
WiDir: Walking Direction Estimation Using Wireless Signals

Dan Wu12, Daqing Zhang12, Chenren Xu32, Yasha Wang42, Hao Wang12

1Key Laboratory of High Confidence Software Technologies, Ministry of Education, Beijing, China
2School of Electronics Engineering and Computer Science, Peking University, China
3Center for Energy-efficient Computing and Applications, Peking University, China

4National Engineering Research Center of Software Engineering, Peking University, China
{dan, dqzsei, chenren, wangyasha, haowangsei}@pku.edu.cn

ABSTRACT
Despite its importance, walking direction is still a key context
lacking a cost-effective and continuous solution that people
can access in indoor environments. Recently, device-free
sensing has attracted great attention because these techniques
do not require the user to carry any device and hence could
enable many applications in smart homes and offices. In this
paper, we present WiDir, the first system that leverages WiFi
wireless signals to estimate a human’s walking direction, in
a device-free manner. Human motion changes the multipath
distribution and thus WiFi Channel State Information at the
receiver end. WiDir analyzes the phase change dynamics from
multiple WiFi subcarriers based on Fresnel zone model and
infers the walking direction. We implement a proof-of-concept
prototype using commercial WiFi devices and evaluate it in
both home and office environments. Experimental results
show that WiDir can estimate human walking direction with a
median error of less than 10 degrees.
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Direction Estimation

INTRODUCTION
Many emerging applications in smart home and elderly care
are predicated on the belief that knowing one’s real-time con-
text can greatly improve people’s safety, efficiency and quality
of life. There have been many ways and techniques proposed
for context sensing, ranging from wearable sensor-based, am-
bient device-based to computer vision based solutions. Wear-
able sensor-based approaches were among the most popular
techniques developed for location and direction sensing [10].
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These systems can only work when sensors are worn by the
user. However, the always-on-body requirement makes the
subject difficult to comply with, especially for the elders at
home. Ambient device-based approaches try to make use
of ambient information to sense context. The ambient infor-
mation being used includes audio[31], floor vibration[5] and
infrared sensing data[3]. In these systems, dedicated devices
need to be implanted in the environment. Computer vision-
based approaches use cameras installed in the environment to
either capture images or video sequences for context recog-
nition. Although the recent advances in infra-red LED and
depth camera like Microsoft Kinect [32], have enlarged its
application scope (e.g., independent of illumination of lights
and can work even in a dark room), the privacy intrusion, in-
herent requirement for line of sight and intensive computation
for real-time processing are still open issues that need to be
addressed in the future [17].

In recent years, the rapid development in wireless techniques
has stimulated the research in studying the relationship be-
tween the wireless signal and context sensing. In particular,
the recently exposed physical layer Channel State Information
(CSI) on commercial WiFi devices reveals multipath channel
features at the granularity of OFDM subcarriers [4], which
is much finer-grained than the traditional MAC layer RSS
(Received Signal Strength). By exploiting the amplitude and
phase information of CSI across the OFDM subcarriers and the
diversity of CSI information across multi-antennas in MIMO
systems, significant progress has been made in applications
in localization [42, 40, 15], motion detection [14, 25], lip
language [33], gesture recognition [24, 22], vital sign monitor-
ing [20, 19], breathe estimation [11, 23, 27], fall detection [6,
48, 34] and activity recognition [37]. The rationale behind
all these research efforts is that different human activities can
affect the electromagnetic field of wireless signals and cause
different signal change patterns, and activities can be recog-
nized in real-time by mapping the observed signal change
patterns to different human activities.

Despite its importance, walking direction is still a key context
lacking a cost-effective and continuous solution that people
can access in indoor environments. With one’s location and
moving direction, indoor applications such as emergency evac-
uation, virtual reality and activity tracking of elders can be
enabled and enhanced, where each individual’s movement di-
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rection and trajectory needs to be tracked accurately. In the
context of assisted living, a single user’s location and mov-
ing direction is important for a number of services ranging
from monitoring daily activities, forecasting user tendencies,
to smart control of appliances [29]. Monitoring moving di-
rection in real-time also helps to improve performance of
localization [35] and tracking applications when combined
with distance or speed information. WalkCompass [28] is
an example showing how walking direction can improve the
localization results on a smartphone.

While both device-based and device-free location sensing
techniques using COTS WiFi devices have been actively ex-
plored [46, 40, 1, 42, 15], the state-of-the-art device-based and
device-free approach achieves submeter-level[15] and meter-
level[1] accuracy, respectively. Both are too coarse to derive
accurate moving direction directly.

In this paper, we present WiDir, a CSI-based device-free hu-
man walking direction detection system. To our best knowl-
edge, WiDir is the first system that can estimate moving di-
rection using WiFi CSI information in device-free manner.
First, we introduce the Fresnel zone model in the indoor envi-
ronment and develop the model in the context of multi-path
propagation in theory, and then relate the reflection-induced
phase change at the receiver end to the location in Fresnel zone.
Then by integrating the phase analysis from multiple subcar-
rier waveforms into Fresnel zone, we are able to estimate 1) if
the walking direction is inwards or outwards the Fresnel zone,
which we call Fresnel direction, and 2) the walking distance
in this direction. Finally, we propose a temporal-spatial model
to estimate the walking direction.

Mapping this high-level idea into a practical system, however,
poses several challenges. First, how to derive direction in-
formation using the CSI information from all the available
subcarriers. Further more, a walking human behaves very dif-
ferently from a moving smooth metal object, leading to very
noisy signals at the receiver device. Our solution lies in the fact
that phase difference between two subcarriers leads to delay in
time. By measuring cross-correlation between two subcarriers,
we are able to extract Fresnel direction information from it.

A second challenge stems from the fact that with a single
Fresnel zone, we can neither detect the direction from all
angles, nor derive the walking direction in the local Cartesian
coordinate system. We tackle this problem by strategically
placing multiple WiFi devices to form interleaved Fresnel
zones and combining the derived motion direction and distance
information to address the issues mentioned above.

Unlike Walkcompass a user carries can’t estimate the walking
direction accurately until the user walks a few steps, WiDir
offers consistent direction estimation performance, which is
comparable with WalkCompass. The experiment shows WiDir
achieves a mean absolute error of 10.54 degrees and median
absolute error of 8.62 degrees in empty rooms. In normal
office rooms WiDir obtains a mean absolute error of 15.51
degrees and median absolute error of 11.49 degrees. WiDir
is capable to run in real-time and continuously estimate the
walking direction for paths like circle and zigzag.

This paper makes the following contributions:

• We define and propose how to estimate Fresnel direction
with the insight that the phase information in two different
subcarriers conveys the delay information, based on our
developed Fresnel zone model and multi-frequency phase
analysis.

• We propose a 2D Fresnel zone model and validate that it
can be used to effectively estimate the Fresnel direction and
distance in a local Cartesian coordinate system and further
derive the walking direction.

• We implement WiDir system using commercial WiFi de-
vices and evaluate in rooms of different shape and size. Our
experiments show that WiDir can estimate walking direc-
tion angle in real time, robust to environmental change, with
the median error of less than 10 degrees.

BACKGROUND
In this section, we overview the relevant background knowl-
edge and introduce the key take-away messages for our work.

Phase Change of Radio Wave Propagation and Reflection
In indoor radio propagation, the receiver often receives the
signals not only from the direct path (Line-of-Sight, LoS),
but also massive multi-path (Non-Line-of-Sight, NLoS) com-
ponents caused by reflection, diffraction and scattering. All
three of these phenomenon cause signal distortion and fad-
ing [26]. When multiple paths co-exist, the received signal can
be expressed as a summation of all the paths, which we call
wave superposition. For radio wave of wavelength λ, when it
travels along a path of length d, its phase shifts 2πd/λ. This
can be expressed as vector sum ∑aie− j2πdi/λ where i is path
number and a means attenuation coefficient of each path. If
the environment is static and none of these paths change in
length, the final vector remains static.

Fresnel Zone
Fresnel zone [26] is a series of concentric ellipsoidal regions
of alternating reinforced strength and weakened strength of a
wave’s propagation, caused by a wave following multiple paths
as it passes by an object and is partially diffracted/reflected
by it, resulting in constructive and destructive interference as
the different length paths go in and out of phase, as shown
in Figure 1. That being said, when reflective surfaces (e.g.,
human body) is along a radio propagation path, the radio
waves reflecting off those surfaces may arrive either out of
phase or in phase with the signals that travel directly to the
receiver, depending on the reflector’s relative location to the
pair of transmitter and receiver.

WiFi CSI
Channel Status Information (CSI) is information that estimates
the channel by representing the channel properties of a commu-
nication link [40]. Channel state H( f , t) for carrier frequency
f is described by channel frequency response (CFR). It has
the relation Y ( f , t) = H( f , t)X( f , t), where X( f , t) and Y ( f , t)
are signals of transmitted and received in frequency domain.
In WiFi 802.11n, CSI is measured and reported at the scale
of OFDM subcarriers. The number of subcarriers in 802.11n
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depend on bandwidth configurations. A 20 MHz channel have
56 OFDM subcarriers (index from -28 to -1 and 1 to 28)with
a carrier separation of 0.3125 MHz. The total occupied band-
width is 17.8 MHz. Frequency of each subcarrier can be
expressed as fcarrier +0.3125k, where fcarrier is frequency of
central carrier wave and k is subcarrier index. CSI is reported
as a single value for Ng adjacent subcarriers. Number of group
(Ng) is allowed as 1, 2 and 4 in 802.11n-2009 specs [8], and
the choice of Ng is leaved to manufacturers. For example,
implementation of Intel 5300 wireless NIC report total 30
CSI values for both 20MHz (Ng = 2) and 40MHz (Ng = 4)
configurations. This means each CSI subcarrier are spaced in
2 × 0.3125MHz (expect subcarrier indexes -2,-1 and 27,28)
and 4×0.3125MHz, respectively. A 40MHz channel can have
as many as 114 OFDM subcarriers. Each subcarriers are also
spaced in 0.3125MHz.

What We Learned for This Work
Let us consider a scenario that there is one pair of TX-RX and
one reflector in the target space, as shown in Figure 2. We
assume there are two paths between them, namely, d0 for the
direct path and d1 for the reflected path. In a real environment,
d0 is direct path plus all the other multi-path except for d1
introduced by the moving reflector. Putting together, we learn
the following things to be useful for our work:

• As long as a reflector is moving on the ellipse, it causes
the constant effect on the wave superposition, regardless of
its location. Let TX and RX be the foci of the ellipse, the
distance traveled from one focus to another, via some point
on the ellipse, is the same regardless of the point selected.

• When a reflector moves off the ellipse, signals from d0
and d1 interfere with each other in a predictive way - most
constructively when phase change of d1 and d0 differs in
kλ, or on the opposite way when phase change of d1 and d0
differs in kλ+λ/2; when d1 changes kλ, the phase remains
unchanged, as shown in Figure 2.

FRESNEL DIRECTION
In this section, we first analyze the Fresnel zone model to study
how the signal strength changes at the receiver end when a
reflector appears in different locations in the context of Fresnel
zone. Then we present how to estimate if the walking direction
is inwards or outwards the Fresnel zone (in-zone direction)
based on multi-frequency phase analysis. We define this in-
zone direction as the Fresnel direction to form the basis for
walking direction estimation in a local Cartesian coordinate.

Phase Analysis in Fresnel Zone
As briefly reviewed in Section 2, in a scenario that Tx and Rx
are fixed, as long as the reflector doesn’t block the direct path,
a reflector will create a reflected path which superimposes the
wave in the direct path, result in constructive or destructive
interferences depending on whether the two paths go in or out
of phase. Fresnel zone illustrates the relationship of reflector’s
location and its impact on the instantaneous CFR power - it
comprehensively marks positions in which power is enhanced
or degraded. We define Fresnel phase ρ as phase difference of

signals from the direct path d0 and the reflected path d1:

ρ = 2π(d1−d0)/λ+ϕ, (1)

in which λ is wavelength of signal, and ϕ is the extra phase
introduced by diffraction/reflection. This extra phase is de-
cided by electric polarization according to plane of incidence
and relative permittivity between air and obstacles [7]. All
the points a reflector have for the same Fresnel phase ρ create
a Fresnel Equiphase Contour. We can always find peak sig-
nal strength at ρ = 2kπ and valleys at ρ = (2k+1)π. Let the
instantaneous CFR power of the direct path be a and that of
the reflected path be b, let ρ be Fresnel phase, the resulting
instantaneous CFR power c at Rx is given by law of cosine:

c2 = a2 +b2 +2abcosρ (2)

which means the instantaneous CFR power in time series gives
sinusoid-like fluctuation when the length of the reflected path
continuously changes as the reflector moves, which is also
observed in [36]. To this end, we know that when a reflector
moves and changes its reflected path, the instantaneous CFR
power will go up and down as it adds in or out phase effect
alternatively. That is to say, if we observe such fluctuation, we
know the reflector is continuously moving cross the equiphase
contours of the Fresnel zone, but we don’t know the direction
yet - inwards or outwards the Fresnel zone.

Multi-frequency Phase Analysis
Based on the discussion above, we understand the limitation
of using Fresnel zone of a single subcarrier in moving direc-
tion estimation. If we have multiple (at least two) concentric
Fresnel zones with similar shape but slightly different size, we
can imagine that as the reflector moves, it will go across one
and the other in sequence, and it’s easy to infer if the walking
direction is inwards or outwards the Fresnel zone. Specif-
ically, we define Fresnel direction as positive for outwards
the Fresnel zone, and negative in the opposite direction. We
note that each subcarrier will create their own Fresnel zone
independently of similar shape but different size. Thus, we
propose to introduce the multi-frequency Fresnel zone model
and we believe it is feasible because: First, for WiFi 802.11n
we already use everywhere today, any given channel already
provides multiple subcarriers with separate frequencies.That
being said, there is zero extra experimental setup overhead
to obtain such information from multiple channels. Second,
assume there are two subcarriers of wavelength λ1 < λ2, from
Equation 1, we observe that when two subcarriers have the
same Fresnel phase ρ, the subcarrier with shorter wavelength
has shorter reflected-path length, thus smaller ellipsoids. In
other words, a positive Fresnel direction means for the two
Fresnel zones which have the same ρ, the reflector goes across
the eclipse of λ1 first.

To generalize our statement, when the length of the reflected
path d1 is fixed, for all the WiFi subcarriers, the one with a
shorter wavelength has a larger ρ. In Figure 3 , for two sub-
carriers of wavelength λ1 > λ2, as people walking inwards
Fresnel zones, the length of reflected path d1 gets shorter and
Fresnel phase ρ rotates clockwise. The waveforms of two
subcarriers have time delay ∆t caused by difference of each
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Figure 4. Delayed waveforms of CSI subcarriers in a walk. the two
picture is the same except (b) select 4 subcarriers out of 30 (a). we see
precedence relationship between subcarriers. All the waveforms have
been Z normalized and denoised before comparing.

initial Fresnel phase ρ. Therefore, when a reflector is mov-
ing and has a negative Fresnel direction, we will observe that
the sinusoid-like instantaneous CFR power waveform in all
subcarriers fluctuates with precedence relationship. The fluc-
tuation occurs first in the subcarrier with longer wavelength
(lower frequency), then the shorter one, as shown in Figure 4.
By measuring the phase difference of two waveforms from dif-
ferent subcarriers, we are able to obtain the Fresnel direction.
Because the Fresnel zone of different subcarriers are concen-
tric, mathematically, for any two subcarriers of wavelength λ1
and λ2, we have the phase difference:

∆ρ = 2π(d1−d0)(
1
λ1
− 1

λ2
) = 2π(d1−d0)( f1− f2)/c (3)

that is:

∆ρ = 2π(d1−d0)∆ f/c, (4)

where f1 and f2 are frequencies of two subcarriers and c is
light speed in air.

It is important to note that from Equation 4, the undermined
extra phase ϕ is canceled out. Thus, the phase difference
∆ρ is only related to reflected path length d1 and frequency
difference ∆ f of two subcarriers. This has two implications:
First, once the two subcarriers are chosen, a longer reflected
path will lead to a larger phase difference ∆ρ. Second, ∆ρ

is only relevant to the difference of two frequencies, not the
carrier frequency itself. Therefore, once the reflector’s position
is fixed, the larger frequency difference two subcarriers have,
the larger phase difference ∆ρ we have. This information gives
us the flexibility to choose the best pair of subcarriers for our
use.

However, as the reflected path length d1 increases, the ∆ρ will
reach π, at which the valleys in one subcarrier’s waveform will
align with the peaks in another’s. At this moment, we are not
able to tell which one comes first, as shown in Figure 5(d).
In other words, even though we can observe the phase delay
between two subcarriers’ waveforms, we are not able to tell
who comes first, so as to the Fresnel direction. Therefore, we
need to choose an optimal phase difference range to guide our
choice of the subcarriers - a small difference will make two
waveforms too close to be differentiable, and a big difference
will lead to the ambiguity we show in Figure 5. Remind that
multi-paths cause distortion and random phase shift to the
waveform. Therefore, we empirically choose π/2 as the maxi-
mum allowable phase delay to guide our choice of subcarriers.
Based on Equation 4, we find that once the phase delay ∆ρ is
fixed, we need to tweak ∆ f based on d0 and d1, i.e., the size of
target area. For example, according to ∆ f = ∆ρc/2π(d1−d0),
if we have a room of size 6×6 meters, and the distance be-
tween Tx and Rx (d0) is 4 meters, then the longest possible
length of one-time-reflected path (d1) is less than 15 meters,
when ∆ρ is confined within π/2, the maximum allowable fre-
quency difference is 6.8 MHz. If the WiFi card is configured
with 40MHz bandwidth, then CSI values from adjacent OFDM
subcarriers have bandwidth of 1.25MHz in Intel 5300 wireless
NIC, according to 802.11n-2009 specification [8]. Therefore,
we choose two CSI subcarriers that spacing every 5 indexes,
i.e., 1 and 6, 2 and 7, etc.
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Figure 5. Two waves with clear and ambiguous delay.

Phase Delay Estimation
Phase delay estimation between two CSI waveforms could be
complicated. In signal processing, phase delay of two wave-
forms can be obtained by analytical methods. An analytical
signal by Hilbert transformation of CSI waveform can give
phase information and instantaneous frequency as function
of time [21]. Precise phase extraction from analytical signal
requires signal be mono-component, which means it contains
only one frequency component at any given time. Chirp sig-
nal in radar is an example of such signal. Since perturbation
of CSI waveforms caused by people moving is comprised
of multiple frequency components[36], it’s not easy to apply
analytical method to extract phase delay directly.

However, time delay between two CSI waveforms conveys
similar information as shown in Figure 3, and it can be mea-
sured in an easy way. Since torso of human body has much
larger surface area than other parts such as arms and legs, it
reflects much more signal and dominates fluctuations in CSI
waveform while walking. By measuring the time delay of two
subcarriers’ waveforms, moving direction of human body can
be inferred, and sign of this delay (positive or negative) is the
direction information we want. Thus, we estimate the time
delay between two CSI waveforms for direction estimation.

In signal processing, the most popular techniques for time de-
lay estimation is generalized cross-correlation (GCC) method
proposed by Knapp and Carter[13]. The process of correlation
is useful in comparing two deterministic signals and it pro-
vides a measure of similarity between the first signal x(t) and a
time delayed version of the second signal h(t + τ) (or the first
signal). Often times the second function h(t) may be a cor-
rupted version of x(t), such as h(t) = x(t)+n(t), where n(t)
is a noise signal [45]. In practice, we use cross-covariance to
calculate delay. The covariance was defined as the correlation
with the means subtracted out. Similarly, the cross-covariance
was defined as the correlation left between two time series
after subtracting out each means.

To be able to use cross-correlation to find the time delay, two
signals must correlate, that is, they must look similar to certain
extent. When a human is walking in the room, s/he does
not change speed in a short timing window, say, 0.1 second.

Therefore, we can treat the speed as constant in this period.
The major design question is the choice of window size: if the
window size is too small to cover a whole period, it cannot
reliably estimate the mean value for delay estimation; if the
window size is too large, people may walk in different speed
during this window, and thus also lead to imprecise estimation.
A normal person walks at speed from 0.3 to 2 m/s in indoor
environments. In the Fresnel zone, the peak to peak distance
is a bit larger than λ/2, which is about 3cm in WiFi 5GHz
frequency band. Thus the CSI power fluctuates roughly (0.3,
2)/0.03 times per second, corresponding to 10 to 70 Hz. A 0.1
second window contains 1 to 7 periods. Therefore, we choose
0.1 second as the window size.

Fresnel Direction Estimation
So far we know the 0.1-second window is an appropriate pa-
rameter to estimate the time delay between the subcarriers, and
thus the walking direction. In order to estimate the walking
direction of a (sub) path, we need more data and compute
statistics to make the result more robust. In reality, when walk-
ing, people don’t change direction every second. Therefore,
we use a 0.1 second sliding window with 50% overlay to mea-
sure delay within every 1 second time window. We aggregate
positive and negative delay signs for each 1-second data as
our statistic indicator of the Fresnel direction. For example, if
a person has a positive Fresnel direction, then we have much
more positive delays than negative ones, vice versa.

To validate and quantify the relationship between the moving
direction and the estimated time delay, the Tx and Rx are
placed 3 meters apart as shown in Figure 7, four straight line
paths are chosen for small walking trials. Path 1 is almost
parallel to tangent of ellipse, path 4 is perpendicular to tan-
gent lines, and direction of path 2 and 3 are is evenly spaced
between path 1 and 4. All the paths have the same length of 3
meters. Here we call relative angle as angle between walking
path and LoS of Tx-Rx, then Path 1 have angle of 0 and Path
4 have angle of 90. The distribution of the delay estimations
of path 1 and path 3 are shown in Figure 6.

We can see that when a person walks in path 3, it is easy to
infer the walking direction - the majority of the delay values
are positive and distributed at the right side to the zero point.
For path 1, the delay values are approximately uniformly dis-
tributed around zero. By observing the delay distributions
from this example, we are confident that our Fresnel direc-
tion estimation works when relative walking angle is greater
than 30 degrees. Otherwise, we can’t do Fresnel direction
estimation based on the delay histogram. In reality, we need
to empirically find a threshold to determine this angle.

In short, from the empirical study above, we learned that
with only one Fresnel zone, we can not estimate the Fresnel
direction for all the angles. In addition, the Fresnel direction is
not equivalent to the direction in the real world (local Cartesian
coordinate). As shown in Figure 7, both path 3 and 4 give
outward information while their moving angles are totally
different. It is natural to introduce another Fresnel zone to
form a 2D Fresnel zone to address this issue.
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FROM FRESNEL DIRECTION TO LOCAL DIRECTION
To this end, we know what is Fresnel direction and how to
estimate it using WiFi signals. In this section, we introduce
two-dimensional (2D) Fresnel zones and how to estimate the
walking direction in a local Cartesian coordinate system.

Direction and Distance Estimation in 2D Fresnel Zone
Recall that 1D Fresnel zone has significant limitations in es-
timating the walking direction. Intuitively, those problems
can be mitigated if we have the same information from an
orthogonal dimension. Let us assume we have a 2D Fresnel
zone, as shown in Figure 8. We can clearly see that it imme-
diately addresses the issue that we can’t estimate the Fresnel
direction when a reflector has a small relative angle in one
Fresnel zone, because that means it is a large relative angle for
another orthogonal Fresnel zone. In this way, we can estimate
moving direction for all the moving angles in the target area.

To form this 2D Fresnel zone, we only need to bring another
WiFi device. Let Tx be the origin of coordinate, Rx1 be
direction of x axis and Rx2 be direction of y axis, we can see
this 2D Fresnel zone creates an approximated local Cartesian
coordinate system. Assume a human is moving from a to b,
and our goal is to estimate the angle of

−→
ab. So far we can

estimate the sign of x and y components of
−→
ab, and the next

step is to estimate their magnitude (distance).

Distance in the Fresnel zone can be expressed as number of
fluctuation periods. The method to count the number includes
time domain approach (e.g. peaks counting, zero-cross count-
ing, etc.) and frequency domain approach (FFT, rootMUSIC,
etc.). We found peak counting and zero-cross counting are
very sensitive to imperfect waveform thus are errors prone. So
we choose frequency domain approach. To ensure real-time
processing, we favor FFT over rootMUSIC. CSI wave-streams
are sliced into windows and periods are counted one by one.
The accuracy is listed as Table 1. The starting point is 0.5
meters away at perpendicular bisector of LoS, and Tx-Rx are
separating 4 meters apart. We measure the ground-truth by
using a laser range-finder, reference counts of fluctuations are
calculated in Fresnel zone by measuring position of starting
point and ending point. We can see that the errors are less than

Relative Angle Reference Measured Errors
(Degree) Fluctuations Fluctuations
90 72 69.5 -3.47%
60 66 65.1 -1.36%
45 60 62.6 4.33%
30 53 55 3.77%
15 45 53.2 18.22%

Table 1. Recorded fluctuation periods in 3 meters’ paths, we see as rel-
ative moving angle goes smaller, the fluctuations measured exceed refer-
ence counts. the smaller walking direction the more accumulated error.

5% when relative direction angles are greater than 30 degrees,
while jump to over 18% when angle is 15 degrees. Just the
same as observation of direction estimation in the previous
subsection, distance count estimation is not reliable at small
angles.

We start from observations. In a room, two receivers are
approximately symmetric about the line y = x, so we only ex-
amine 3 paths as shown in Figure 8. From the previous section
we already know the Fresnel direction can be unreliable in cer-
tain cases. When a person starts to walk, s/he might go across
multiple ellipses in both dimension in the 2D Fresnel zone. By
taking the average of the estimated counts of the fluctuations
from all subcarriers, we can infer the walking distance in each
dimension. For example, for the path of relative angle of 60
degrees in Figure 8, we estimate that the person crossed 7.6
ellipses in y coordinate and 4.5 ellipses in x coordinate, and
we have arctan(7.6/4.5) = 59.37 degrees. In this case, the
direction can be estimated by combining the Fresnel direction
and distance estimation. Meanwhile, for the relative angle of
90 degrees, we have reliable information only from one dimen-
sion. Since fluctuation counts don’t correspond to distance
well in the other direction, we ignore distance and focus on
delay distribution. Empirical study shows the more parallel to
LoS, the more possible to accumulate a small absolute value
for sign of delays in the whole path. In the same time, per-
pendicular side accumulates a large value of sign of delays.
Combining this two information, we can give an approximate
solution by taking accumulation of delay distribution as dis-
tance. It is not perfect but works for small angles most of
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Figure 9. Information flow of WiDir. The inputs are two CSI data col-
lected at Rx1 and Rx2, the output is 2D walking directions.

the time. For angles like 80 degrees, the method of summing
up sign of delay still has a high probability to give the right
Fresnel direction.

Local Direction in Cartesian Coordinate System
From above discussion, we have algorithm for two situations:
if Fresnel directions are both reliable for two receivers, we
have direction vector as [sgn(dirx)Dx, sgn(diry)Dy]

T , where
dirx is the accumulated sign of delays in every 1-second time
window and Dx is the distance in Fresnel model which mea-
sured as fluctuation counts, and sgn is the function given by
sgn(x) = −1,0,1 for x < 0,x = 0 and x > 0, respectively. If
one side of the two receivers has an unreliable Fresnel direc-
tion, we have direction vector as [dirx,diry]

T .

EXPERIMENTAL EVALUATION

System Information Flow
Figure 9 shows the information flow of WiDir, which consists
of three modules. Each module of WiDir represents one pro-
cessing stage, namely: (1) data acquisition and pre-processing,
(2) feature extraction and (3) direction estimation.

In data acquisition and pre-processing stage, CSI data are col-
lected at Rx1 and Rx2 in the form of real-time streams and are
sent to a computer to process. Firstly, two CSI wave-streams
have to be aligned according to sync preambles broadcasted
every few minutes. Then filtering techniques are applied to
smooth out noisy signals.

In the second stage, two CSI wave-streams from Rx1 and
Rx2 are processed separately. These data are sliced into small
windows and keep sliding while processing. The features to
be extracted include delay information and fluctuation counts
within each window. Because the two feature extraction pro-
cesses require different window sizes, CSI data are split into
two steams. Delay is calculated between two subcarriers win-
dow by window, and the Fresnel direction is estimated by
analyzing distribution of delays. Distance estimation is cal-
culated by counting the number of fluctuations in frequency
domain. The output of this stage is distance information and
delay distribution for each pair of Tx-Rx over time.

The last stage is direction estimation. The algorithm is twofold
depending on delay distributions. If both pair of Rxs have
reliable Fresnel directions, then the direction is inferred by
combining this information and distance information. While
if one of the two Rxs has an unreliable Fresnel direction, then
direction is estimated by an empirical method.

Implementation
WiDir consists of three components: A WiFi access point (AP)
and two computers with wireless card. In our implementation,
we use three Gigabyte BXi3H-5010 Brix mini-PCs with In-
tel 5300 wireless NIC installed, each equipped with external
omni-directional antennas. Every miniPC has 2G memory and
runs Ubuntu 14.04 LTS. An additional computer is used to
process CSI data in real-time using MATLAB. CSI data were
collected at two receivers using tools developed by Halperin et
al [4], then passed to processing computer via TCP/IP proto-
col. The transmitter is configured to send packets in injection
mode. Transmitter drops some packets every 10 seconds in a
predefined pattern to act as a sync signal. Two receivers can
therefore align data with each other according to this signal.

The experiment in this paper was performed at 5GHz fre-
quency band with 40MHz bandwidth. 5GHz band has shorter
wavelength than 2.4GHz band which produce twice the num-
ber of fluctuations, the phase delay from two subcarriers is
clearer when walking a short distance.

Typical walking speed indoors is from 0.3 to 2 meters per
second, which means the fluctuation is roughly 10 to 70Hz
in 5GHz frequency band according to Fresnel model. Our
sampling rate is set to 500 packets per second, which is fast
enough to capture this information.

Data Denoising
CSI data collected at commercial WiFi device is very noisy.
In the traditional signal cross-correlation process, two signals
can be compared for delay directly without denoising, pro-
vided these two signals come from exactly the same copy. In
WiDir, cross-correlation is used to measure signal similari-
ties between two OFDM subcarriers. This process is noise
sensitive, so denoising is a non-trivial step. By using cross-
correlation to compare subcarriers, we need data from all the
subcarriers and keep their phase unaltered after filtering. In
this case, dimensionality reduction based method (e.g. PCA)
and FIR based filtering solution is not appropriate here. At the
same time, the fluctuation pattern caused by people walking
may contain low frequency and high frequency components
simultaneously, a IIR low-pass filter cannot efficiently smooth
out signal while maintain shape of the waveform.

To solve this problem, we use Savitzky-Golay filter to smooth
signal. Savitzky-Golay filter (also called digital smoothing
polynomial filters or least-squares smoothing filters) fits suc-
cessive subset of data points with low degree polynomial by
the method of linear least square [30]. It can smooth signal
without greatly distort it as shown in Figure 10. Note that it is
important to keep shape and thus preserve phase information
in signals.

WiDir is computationally efficient and capable to run in real-
time. In a laptop with i7-2620 CPU and 4GB memory, WiDir
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Figure 10. Raw CSI waveform and denoised waveform using Savitzky-
Golay smoothing.
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Figure 11. Experiment settings in Room A and Room C. There are nine
locations in the room, namely 1-9. Directions are measured between
these points.

uses 35ms to process 1 second CSI data at sampling rate of 500
in MATLAB. It is possible to further improve performance by
leveraging general purpose GPU accelerations such as nVidia
CUDA.

Experimental Setup
WiFi transmitter and receivers are placed in the three corners
of the rooms as shown in Figure 11. All three equipments
are mounted on tripods and the antennas’ height is 1.5 meters
above ground. The coordinates of each device are marked by
a Bosch GLM-80 laser range-finder. Totally 1289 paths from
5 volunteers are collected, each path is a predefined straight
line of approximately 2 meters. Coordinates of start point and
end point of the paths are measured by laser range-finder and
are converted into moving angles for reference. Directions are
estimated every second. If people take more than one second
to walk along the path, average angle of the whole path is used.
The threshold of delay distribution to distinguish reliable and
unreliable Fresnel direction is set at one quarter of the window.

Evaluation
We perform the experimental evaluation in three rooms. Room
A is an empty room of size 6×7m. Room B is a student
activity room of size 6×6m. There are five tables and twenty
chairs in room B, one of the tables is a big metal table sized
1.5×4m. The tables and chairs are rearranged before the test
to make room for walking. Room C is a normal office room
of size 4×3m. It has two desks, a sofa, a cabinet and three
chairs.

Accuracy of Eight Basic Directions
We first present the accuracy WiDir achieves in detecting
four groups of paths’ direction in three rooms. Each group
contains 3 paths which are in parallel and of the same length.
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Figure 12. Result of eight basic directions in empty room (A) and office
rooms (Room B and C)

Volunteers walk along these paths back and forth, so each
path has two directions. The four groups covered eight basic
directions each separated 45 degrees apart. Because there are
tables and cabinets in the rooms, the actual walking space is
limited in the center of the room. We use an empty Room
A as a base line to compare with other two multi-path rich
rooms, Figure 11 shows the experiment settings in Room A
and Room C. The settings in Room B are similar except that
the furniture is different.

We collect 856 paths in room A, and 433 paths in room B
and room C. The results are shown in median absolute error.
We also calculated 95% confidence interval using bootstrap
method. Results of Room A, B and C are compared in Figure
12(a) in bar graph with 95% confidence interval.

The overall Mean Absolute Error in the empty room (Room A)
is 10.538 degrees, and deviation is 8.174. And overall Mean
Absolute Error in room B and room C is 15.510 degrees, and
deviation is 13.964. Cumulative Distribution Function (CDF)
of absolute error for all the directions in Room A and Room
B&C are compared in Figure 12(b). The evaluation results
show that the overall absolute median error in a normal room
is 11.102 degrees. And the overall absolute median error in an
empty room is 8.623 degrees.

Sensitivity of Different Angles
In this section, we choose some paths other than eight basic
directions. We choose two start points in Room B, each has 5
paths in different directions. Path name like (9→ 3) means
walk from location 9 to location 3, as shown in Figure 11(a).
We have 2 volunteers to walk through these paths, each path
walks eight times. Direction of each path is an average of
all the measured angles for this path. Reference directions
and measured directions are listed in Table 2. We can see in
a multi-path rich room (Room B), walking directions other
than the eight basic directions have comparable results. Mean
absolute error is about 10 degrees except path (6→ 8). By
examining room environment we found a metal table is in
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Reference Mean Median Standard
Path Angle Absolute Absolute Deviation

Error Error
9→ 3 0 7.318 7.318 7.450
9→ 2 26.565 8.498 7.318 9.413
9→ 1 45 9.738 8.253 8.342
9→ 4 63.435 11.848 10.330 6.607
9→ 7 90 10.254 8.297 6.532
6→ 2 45 7.259 5.401 7.024
6→ 1 63.435 7.792 9.091 3.865
6→ 4 90 6.824 6.401 4.820
6→ 7 116.565 10.191 10.062 6.312
6→ 8 135 16.319 12.844 12.753

Table 2. Reference angles and measured angles for different paths. Unit
is in degree.
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Figure 13. Result of eight basic directions before and after environmen-
tal changes in an office room (Room C).

opposite to path (6→ 8), the result angle influenced greatly
by reflection of the metal in the middle point of this path.
However, this strong metal reflection doesn’t have the same
magnitude of impact on other paths.

Resilience of environment change
In this part we carried out a two-step experiment in a small
office room (Room C) to detect eight basic directions. The
settings in the first step are illustrated in Figure 11(b). Then
before the second step, we moved the sofa by 1 meter and
moved two armchairs to another side of the room to simulate
environmental changes. Each path is walked four times by two
volunteers. The errors are compared for the two situations.

The results of eight basic directions before and after furniture
move are shown in Figure 13. The overall mean absolute
error before and after furniture move are 12.291 and 12.120
degrees, and median absolute error are 7.480 and 7.242 de-
grees, respectively. We can see that environmental change
have insignificant impact on the result.

Continuous Walking Show
In the previous subsections, we presented the evaluation results
of the walks following straight lines. Here we show WiDir can
measure continuously changed directions. The two tracks we
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Figure 14. Continuous walking of circle and zigzag.

chose to walk are circle and zigzag. For the path with the circle
pattern, we drew a circle in the middle of the room, and divided
the circle into equal pieces and marked it before we walk.
Volunteers are required to keep constant slow speed to move
from one mark to another according to beats of a metronome.
Starting position in the circle is chosen and moving direction
is towards zero degree. The reference angles are calculated
based on total walking time of a whole circle. The zigzag path
is defined by walking through 4 locations one by one (1-3-7-9)
in straight lines. Reference angles are decided by dividing the
whole walking time into three segments according to video
recordings. The results are shown in Figure 14, reference
directions are in red dashed lines.

The results are pretty well when walking a circle, but not that
good when following zigzag. In the middle of each segment of
zigzag, the result matches reference angle, but at every turning
point of zigzag the errors going larger.

LIMITATIONS AND DISCUSSION

Multi-path Influence
Multi-path is known to be the major error source for RF-
based human centric sensing applications, such as localization,
gesture recognition. WiDir is no exception. The main reasons
are that a) human as a reflector will induce extra multi-path
than the major one we assume in our model. b) When a human
subject is walking in the room, (s)he will block environmental
static paths and thus distorts Fresnel zone shape. Particularly,
we observe the angular error can be as large as 40 degrees
when a metal is nearby. We can potentially address this issue
as long as the metal is in vicinity of only small part of the path
based on backward analysis.

Grid Approximation
We use the intersected equiphase contours from two Fresnel
zones to approximate the grid for distance estimation, which
lead to three potential issues. First, the contour does not have
the same slope as straight line. It is required to perform a
mathematical transformation to perform the right-angle pro-
cessing. Second, in a Fresnel zone, the space between adjacent
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equiphase contours will decrease as the phase increases, which
means the size of the squares in the grid are not the same.
Third, most rooms are not square, and thus their correspond-
ing Fresnel zones are of different shape and size. All these
factors will contribute to the errors in distance estimation in
certain region of the target area. However, if it is possible
to estimate Fresnel phase of the signal in commodity WiFi
device, we can estimate the human location by calculating
distance to WiFi device pairs from phase delays and further
address the issue in our future work.

Detection Range and Device Placement
Radio signals get attenuated as they propagate. As people walk
further away relative to the center of Fresnel zones, they cause
smaller impact on the received signal strength. Therefore, the
detection range is limited if only one pair of WiFi devices
is used. To extend the detection area (hopefully full cover-
age), especially for a large space such as conference room
and hallway, it is natural to address this problem by deploying
more WiFi devices since they can form more Fresnel zones.
It is important to design an algorithm to combine multiple
(dis)joint local Fresnel zones into a global one to facilitate
walking direction estimation. Meanwhile, the number of de-
vices increases at the cost of introducing more interference.
Therefore, it is important to minimize the number of WiFi
devices while still achieving the desirable detection accuracy,
which leads to an optimal device placement problem for our
future work.

Multiple People
WiDir focuses on personal sensing and our solution works for
one person in typical indoor environments. A natural question
will be: can and how WiDir scale to more people? When
multiple people co-exist in the target area, they will cause
additive effect at the receiver side, which could be sequentially
estimated based on the rationale of successive cancellation, as
studied in [44, 2] for other device-free sensing applications.
For example, people can cause changes on the received signal
strength of different Tx-Rx pairs [44]. It is also observed in [2]
that reflections off the nearest person can have much more
power than distant reflections. WiDir can leverage multiple
pairs of Tx-Rx and employ similar approaches to work for the
scenario of multiple people. However, successive cancellation
based techniques can only work well when people are not
close to each other, as illustrated in [44]. In addition, CSI data
collected from COTS WiFi NICs are mixed with rich hardware
distortions in both power strength [36] and phase [43]. It is
still very challenging to fully address this problem.

RELATED WORK
There are many existing work presenting different techniques
of WiFi-based device-free sensing and device-based walking
direction estimation, which is clearly different from our work.

Device-based Human Walking direction: In this type of
work, most techniques rely on inertial sensors more or less.
Foot is one of the best place to put on-body sensors to ana-
lyze the walking direction. The work presented in [12] lever-
ages gyroscope and magnetic compass data to estimate the
walking direction. In [39], the authors combine the inertial

unit, a detailed building model, and a particle filter to pro-
vide the walking direction the indoor location. Another thread
is smartphone-based approach with different user-centric as-
sumption. For example, the work presented in [16] infer ori-
entation by identifying human gesture like texting. In [18],
the authors assume that the initial orientation of the phone is
known. WalkCompass [28] removes the magnetic interference
in indoor environments to improve the results.

WiFi-based Device-free Sensing: This set of techniques can
be traced back as early as 2007. At that time, most techniques
were using received signal strength indicator (RSSI). The au-
thors in [46] proposed a fingerprinting based approach for
indoor localization while the work presented in [47] took a
geometric approach to detect the human motion. RTI [38]
was proposed to use tomographic reconstruction to estimate
an image of human presence. Later, CSI was recognized as
a better radio signal source to cope with multipath since it
provides finer grained information. Fall was detected use CSI
in [6, 48, 34]. Zhou et al. proposed to use CSI to detect human
presence in an environment [49]. Xi et al. proposed to use
CSI to count the number of people for crowd estimation [41].
WiHear uses specialized directional antennas to obtain CSI
variations caused by lip movement for recognizing spoken
words [33] [26]. E-eyes [37] recognizes a set of nine home hu-
man activities using CSI. C2IL estimate the moving speed and
distance using ripples in CSI power [9], CARM relates signal
fluctuations to total length of paths and number of fluctuations
to moving distance using CSI-speed model [36] .

CONCLUSION
This paper demonstrates that human walking direction can be
estimated using off-the-shelf WiFi devices already everywhere
in our daily life, without requiring users to carry any device.
The core techniques are rooted in the theory of Fresnel zone
based multi-frequency phase analysis introduced in this work.
We further apply this theory and extend to multi-dimensional
Fresnel zone space which can be naturally formed by multiple
pairs of WiFi devices in today’s typical indoor environments
to improve scalability. We conduct comprehensive theoret-
ical studies and our experimental results show that WiDir
can estimate human walking direction with overall median
absolute angle error less than 10 degrees in different indoor
environments. The obtained results not only justify the theory
we developed, but also provide basic principles and practical
guidelines for building cost-effective WiFi CSI-based human
walking direction estimation systems. We believe not only
this new context can immediately help many context-aware
applications, such as localization, augmented reality and as-
sisted living, the theory also can be applied in a wider range of
macro/micro human activity recognition based applications.
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