
An improvement of OpenMP pipeline parallelism with the BatchQueue algorithm

Thomas Preud’homme, Julien Sopena, Gaël Thomas and Bertil Folliot
LIP6

Paris, France
Email: firstname.last-name@lip6.fr

Abstract—In the context of multicore programming, pipeline
parallelism is a solution to easily transform a sequential pro-
gram into a parallel one without requiring a whole rewriting of
the code. The OpenMP stream-computing extension presented
by Pop and Cohen proposes an extension of OpenMP to handle
pipeline parallelism. However, their communication algorithm
relies on multiple producer multiple consumer queues, while
pipelined application mostly deals with linear chains of commu-
nication, i.e., with only a single producer and a single producer.

To improve the communication performance of the OpenMP
stream-extension, we propose to use, when it is possible, a
more specialized single producer single consumer communica-
tion algorithm called BatchQueue. Our evaluation shows that
BatchQueue is then able to improve the throughput by up to
30% for real applications and by up to 200% for an example
application which is fully parallelizable communication inten-
sive micro benchmark. Our study shows therefore that using
specialized and efficient communication algorithms can have
a significant impact on the overall performance of pipelined
applications.

I. INTRODUCTION

Since several years, the frequency of processors stagnates
because of physical constraints. Chip makers now take
advantage of the growing number of transistors per square
inch to increase the number of cores on a die [1]. However,
many applications are still single-threaded or are parallel but
only scale to a limited number of cores. In such a case,
pipeline parallelism appears like an attractive solution to
exploit multicore since slight modifications to existing code
suffice.

Pipeline parallelism consists of splitting the sequential
processing of data in a stream into several stages forming
a pipeline, each stage being assigned to a different core.
Hence, data need to flow from one core to another to be
entirely processed. Several consecutive data can then be
partially processed by different stages at the same time,
resulting in parallelism. Pipeline parallelism offers several
advantages over other techniques. First, it preserves the
processing of data sequential which means that the algorithm
doing the processing does not need to be rewritten and
that data dependencies remain respected. Second, it hides
memory latency for long streams of data since the total
time will mostly be a function of the throughput rather
than the latency. Third, pipeline parallelism limits its use
of memory bandwidth by favoring on-die communication,
which enables it to coexist well with other applications.

The main limit of scalability of pipeline parallelism is in
the inter-core communication time. Indeed, given (i) a se-
quential application whose data processing time is Tseq , and
(ii) a communication time Tcomm, the stage processing time
after parallelization on n cores can at best be Tseq

n +Tcomm.
Thus, a bigger number of cores means that the sequential
task is split in more stages, with each stage executing
for a smaller amount of time. For a given algorithm, the
communication time is fixed; therefore the communication
overhead increases when more cores are used. It is thus
essential to have a fast communication algorithm to keep
the overhead low.

In the domain of parallelism on shared memory systems,
OpenMP [2] (Open Multi-Processing) stands out as a ref-
erence. Its wide adoption is the result of three advantages:
OpenMP (i) is a cross-platform API, (ii) is integrated in
compilers and (iii) is easy to use. While the current release
of OpenMP only proposes data and task parallelism, an
extension proposing pipeline parallelism exists [3], which
offers good performance.

This paper presents how a significant improvement of this
extension is obtained by replacing its native communication
algorithm by a more specialized one. The improvement
stems from the fact that the native communication algo-
rithm supports communication between multiple producers
and multiple consumers while communication between a
single producer and a single consumer is the most common
scenario in pipeline parallelism. We propose in this paper
to replace, whenever it is possible, the native communica-
tion algorithm by a faster single producer single consumer
queue called BatchQueue which we proposed in a previous
article [4]. The work described in this article contains the
following contributions: (i) an Open Source integration [5]
of BatchQueue inside OpenMP stream-computing extension
and (ii) an extensive evaluation with real applications show-
ing an improvement of performance up to 30%.

The remaining of this article is laid out in the following
way. Section II presents in more details the technique of
pipeline parallelism and how to use it. Section III then
details both the communication algorithm used in OpenMP
stream-computing extension and the BatchQueue algorithm.
Section IV describes of all the tests we performed and the
performance improvements we obtained. Section V com-
pares BatchQueue to related work and section VI concludes



this article.

II. BACKGROUND

Compared to the more common parallelism techniques
that are data and task parallelism, pipeline parallelism pro-
vides an interesting alternative. This technique can paral-
lelize algorithms with strong dependencies between data,
while the others cannot. However, pipeline parallelism
comes with its own limitations with regard to scalability.
Hence, before introducing our improvements in the next
section, this section starts by presenting what pipeline par-
allelism consists of and what are the limitations it suffers
from. The section also presents an extension to the OpenMP
API to seamlessly parallelize an application through pipeline
parallelism.

A. Principle of pipeline parallelism

Like data parallelism, pipeline parallelism acts on loops.
However, data parallelism can only deal with loops whose it-
erations process independent data while pipeline parallelism
can deal with loops whose successive iterations process data
dependent on each others. Pipeline parallelism consists of
splitting the sequential processing of data in each iteration of
the loop into several “stages” forming a pipeline. The stages
are then assigned to different cores. Each stage consists of
a partial processing of data and the entire processing is
done by making the data flows from one core to another
in order to go through all the stages. In other words, each
stage takes as input the output of the previous stage. Several
consecutive data can be partially processed by different
stages at the same time, that is how parallelism appears while
still preserving the order in which data are processed. The
resulting dataflow is depicted in fig 1.

Figure 1: Flow of data in pipeline parallelism

For parallelizing an algorithm which processes data with
dependencies between them, pipeline parallelism appears as
an obvious choice to improve its efficiency. Yet, when it
comes to scalability with the number of cores, this technique
suffers from a limitation: the throughput speedup depends
on the communication overhead.

Several data are partially processed together in different
stages. When this partial processing is over, the data migrates
to the next stage. For the data on the last core, it means
its processing is finished and it exits the pipeline. Given
a communication time between two cores Tcomm and an
application whose total time to process one data is Tseq ,

a data exits the pipeline every Tseq

n + Tcomm seconds.
Increasing the number of cores only reduce the stage time,
that is Tseq

n . The throughput is thus limited to one data every
Tcomm seconds. Another consequence is that the throughput
is improved significantly when increasing the number of
cores as long as Tcomm <<

Tseq

n . It is thus essential to
have a communication algorithm as fast as possible. Figure 2
shows how the speedup vary for several value of the ratio
Tcomm

Tseq
.

Figure 2: Influence of communication throughput on pipeline
parallelism speedup

B. OpenMP stream-computing extension

Despite the limitations seen above, pipeline parallelism
can improve the performance of a number of algorithms,
especially those dealing with a stream of data. Audio and
video processing is such an example where each data is
processed through a set of filters chained together. However,
parallelizing an algorithm can require a significant amount
of work: threads must be created, some data are to be
made shareable and an important amount of synchronization
must be added to the logic of the algorithm. Doing these
modifications is error-prone and it adds some complexity to
the algorithm which in turn may lead to more bugs when
the algorithm is modified.

For all these reasons, there are tools to help converting
an application to use parallelism with as little effort as
necessary. These tools serve two purposes: providing an ab-
straction layer to handle hardware heterogeneity, and hiding
the low level machinery of thread management and synchro-
nization. The goal is achieved by providing a runtime library
with an high level API. The API can be a set of headers but
can also take the form of new keywords or annotations to
use in the code. For data and task parallelism, there are
numerous tools available: OpenMP[2], Threading Building
Blocks[6], Cilk Plus[7], Intel Array Building Block[8] to
cite some of them. For pipeline parallelism, an extension of
OpenMP has been proposed by Pop and Cohen [3] which
allows a programmer to explicit dependencies between data.

OpenMP is a de facto standard in parallelism on shared
memory systems. The reason is that OpenMP provides some



noticeable advantages over competing solutions: it is multi-
platform, integrated in the compilers and relatively easy to
use. As a matter of consequence, improving algorithm inside
OpenMP has a much bigger impact than improving compet-
ing solutions. The same goes for the stream-computing ex-
tension of OpenMP as well, and hence the interest expressed
in this paper to improve pipeline parallelism as is proposed
by this extension.

III. EFFICIENT INTER-CORE COMMUNICATION

As expressed in the previous section, performance of
inter-core communication plays vital role in scalability of
pipeline parallelism. For this reason, authors of OpenMP
stream-computing extension took care of the efficiency of
the communication algorithm used in the extension. Nev-
ertheless, some aspects can be improved, notably taking
more consideration of the memory coherency protocol. This
section presents in the first part the algorithm used in
OpenMP stream-computing extension and highlight some
of its shortcomings. In the second part, the section presents
the BatchQueue algorithm used to improve performance of
OpenMP stream-computing extension.

A. Native OpenMP stream-computing extension algorithm

In multicore and multiprocessor systems, MOESI1 proto-
col [9] ensures coherency between all the caches. However,
two issues arise due to this coherency. First, although
MOESI protocol aims at minimizing communication needed
to achieve coherency, it cannot be avoided. Indeed, commu-
nication is needed in two cases: (i) a modified cache line
needs to be invalidated in other caches, (ii) an invalid cache
line needs to be updated from another cache or memory. The
second issue occurs when two unrelated data items, which
lie on the same cache line, are updated. This issue is known
as false sharing.

The original OpenMP stream-computing extension algo-
rithm, called native algorithm hereafter, tries to address
both these issues. The native algorithm is a MPMC queue
– Multiple Producers Multiple Consumers queue – which
makes the communication issue more difficult to address. In-
deed, competition for shared variables also happens between
producers themselves and between consumers themselves.

The main principle employed in the algorithm to tackle
the communication issue is to cache the values of shared data
whenever possible. For efficiency, producers and consumers
are not directly connected to the queue. Instead, producers
and consumers are connected to structures representing
the set of all producers, and respectively consumers. This
structure layout allows for different levels of caching, in
the same way as processors have several levels of cache.
In practice, this means data for which a lot of contention
happens are cached once in the structure representing the

1MOESI stands for Modified Owned Exclusive Shared Invalid which
correspond to the 5 states this protocol has.

set of producers (resp. consumers) and once in the producers
(resp. consumers) themselves.

For eleminating false sharing, the solution consists of as-
signing some variables an entire cache line to avoid conflicts.
However the communication buffer itself can suffer from
false sharing. Participants – producers and/or consumers –
can work concurrently on different areas of the buffer fitting
in the same cache line. Though, this scenario does not occur
in the native algorithm because the amount of data sent
together through the queue is a multiple of 32 times the
size of the base element. Since elements are usually greater
than one byte, producers and consumers work on different
cache line all the time.

From the above it is clear that the native algorithm is
designed to efficiently handle inter-core communication. It
tackles both issues related to memory coherency on multi-
core systems: excessive communication and false sharing.
However, this algorithm handle complex scenarios where
multiple producers communicate with multiple consumers.
As such, some amount of synchronization is required be-
tween the producers and between the consumers on the
variables they share. When communication happens between
one producer and one consumer, these synchronizations are
useless and hurt the throughput. Since this scenario is the
most frequent one in pipeline parallelism, an opportunity is
missed to optimize communication in this case.

B. BatchQueue

Contrary to the native algorithm, our algorithm
BatchQueue is a SPSC queue – Single Producer Single
Consumer queue. This property makes it solve more
efficiently the two memory coherency issues discussed
above, that is minimizing communication between cores and
avoiding false sharing. BatchQueue’s algorithm addresses
these two issues in three different ways:

• by reducing the number of shared variable;
• by sending an amount of data which is a multiple of

the cache line size;
• by segregating producer and consumer in different

cache lines.
The first two propositions address the communication

issue. Reducing the number of shared variables reduces the
need for coherency and thus communication while sending
several data at the same time implies some factorization of
the synchronization. The last proposition, on the other hand,
addresses the false sharing issue by preventing consumer’s
cache from being invalidated every time the producer pro-
duces a data.

The algorithm we propose is presented in functions pro-
duce and consume. The principle is to have a communication
buffer divided in two parts, called semi-buffers, whose
size is a multiple of the cache line size. This allows for
the production and consumption to be done from different
buffers, thus avoiding false sharing. The semi-buffers are



read from and written to at one go. When the semi-buffers
are totally processed, a synchronization happens to exchange
them. The consumer starts reading the data from the semi-
buffer that the producer just filled and the sender can write
in the buffer that the consumer already read entirely.

tab[indprod]←− data ;
indprod ←− next entry ;
if indprod = Start of cache line then

Wait status = false ;
status ←− true ;

end
Function produce

Wait status = true ;
for i←− indcons to end of cache line do

copy buf [i]←− tab[i] ;
end
indcons ←− index of the other buffer ;
status ←− false ;

Function consume

The synchronization to exchange the two semi-buffers rely
on a single shared boolean variable called status. Producer
can only flip the variable when its value is false while
consumer can only flip it when its value is true. This
invariant ensure producer and consumer can never update
the variable concurrently.

This variable is not modified during the processing of
the semi-buffers. It is changed only when synchronization
is needed, that is during the semi-buffers exchange. In other
words, real sharing of the variable only happens while
exchanging the semi-buffers. Since throughput is related to
the amount of synchronization and this synchronization only
happens when the semi-buffers are exchanged, it is possible
to increase the throughput by increasing the size of the semi-
buffers. However, bigger semi-buffers means a bigger delay
before sending data and hence increased latency. Choosing
the right size for the semi-buffers is thus a tradeoff between
throughput and latency.

Like most recent communication algorithms2,
BatchQueue makes it possible for production and
consumption to happen at the same time without involving
data sharing. The synchronization between producer and
consumer is only performed once per semi-buffer. This
favors the slowest participant: only the synchronization
variable is considered when one of the sides finishes
processing its semi-buffer, the other side is not slowed
down.

2See section V

IV. EVALUATION

The detailed presentation of BatchQueue in section III-B,
the empirical evaluation of BatchQueue presented in [4],
and the theoretical comparison with alternative solutions
in section V suggests that BatchQueue’s design makes
it more efficient for pipeline parallelism. This section
presents a comparison of the performance between OpenMP
stream-computing extension and the improved version using
BatchQueue. Performance is measured on a micro bench-
mark and also three practical applications: GNU FMradio,
trellis computation and pipeline template.

Software platform: For each program, two experi-
mentations are compared to the sequential code: they are
named “Native” and “BatchQueue” in the graphs. “Native”
represents the execution of the code parallelized with the
addition of annotations from the OpenMP stream-computing
extension. The communication algorithm is the default one
provided with the extension. “BatchQueue” denotes the use
of BatchQueue as a replacement of the native one. In this
case the annotations are the same as in “Native”.

Hardware platform: The machine used for all eval-
uations features a dual quad-core Xeon X5472 with a
frequency of 3 GHz and 10 GiB of RAM. The cores have a
32KiB L1 cache and 6 MiB L2 cache shared between each
pair of cores. The operating system is a Debian GNU/Linux
6.0 “Squeeze” installed in 64-bit mode. Both the code of
OpenMP stream-computing extension with BatchQueue [5]
and the benchmarks [10] can be found online.

A. Micro benchmark evaluation

The design of BatchQueue as described in section III
and the previous evaluations [4, 11] performed against state
of the art single producer single consumer queues suggest
that it should be more efficient than the native algorithm.
However, given the complexity of cache behavior, an explicit
comparison might give different results, especially when the
communication algorithms are used to connect more than
two nodes. Indeed, in a long chain of nodes, when one node
is blocked to wait for some data to be available it slows
down all the downstream nodes by domino effect.

In order to measure the maximum throughput which
both the algorithms can achieve, a micro benchmark was
conducted. Two configurations are used for the benchmark:
one where only the two cores are connected and one where
the two cores are the two end points of a chain of 4 cores.
Performing the evaluation with these two configurations
allow to measure separately the throughput the algorithms
can achieve and how well they behave when used to connect
more than 2 cores. The benchmark consists in sending a
fixed amount of data between two cores: around 32GB for
the 2 cores configuration and around 3.2GB for the 4 cores
chain configuration. The amount of data sent is carefully
chosen to be a multiple of the size of the communication
buffer which fits in 64 cache lines of 64 bytes. Bandwidth is



then computed from the time spent and the amount of data
sent. We measured the time it takes for both BatchQueue,
and the native algorithm.

For each configurations, two variants of the test are pro-
posed: one test with intensive communication called “comm”
and one test of intensive computation called “matrix”. In the
test comm, no action is performed between two data sent
which allows to compute the maximum throughput algo-
rithms can achieve. In the test matrix, a matrix multiplication
is done between two data sent in the purpose of measuring
performance of algorithms when the first level cache is under
heavy use. The results of these two variants are presented in
figure 3 for the configuration with 2 cores, and in figure 4
for the configuration with 4 cores.

Figure 3: Throughput achieved by BatchQueue and na-
tive OpenMP stream communication algorithm under micro
benchmark between 2 cores

Figure 4: Throughput achieved by BatchQueue and na-
tive OpenMP stream communication algorithm under micro
benchmark in a chain of 4 cores

The results show a strong advantage in using BatchQueue.
In the 2 cores configuration, BatchQueue improves the
throughput by a factor 2.3 when communication is intensive
and by a factor 1.4 when computation is intensive compared
to the native algorithm. In the 4 cores chain configuration,
BatchQueue performs even better by improving by a factor
3 when communication is intensive and by a factor 1.7 when
computation is intensive.

The smaller improvement in the variant where computa-
tion is intensive can be explained by the use of the total time
to compute the throughput. Since the matrix multiplication
account for more than half of the total time spent by the run,
a given improvement in the communication time translate
into a smaller improvement in throughput. The throughput
speedup is thus closer to the factor 3 than it seems. It ensues
that the throughput BatchQueue is capable of achieving is
quite insensitive to the contention for the first level cache.
Overall, it appears from this micro benchmark that the good
results of BatchQueue in terms of throughput are confirmed
both when used between 2 cores and when used in a chain of
4 cores, which confirms the interest in using BatchQueue as
a communication algorithm to realize pipeline parallelism.

B. Synchronization bound benchmark with GNU FMradio

The results of the micro benchmark confirm that, in terms
of throughput, Batchqueue performs better than the native
algorithm. Therefore, better performance can be expected
by parallelizing a program using Batchqueue, instead of the
native algorithm. To confirm this, our first real-application
evaluation was done on GNU FMradio. FMradio is one of
the three applications transformed for evaluation in [3]. The
two other applications are: a Fast Fourier Transformation
(FFT) program, and a 802.11a production code from Nokia.
These applications were not evaluated because of their un-
suitability for our comparison: FFT parallelization required
hand tuning of the application code and, 802.11a production
code is not presented in the paper.

Two annotated versions of FMradio were done by Pop
and Cohen in their evaluation of OpenMP stream-computing
extension: one version with pipeline parallelism only and an-
other version accumulating pipeline and data parallelism. We
use the pipeline parallelism only version for the evaluation
because we want to evaluate the impact of BatchQueue on
pipeline parallelism and the other version cannot be fully
automatically parallelized. The number of cores involved is
fixed to 12 since annotations in the code of FMradio does
not allow the number of cores to vary. The results are shown
in fig. 5 and presents the speedup compared to the sequential
version.

Figure 5: Speedup achieved by BatchQueue and native
OpenMP stream-computing communication algorithm for
GNU FMradio



Despite the good performance of BatchQueue in the micro
benchmark, the performance is unchanged in the case of
FMradio. An analysis of the structure of the pipeline was
performed at runtime by looking at the actual graph of
structures in memory. The observed structure is depicted in
fig. 6 and shows that the data flow is not linear, it contains
several branches.

Figure 6: Structure of the pipeline with FMradio

Because of the implied synchronization, every node pro-
ducing in more branches than it is consuming from is likely
to be a bottleneck. This is the case of node C12 for instance,
which is the node colored in gray at the right of the pipeline
structure displayed above. An extended analysis including
the time spent in busy loop in each channel, on both pro-
ducer and consumer side, shows that the problem is indeed
structural but mainly lies in channel C1 and C2, also colored
in gray but lying on the left of the structure. The time spent
in busy loop is greatly unbalanced between channels C1 and
C2: one channel is waiting for the other. Therefore, FMradio
presents two limitations which prevent it from scaling with
pipeline parallelism: excessive synchronization on one node
and unbalanced branches between two same nodes. Overall,
FMradio does not scale with pipeline parallelism because
the resulting pipeline contains branches and thus does not
conform to the linear structure, which pipeline parallelism
is good at dealing with.

C. A 40% improvement with trellis computation

As seen in the case of GNU FMradio, scalability cannot
always be achieved due to intrinsic limitation of the program
to parallelize. In particular, non linear pipeline tends to per-
form badly, either because of the synchronization involved,
or because of unbalanced sibling branches. Therefore, the
following experiments, starting with the trellis computation,
only consider programs whose dependencies are linear.

The trellis computation originates from a work led at
Alcatel Lucent[12, 13]. It consists of a rewrite in C of
a portion of C++ code whose purpose is to decode some
packets coming from an unreliable network in the most
sensible way. The data comes in analog form and may have
been altered by the network. The analog physical signal is
converted into a binary packet by looking, for each bit, at the
probability of it being a 0 or a 1. The probability of a given
bit is computed from the value of the signal for this bit and
from the probability of all previous bits. The computation of
the probabilities is done by filling a trellis progressively. The
trellis computation hence deals with a stream of packets as

an analog signal and each packet is processed in a sequential
algorithm.

As opposed to GNU FMradio, the trellis computation al-
gorithm has the typical structure of what pipeline parallelism
deals with: a stream of data with sequential processing of
each data. The flow of data in this sequential processing
is perfectly linear and so is the pipeline generated when
annotating the program with OpenMP stream-computing
extension. It should be noted however that each packet
is processed independently from the others, so the same
technique as in the RPS Linux patch [14] — Receive
Packet Steering — could be used for processing the packets.
Packets would then be sent in a round robin fashion on
different processors and be processed entirely there, thus
also avoiding the communication overhead.

The program was parallelized so that each core deals with
one part of the packet and transmits the result to the next
core to process the next set of bits. The results are presented
in fig. 7.

Figure 7: Speedup achieved by BatchQueue and native
OpenMP stream-computing communication algorithm for
the trellis computation

Contrary to FMradio, the trellis computation presents an
improvement with BatchQueue over the native algorithm for
a big enough number of cores. On 8 cores, BatchQueue
improves throughput by 40% over the native algorithm.
Despite this important improvement, the speedup is still far
from ideal: the speedup for 8 cores is around 2.85. This
suggests that communication is not the limiting factor.

The reason is that some initialization is done for each
packet before it is sent and this initialization is not par-
allelized. Part of the initialization is generation of random
analog physical packets in order to avoid reading packets
from traces on disk, which would be even slower. Doing the
random generation of all packets before the time starts to be
accounted would then exhibits a more linear speedup with
the number of cores and thus an even better improvement
but was not done due to lack of time.

D. 2x speedup with template
The case of trellis computation is promising as it shows

speedup improvement is possible by using BatchQueue.



Moreover, the way speedup evolves with the number of
cores indicates the reason for this partial scaling does not lie
in the communication algorithm, but is again related to the
program parallelized. However, unlike previously, the reason
is not the structure of the pipeline but is a piece of code
which cannot be parallelized. The last experiment, shown
below, involves a template code with all the characteristics
making it completely suitable for pipeline parallelism. The
use of a template code allows to obtain the maximum
speedup improvement that can be obtained from BatchQueue
when used inside OpenMP stream-computing extension. It
also helps programmers who consider pipeline parallelism
to estimate the speedup they can expect with their own
program, according to how much it conforms to the template.

There is one category of software whose structure is a per-
fect fit for pipeline parallelism: audio and video processing.
As explained in [15], audio and video processing is orga-
nized as a graph of filters: data flows in the form of frames
from one filter to another. Filters can be stateful, which
means their output can depend on the current frame and
previous frames processed. This dependency chain means
that even the packet steering technique cannot be used to
parallelize this code, only pipeline parallelism can. However,
parallelizing such a code requires a significant amount of
work. Hence, we propose instead in this paper a template
code following the same constraints: processing sequentially
a stream of data with a dependency chain. Like in the case of
the trellis computation, the resulting pipeline is completely
linear. Figure 8 shows the results of its parallelization in
terms of speedup over the sequential code.

Figure 8: Speedup achieved by BatchQueue and native
OpenMP stream-computing communication algorithm for
the template program

As expected, the template code presents good scala-
bility. Increasing the number of cores leads to increased
throughput, in a relatively linear way. We can see that
BatchQueue outperforms the native communication algo-
rithm of OpenMP by a factor 2.

V. RELATED WORK

The previous sections present the details of BatchQueue
algorithm and how it manages to improve pipeline paral-
lelism. In particular, emphasis is put on the way it reduces
the number of synchronizations required between a producer
and a consumer and avoids false sharing. This section
describe previous work with similar objectives and relate
them to BatchQueue. Due to lack of space, this section only
compares algorithms at a theoritical level but a benchmark
comparison can be found in [11].

FastForward: Among all the alternative algorithms,
FastForward [16] is the most simple. The solution retained
to avoid sharing producer and consumer’s indices is to use
one of the value data cannot take to indicate that a buffer
entry is empty. By doing this, the producer and consumer
only need to access their own buffer index and to read the
value of the next buffer entry to know if they can produce
or consume.

Although elegant, this approach still exhibits false sharing
if the producer and the consumer work on close buffer
entries, since they might fit on the same cache line. To
prevent from false sharing to happen, the authors of this
work explains that a delay must be maintained between the
production and the consumption. To be more precise, the
producer and the consumer shall always work on data from
different cache line.

For this purpose, they propose an algorithm to enforce
this delay, based on a busy loop checking that the distance
between producer and consumer is not too small. Hence,
FastForward only work satisfyingly if the producer and
consumer work roughly at the same speed. Indeed, the busy
loop compares the indices of the producer and the consumer
to compute the distance between them. This comparison
implies data sharing and thus should be avoided as much
as possible.

BatchQueue solve this problem by enforcing the producer
and the consumer to never work on the same cache line. A
single shared variable is required to realize it and is read
and written only when a semi-buffer is full, that is when the
semi-buffer are exchanged.

DBLS and MCRingBuffer: DBLS [17] and MCRing-
Buffer [18] propose to delay producing data until N cache
lines are filled, N being greater than 1. This delayed produc-
tion of data allows to completely avoid false sharing. Sharing
of producer and consumer buffer indices is also avoided by
using, for each of these indices, one shared variable and two
local variables. The producer and the consumer each have
two local variables: one “local copy” of their own index –
the index updated after each produce or consume operation
– and one “mirror copy” of the shared index of the other
participant, storing its position. Local copies are updated for
every data produced (resp. consumed) while mirror copies
and shared variables are updated for every N cache line
filled (resp. emptied).



MCRingBuffer reduces the frequency a bit more com-
pared to DBLS by updating the shared variables only
when no progression can be done from the mirror copies.
Furthermore, the authors of MCRingBuffer emphasize that
producer’s variable should be in separate cache line than
consumer’s variable, to avoid false sharing.

BatchQueue distinguishes itself from DBLS and MCRing-
Buffer by the number of variables used, and especially the
number of shared variables. DBLS and MCRingBuffer use
8 variables, including 2 shared variables indicating what is
the next entry to be used for consumption and production.
BatchQueue only needs 3 variables, including a single
shared variable. Furthermore, BatchQueue takes into account
the effects of prefetching in the layout of the variables, to
avoid any extra false sharing.

Clustered software queue: The clustered software
queue [19] – or CSQ – delays the production of data to
minimize data sharing and use a bit flip to notify when the
communication buffer is full or empty. Despite an algorithm
similar to BatchQueue, two differences remain between
them. Firstly, with the parameters recommended in the
article, CSQ uses a bigger number of buffers3, each having
one synchronization bit to tell whether the corresponding
buffer is full or empty. The idea is to offer more flexibility in
the synchronization between the producer and the consumer.
Moreover, the various elements of the data structure are
layout out sequentially in memory.

Each of these two differences has an impact on through-
put performance of CSQ. Firstly, although allowing more
variation in the throughput, the bigger number of buffers in
CSQ increases the number of synchronizations. To produce
an amount of data equal to the aggregate size of all the
buffers, as many synchronizations are needed as the number
of buffers. With only two buffers, BatchQueue only needs
two synchronizations. Finally, accesses to the various buffers
and synchronization bits being sequential, the prefetching
will fetch automatically the next elements. However, the next
elements are those being modified, leading to unwanted data
sharing.

It stands out from this comparison with related work
that BatchQueue compares well with alternative solutions.
Besides, we have also shown in [11] that BatchQueue
outperforms all these solutions and thus fulfill its objective
of performance. The reason is that BatchQueue manages to
remove false sharing due to producer and consumer indices
and to reduce data sharing to a single bit shared variable.
BatchQueue also removes false sharing as a side effect
of processor prefetching by moving away the various data
structures used by the algorithm from each other.

3The paper also studies the influence of the number of buffers on
performance but never with less than 32 buffers.

VI. CONCLUSION

In this paper, we propose to use the BatchQueue algorithm
in replacement to the communication algorithm used in
the OpenMP stream-computing extension [3]. Compared to
this algorithm, BatchQueue is able to improve the overall
performance of pipeline parallelism applications up to a
factor 2. BatchQueue achieves this result by reducing data
sharing by reducing the number of synchronizations and
by avoiding false sharing, included due to prefetching. The
good results obtained in our evaluation show that by working
solely on the efficiency of communication algorithms in
parallel applications on multicore hardware, a significant
improvement can be achieved.

BIBLIOGRAPHY

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture - A
Quantitative Approach, fourth edition ed. Morgan Kaufmann, 2007.

[2] O. A. R. Board, “OpenMP API specification for parallel program-
ming,” http://openmp.org.

[3] A. Pop and A. Cohen, “A stream-computing extension to OpenMP,”
in International Conference on High Performance and Embedded
Architectures and Compilers. ACM, 2011, pp. 5–14.

[4] T. Preud’homme, J. Sopena, G. Thomas, and B. Folliot, “Batchqueue:
Fast and memory-thrifty core to core communication,” in SBAC-PAD,
2010, pp. 215–222.

[5] “Git repository of OpenMP stream extension with BatchQueue,”
git://git.celest.fr/rt gccstream.git.

[6] Intel, “Threading Building Blocks,” http://threadingbuildingblocks.org/.
[7] ——, “Cilk Plus,” http://software.intel.com/en-us/articles/intel-cilk-plus/.
[8] ——, “Array Building Blocks,” http://software.intel.com/en-

us/articles/intel-array-building-blocks/.
[9] AMD, “AMD64 technology,” http://support.amd.com/us/

Embedded TechDocs/24593.pdf.
[10] “Git repository of BatchQueue’s benchmarks,” git://git.celest.fr/

rt benchs.git/pipepar.
[11] T. Preud’homme, J. Sopena, G. Thomas, and B. Folliot, “Batchqueue:

file producteur/consommateur optimisée pour les multi-cœurs,” in
CFSE’08, 2011.

[12] C. Marin, Y. Leprovost, M. Kieffer, and P. Duhamel, “Robust mac-
lite and soft header recovery for packetized multimedia transmission,”
Communications, IEEE Transactions on, vol. 58, no. 3, pp. 775–784,
2010.

[13] R. Hu, X. Huang, M. Kieffer, O. Derrien, and P. Duhamel, “Robust
critical data recovery for mpeg-4 aac encoded bitstreams,” in ICASSP,
2010, pp. 397–400.

[14] “Receive Packet steering,” http://lwn.net/Articles/362339/.
[15] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-

grained task, data, and pipeline parallelism in stream programs,” in
ASPLOS-XII, 2006, pp. 151–162.

[16] J. Giacomoni, T. Mosely, and M. Vachharajani, “Fastforward for
efficient pipeline parallelism: A cache-optimized concurrent lock-free
queue,” in PPoPP’08, 2008, pp. 43–52.

[17] C. Wang, H.-s. Kim, Y. Wu, and V. Ying, “Compiler-managed
software-based redundant multi-threading for transient fault detec-
tion,” in CGO’07, 2007, pp. 244–258.

[18] P. Lee, T. Bu, and G. Chandranmenon, “A Lock-Free, Cache-Efficient
Multi-Core Synchronization Mechanism for Line-Rate Network Traf-
fic Monitoring,” in IPDPS’10, 2010.

[19] Y. Zhang, K. Ootsu, T. Yokota, and T. Baba, “Clustered Communi-
cation for Efficient Pipelined Multithreading on Commodity MCPs,”
IAENG International Journal of Computer Science, vol. 36, no. 4, pp.
275–283, 2009.


	Introduction
	Background
	Principle of pipeline parallelism
	OpenMP stream-computing extension

	Efficient inter-core communication
	Native OpenMP stream-computing extension algorithm
	BatchQueue

	Evaluation
	Micro benchmark evaluation
	Synchronization bound benchmark with GNU FMradio
	A 40% improvement with trellis computation
	2x speedup with template

	Related work
	Conclusion

