium, January 2003.

[17] Jena 2 - A Semantic Web Framework,
http://www.hpl.hp.com/semweb/jena2.htm

[18] Tao Gu, H. C. Qian, J. K. Yao, H. K. Pung, "An
Architecture for Flexible Service Discovery in
OCTOPUS", In Proceedings of the 12th International
Conference on Computer Communications and
Networks (ICCCN), Dallas, Texas, October 2003.

