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A class of fast exact Bayesian filters

in dynamical models with jumps
Yohan Petetin, François Desbouvries, Senior Member, IEEE

Abstract—We address the statistical filtering problem in dy-
namical models with jumps. When a particular application is
adequately modeled by linear and Gaussian probability density
functions with jumps, a usual method consists in approximating
the optimal Bayesian estimate (in the sense of the Minimum
Mean Square Error (MMSE)) in a linear and Gaussian Jump
Markov State Space System (JMSS). Practical solutions include
algorithms based on numerical approximations or on Sequential
Monte Carlo (SMC) methods. In this paper, we propose a
class of alternative methods which consists in building statistical
models which, locally, similarly model the problem of interest,
but in which the computation of the MMSE estimate can be be
computed exactly (without numerical nor SMC approximations)
and at a computational cost which is linear in the number of
observations.

Index Terms—Jump Markov State Space Systems, Hidden
Markov Chains, Pairwise Markov Chains, Conditional Pairwise
Markov Chains, NP-hard problems, exact Bayesian filtering.

I. INTRODUCTION

A. Background

LET {yk}k≥0 ∈ R
p be a sequence of observations and

{xk}k≥0 ∈ R
m a sequence of hidden states (as far

as notations are concerned, we do not differ random vari-

ables (r.v.) and their realizations; bold letters denote vectors;

p(x), say, denotes the probability density function (pdf) of

r.v. x and p(x|y), say, the conditional pdf of x given y).

Let x0:k = {xi}ki=0 and y0:k = {yi}ki=0. We address the

Bayesian filtering problem which consists in computing (an

approximation of) p(xk|y0:k) and next in computing a moment

of this pdf. In this paper we directly focus on the recursive

computation of

Φk = E(f(xk)|y0:k) =

∫

f(xk)p(xk|y0:k)dxk, (1)

where f(x) = x or f(x) = xxT .

Computing Φk is of interest in many applications such as

single- [1] [2] [3] or multi-target tracking [4], finance [5] [2]

and geology [6]. These applications are best modeled when

in addition to {xk} and {yk}, we introduce a third sequence

{rk}k≥0 in which rk ∈ {1, · · · ,K} is discrete and hidden,

and models the regime switchings. In this case, the underlying

model is mostly described by two pdfs fi|i−1(xi|xi−1, ri) and

gi(yi|xi, ri). Pdf fi|i−1 describes the dynamical evolution of

the hidden state over time when regime ri is known, and gi
models how the observation yi is produced from state xi under
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regime ri. From now on, we assume that pdfs fi|i−1 and gi are

given and have been chosen in accordance with the considered

application.

One should still specify the joint probability model for

{xk,yk, rk}k≥0. A well known model which is directly built

from pdfs fi|i−1 and gi is the so-called JMSS, i.e. a model

where the joint pdf of (x0:k,y0:k, r0:k) reads

p1(x0:k,y0:k, r0:k) = p1(r0)

k∏

i=1

p1(ri|ri−1)

︸ ︷︷ ︸

p1(r0:k)

×

p1(x0|r0)
k∏

i=1

fi|i−1(xi|xi−1, ri)

︸ ︷︷ ︸

p1(x0:k|r0:k)

k∏

i=0

gi(yi|xi, ri)

︸ ︷︷ ︸

p1(y0:k|x0:k,r0:k)

. (2)

This model is popular because it directly takes into account

the physical properties of interest, and it reduces to a Hidden

Markov Chain (HMC) model when the jumps r0:k are fixed.

Note that in this model, we assume that the jumps are a

Markov chain (MC).

Unfortunately, computing Φk in a JMSS model is impossi-

ble in the general case, i.e. when fi|i−1 and gi are arbitrary

functions, and is still NP-hard in the linear and Gaussian case

[7], i.e. when functions fi|i−1 and gi satisfy

fi|i−1(xi|xi−1, ri) = N (xi;Fi(ri)xi−1;Qi(ri)), (3)

gi(yi|xi, ri) = N (yi;Hi(ri)xi;Ri(ri)) (4)

(N (x;m;P) is the Gaussian pdf with mean m and covariance

matrix P taken at point x). From now on we focus on the lin-

ear and Gaussian case, since even in this case approximations

are necessary. A number of suboptimal methods for computing

Φk in linear and Gaussian JMSS have been proposed so

far. First, based on the observation that p1(xk|y0:k) is a

Gaussian Mixture (GM) which grows exponentially with time,

numerical approximations such as pruning and merging have

been studied [8]. A second class of approximations is given by

the Interacting Multiple Model (IMM) [9] [10] [11]; roughly

speaking, a bank of Kalman Filters (KF) are used for each

mode rk and their outputs are combined according to the

parameters of the model and to the available observations.

As an alternative to numerical approximations, a more recent

class of methods is based on the use of Monte Carlo samples

and Particle Filtering (PF) [1] [12] [13] [14]. A set of weighted

random samples {ri0:k, w
i
k}

N
i=1 approximates p1(r0:k|y0:k),

while p1(x0:k|r0:k, y0:k) is a Gaussian pdf computable via

KF, which leads to the following approximation of the pdf of



2

x0:k given y0:k:

p1(x0:k|y0:k)≈
N∑

i=1

wk(r
i
0:k)N (x0:k;mk(r

i
0:k);Pk(r

i
0:k)).

(5)

Monte Carlo methods have suitable asymptotical convergence

properties [15] [5] [16] but may require a serious com-

putational cost, since at least a KF is computed for each

particle (one has to compute mk(r
i
0:k) and Pk(r

i
0:k)), and

for the computation of weights {wk(r
i
0:k)}

N
i=1. Finally, some

recent contributions focused on JMSS in which the transition

probabilities p1(rk|rk−1) are only partially known [17] [18].

B. Contributions of this paper

Let us now turn to the contents of this paper. We as-

sume that we are given p1(rk|rk−1), fk|k−1(xk|xk−1, rk) and

gk(yk|xk, rk). By contrast with the methods recalled in §I-A,

we no longer try to approximate the computation of Φk in

the JMSS model p1(.), but rather want to build statistical

models p2(.) which, locally, model the problem at hand as

p1 does, but in which Φk can now be computed exactly and

efficiently. More precisely, our problem can be formulated

as follows. Assume that (3) and (4) efficiently model some

practical problem of interest. Then we look for a joint pdf

p2(x0:k,y0:k, r0:k) such that:

i) p2(xi|xi−1, ri) = fi|i−1(xi| xi−1, ri);
ii) p2(yi|xi, ri) = gi(yi|xi, ri); and

iii) Φk can be computed exactly (i.e., without resorting

to any numerical or Monte Carlo approximations) and

efficiently (i.e., at a computational cost linear in the

number of observations).

Let us now describe the methodology that we use to build

such a pdf p2(.). We use a two-step procedure. First, we fix the

jumps r0:k and thus only consider process z0:k = (x0:k,y0:k).
When the jumps are fixed, JMSS models reduce to classical

HMC models, described by pdf

p1(z0:k) = p1(x0)

k∏

i=1

fi|i−1(xi|xi−1)

︸ ︷︷ ︸

p1(x0:k)

k∏

i=0

gi(yi|xi)

︸ ︷︷ ︸

p1(y0:k|x0:k)

; (6)

since model (6) is moreover linear and Gaussian, Φk can

be computed exactly via the KF. Adapting the objectives

above, our first goal is to compute a class of statistical

models p2(z0:k) (not necessarily HMC ones) in which i)

p2(xi|xi−1) = fi|i−1(xi|xi−1), ii) p2(yi|xi) = gi(yi|xi), and

iii) the computation of Φk in (1) would remain possible. Our

construction relies on Pairwise Markov Chains (PMC) models

[19] [20], which are more general statistical models than HMC

ones and yet still enable similar Bayesian processing.

Next, in the particular class of PMC models obtained,

we reintroduce the jumps in order to obtain a class of

conditionally linear and Gaussian PMC models which keep

the physical properties of interest fi|i−1(xi|xi−1, ri) and

gi(yi|xi, ri). Among these models, we discuss on those in

which {p2(rk|y0:k),E(xk|y0:k, rk)}Krk=1 can be computed re-

cursively exactly and efficiently (at a linear cost in the number

of observations) by the exact filtering technique recently

proposed in some triplet Markov chain models [21] [22];

finally Φk is computed as

Φk =
∑

rk

p2(rk|y0:k)E(xk|y0:k, rk). (7)

The paper is organized as follows. In section II, we first

drop the jumps and build a class of linear and Gaussian

PMC models which all share given properties. Next in section

III, we reintroduce the jumps and we address the sequential

filtering problem in such dynamical models. So we describe

a class of conditionally linear and Gaussian PMC models

which keep the physical properties of interest. Among this

new class of models, described by two parameters, we look for

those in which Φk can be computed exactly by the technique

described in [21] [22]. Finally, in section IV, we illustrate

our methodology step by step on a practical example and

we perform simulations. Our method is compared to classical

approximating techniques such as the Sampling Importance

Resampling (SIR) algorithm [1] and IMM algorithms [9]. We

end the paper with a Conclusion.

II. A CLASS OF PHYSICALLY CONSTRAINED PMC MODELS

In this section we drop the dependencies in the jump process

{rk}k≥0. So we start from given properties fi|i−1(xi|xi−1)
and gi(yi|xi), which in turn define the HMC model p1(.) in

(6), in which Φk can be computed exactly via KF since fi|i−1

and gi are Gaussian. Our aim here is to embed p1(.) into a

broader class of models {p2,θ}θ∈Θ (i.e., p1 = p2,θ0 for some

θ0), which all share the properties of the root model p1 (i.e.,

p2,θ(xi|xi−1) = fi|i−1(xi|xi−1) and p2,θ(yi|xi) = gi(yi|xi)
for all θ), and in which Φk can still be computed exactly

whatever θ. Such models are described in section II-B, and

are indeed particular PMC models, which we briefly recall in

section II-A. The interest of family {p2,θ}θ∈Θ will become

clear in section III, when we reintroduce the jumps.

A. A brief review of PMC models

In the HMC model (6), it is well known that {xk}k≥0

is an MC, and that given x0:k, observations {yi} are in-

dependent with p1(yi|x0:k) = p1(yi|xi) = gi(yi|xi). On

the other hand, a PMC model is a model in which the pair

{zk = (xk,yk)}k≥0 is assumed to be an MC, i.e. a model

which satisfies

p2(xi,yi|x0:i−1,y0:i−1)=p2i|i−1(xi,yi|xi−1,yi−1) (8)

=p2(xi|zi−1)p
2(yi|xi−1:i,yi−1)(9)

Therefore, in a PMC model, pdf of (x0:k,y0:k) reads

p2(x0:k,y0:k)=p
2(x0,y0)

k∏

i=1

p2i|i−1(xi,yi|xi−1,yi−1). (10)

One can check easily that the HMC model is indeed one

particular PMC, because from (6), p1(xi,yi|x0:i−1, y0:i−1) =
fi|i−1(xi|xi−1) gi(yi|xi). So (8) is satisfied, and moreover the

two factors in (9) respectively reduce to

p1(xi|xi−1,yi−1) = fi|i−1(xi|xi−1), (11)

p1(yi|xi,xi−1,yi−1) = gi(yi|xi). (12)
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Now in a general PMC model (8) is satisfied, but

p2(xi|xi−1,yi−1) may depend on both xi−1 and yi−1, and

p2(yi|xi,xi−1,yi−1) may depend on xi, xi−1 and yi−1.

One can show that in a PMC model, {xk}k≥0 is no longer

necessarily an MC, and/or given x0:k, observations yi can be

dependent [23].

As an illustration let us consider the classical state-space

system

xk = Fkxk−1 + uk, (13)

yk = Hkxk + vk, (14)

in which {uk ∼ N (.;0;Qk)}k≥1 and {vk ∼ N (.;0;Rk)}k≥0

(in this paper, we assume that all covariance matrices are

positive definite) are independent, mutually independent and

independent of r.v. x0 ∼ N (.;m0;P0). Model (13)-(14) is a

Gaussian HMC model with

p1(xk|xk−1)=fk|k−1(xk|xk−1)=N (xk;Fkxk−1;Qk), (15)

p1(yk|xk)=gk(yk|xk) =N (yk;Hkxk;Rk), (16)

and as such is a particular PMC model, in which the initial

and transition pdfs of MC {(xk,yk)}k≥0 read

p1(z0) = N

(

z0;

[
m0

H0m0

]

;

[
P0 (H0P0)

T

H0P0 R0+H0P0H
T
0

])

, (17)

p1k|k−1(zk|zk−1) =

N

(

zk;

[
Fk 0

HkFk 0

]

zk−1;

[
Qk (HkQk)

T

HkQk Rk +HkQkH
T
k

])

. (18)

This linear and Gaussian HMC model (13)-(14) (or equiva-

lently (17)-(18)) appears as a particular model of the class of

linear and Gaussian PMC models defined by:

p2(z0) = N (z0;m
′
0;P

′
0), (19)

p2k|k−1(zk|zk−1)=N







zk;

[
F1

k F2
k

H1
k H2

k

]

︸ ︷︷ ︸

Bk

zk−1;

[

Σ11
k Σ21

k

T

Σ21
k Σ22

k

]

︸ ︷︷ ︸

Σk








.

(20)

Finally, let us recall that in linear and Gaussian HMC models

(17)-(18), Φk in (1) can be computed via the KF, and that KF

is still available in linear and Gaussian PMC ones [24, eqs.

(13.56) and (13.57)] [25].

B. A class of constrained PMC models

We now derive a general class of linear and Gaussian PMC

models p2,θ(.) in which locally pdfs p2,θ(x0), p
2,θ(xk|xk−1)

and p2,θ(yk|xk) respectively coincide with given pdfs p1(x0),
(15) and (16). We have the following result (a proof can be

found in [26, Appendix B]).

Proposition 1 Let p1(x0) = N (x0;m0;P0), and for all k let

fk|k−1 and gk be given by (15)-(16). The linear and Gaussian

PMC models (8) (19) (20) described by

p2,θ(z0)=N

(

z0;

[
m0

H0m0

]

;

[
P0 (H0P0)

T

H0P0 R0+H0P0H
T
0

])

, (21)

p2,θ
k|k−1(zk|zk−1)=N (zk;Bkzk−1;Σk), (22)

where matrices Bk and Σk are defined by

Bk =

[
Fk − F2

kHk−1 F2
k

HkFk −H2
kHk−1 H2

k

]

, (23)

Σk =

[
Σ11

k (Σ21
k )T

Σ21
k Σ22

k

]

, (24)

Σ11
k = Qk − F2

kRk−1(F
2
k)

T , (25)

Σ21
k = HkQk −H2

kRk−1(F
2
k)

T , (26)

Σ22
k = Rk−H2

kRk−1(H
2
k)

T +HkQk(Hk)
T , (27)

and where parameters θ = {(F2
k,H

2
k)}k≥1 can be arbitrarily

chosen, provided Σk is a positive definite covariance matrix

for all k, satisfy the constraints

p2,θ(x0) = p1(x0), (28)

p2,θ(xk|xk−1) = fk|k−1(xk|xk−1), (29)

p2,θ(yk|xk) = gk(yk|xk). (30)

Remark 1 Let us now discuss properties of the constrained

PMC models {p2,θ}θ∈Θ described in Proposition 1.

First, if H2
k = HkF

2
k, from classical Gaussian results (see

Appendix A), p2(yk|xk−1,xk,yk−1) reduces to gk(yk|xk).
If in addition F2

k = 0m×p, p2(xk|xk−1,yk−1) reduces to

fk|k−1(xk|xk−1) and in this case the PMC model reduces

to the classical HMC model (17)-(18) (i.e., p1 = p2,θ0 with

θ0 = {(F2
k = 0m×p,H

2
k = 0p×p)}k≥1).

We now turn to invariance properties of family {p2,θ}θ∈Θ

(proofs of (31)-(34) can be found in Appendix B). First,

p2,θ(xk,yk|xk−1) does not depend on θ: for all θ,

p2,θ(xk,yk|xk−1) = p1(xk,yk|xk−1)

= fk|k−1(xk|xk−1)gk(yk|xk). (31)

However, note that in an HMC p1(xk,yk|xk−1) = p1(xk,
yk|xk−1,yk−1), while in general p2,θ(xk, yk|xk−1) 6=
p2,θ(xk, yk|xk−1, yk−1) . Let us turn to global properties

of p2,θ. We have

p2,θ(x0:k) = p1(x0)

k∏

i=1

fi|i−1(xi|xi−1), (32)

p2,θ(yk|x0:k) = gk(yk|xk). (33)

From (32), whatever parameter θ, {xk}k≥0 is an MC with

given pdf p1. Finally p2,θ(x0:k,y0:k) only differs through

p2,θ(y0:k|x0:k), which in a general PMC model reads:

p2,θ(y0:k|x0:k)=p
2,θ(y0|x0:k)

k∏

i=1

p2,θ(yi|yi−1,xi−1:k). (34)

III. AN EXACT FILTERING ALGORITHM IN CONSTRAINED

CONDITIONAL PMC MODELS

We now reintroduce the jumps in the PMC model. In section

III-A we first describe a class of models which locally coincide

with (3)-(4); in section III-B we extract out of this class

models for which the computation of Φk does not rely on

any approximation technique.
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A. Constrained conditionally linear and Gaussian PMC mod-

els

Let {rk}k≥0 be a discrete MC and let F1
k(.), say, be

shorthand notation for F1
k(rk−1:k). From now on we consider

models p2(z0:k, r0:k) defined as :

p2(z0:k, r0:k) = p2(r0)×
k∏

i=1

p2(ri|ri−1)p
2(z0|r0)

k∏

i=1

p2i|i−1(zi|zi−1, ri−1:i), (35)

p2(z0|r0) = N (z0;m
′
0(r0);P

′
0(r0)), (36)

p2k|k−1(zk|zk−1, rk−1:k) =

N









zk;

[
F1

k(.) F2
k(.)

H1
k(.) H2

k(.)

]

︸ ︷︷ ︸

Bk(rk−1:k)

zk−1;

[

Σ11
k (.) Σ21

k (.)
T

Σ21
k (.) Σ22

k (.)

]

︸ ︷︷ ︸

Σk(rk−1:k)









. (37)

So given r0:k, z0:k is a linear and Gaussian PMC

model (10), (19) and (20). Note that the JMSS model

(2)-(4) is one particular model (35)-(37), obtained

if p2
k|k−1(zk|zk−1, rk−1:k) = fk|k−1(xk|xk−1, rk)×

gk(yk|xk, rk), i.e. if F1
k(rk−1:k) = Fk(rk), F

2
k(rk−1:k) = 0,

H1
k(rk−1:k) = Hk(rk)Fk(rk), H2

k(rk−1:k) = 0,

Σ11
k (rk−1:k) = Qk(rk), Σ21

k (rk−1:k) = Hk(rk)Qk(rk)
and Σ22

k (rk−1:k) = Rk(rk) +Hk(rk)Qk(rk)Hk(rk)
T .

Among models (35)-(37), we now look for those such that

MC p2(r0:k) coincides with p1(r0:k) and, locally, the given

properties of interest (conditions i) and ii) in section I-B) are

satisfied. We have the following result.

Proposition 2 Let p1(x0|r0) = N (x0;m0(r0);P0(r0)), and

for all k, fk|k−1(xk|xk−1, rk) and gk(yk|xk, rk) given by (3)-

(4). The conditionnally linear and Gaussian PMC models (35)-

(37) described by

p2,θ(rk|rk−1) = p1(rk|rk−1), (38)

p2,θ(z0|r0) = p1(x0|r0)g0(y0|x0, r0), (39)

p2,θ
k|k−1(zk|zk−1, rk−1:k)=N (zk;Bk(.)zk−1;Σk(.)), (40)

where matrices Bk(rk−1:k) and Σk(rk−1:k) are defined by

Bk(rk−1:k) =
[

Fk(rk)− F2
k(rk−1:k)Hk−1(rk−1) F2

k(rk−1:k)
Hk(rk)Fk(rk)−H2

k(rk−1:k)Hk−1(rk−1) H2
k(rk−1:k)

]

,

(41)

Σk(rk−1:k) =

[

Σ11
k (rk−1:k) Σ21

k (rk−1:k)
T

Σ21
k (rk−1:k) Σ22

k (rk−1:k)

]

, (42)

Σ11
k (rk−1:k) = Qk(rk)− F2

k(rk−1:k)Rk−1(rk−1)F
2
k(rk−1:k)

T
,

(43)

Σ21
k (rk−1:k) = Hk(rk)Qk(rk)

−H2
k(rk−1:k)Rk−1(rk−1)F

2
k(rk−1:k)

T
, (44)

Σ22
k (rk−1:k) = Rk(rk)−H2

k(rk−1:k)Rk−1(rk−1)H
2
k(rk−1:k)

T

+Hk(rk)Qk(rk)Hk(rk)
T , (45)

and where parameters F2
k(rk−1:k) and H2

k(rk−1:k) can be

arbitrarily chosen, provided Σk(rk−1:k) is a positive definite

covariance matrix for all k, satisfy the constraints

p2,θ(r0:k) = p1(r0:k), (46)

p2,θ(xk|xk−1, rk) = fk|k−1(xk|xk−1, rk), (47)

p2,θ(yk|xk, rk) = gk(yk|xk, rk). (48)

Proof: The proof would be straightforward

from that of Proposition 1 if the constraints were

(46), p2,θ(xk|xk−1, r0:k) = fk|k−1(xk|xk−1, rk) and

p2,θ(yk|xk, r0:k) = gk(yk|xk, rk). Once these constraints

are satisfied p2,θ(xk|xk−1, r0:k) = p2,θ(xk|xk−1, rk) and

p2,θ(yk|xk, r0:k) = p2,θ(yk|xk, rk), whence Proposition 2.

Remark 2 The models of Proposition 2 inherit the invariance

properties of those of Proposition 1 (see Remark 1). Pdfs

p2,θ(zk|xk−1, rk−1:k) = p1(zk|xk−1, rk) and p2,θ(x0:k, r0:k)
do not depend on θ: for all θ,

p2,θ(x0:k, r0:k) = p1(x0:k, r0:k) =

p1(r0)

k∏

i=1

p1(ri|ri−1)p
1(x0|r0)

k∏

i=1

fi|i−1(xi|xi−1, ri). (49)

However by contrast with classical JMSS models, in general

p2,θ(y0:k|x0:k, r0:k) reads

p2,θ(y0:k|x0:k, r0:k) = p2,θ(y0|x0:k, r0:k)×
k∏

i=1

p2,θ(yi|xi−1:k,yi−1, ri−1:k). (50)

B. Exact Filtering in a subclass of constrained conditional

linear and Gaussian PMC models

1) Main result: The problem we address now is the com-

putation of Φk in (1) in the class of constrained conditionally

linear and Gaussian PMC models described by Proposition

2. Of course, Φk is not computable in all of these models;

otherwise, computing Φk would also be possible in the linear

and Gaussian JMSS p1(z0:k, r0:k) since p1(.) coincides with

the particular setting F2
k(rk−1:k) = 0, H2

k(rk−1:k) = 0. How-

ever, we now see that for a particular setting of H2
k(rk−1:k)

in (41)-(45), the computation of Φk at a linear computational

cost becomes possible. Let

Ck(rk−1:k) = Fk(rk)− F2
k(rk−1:k)Hk−1(rk−1), (51)

Dk(rk−1:k,yk−1:k) = F2
k(rk−1:k)yk−1 + (Σ21

k (rk−1:k))
T×

(Σ22
k (rk−1:k))

−1(yk −H2
k(rk−1:k)yk−1), (52)

Σx
k(rk−1:k) = Σ11

k (rk−1:k)− (Σ21
k (rk−1:k))

T×

(Σ22
k (rk−1:k))

−1Σ21
k (rk−1:k). (53)

We have the following result (a proof is given in Appendix

C).

Proposition 3 Let p2(.) be a constrained conditional linear

and Gaussian PMC model (38)-(45) of Proposition 2. If

Hk(rk)Fk(rk)−H2
k(rk−1:k)Hk−1(rk−1) = 0 (54)
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then

p2,θ(yk|yk−1, rk−1:k)=N (yk;H
2
k(rk−1:k)yk−1;Σ

22
k (rk−1:k)),

and p2,θ(rk|y0:k), E(xk|y0:k, rk) and E(xkx
T
k |y0:k, rk) can

be computed recursively via (here N (.) stands for numerator)

p2,θ(rk|y0:k) =
∑

rk−1
p2,θ(rk|rk−1)p

2,θ(yk|yk−1, rk−1:k)p
2,θ(rk−1|y0:k−1)

∑

rk
N (rk−1:k)

,

(55)

p2,θ(rk−1|rk,y0:k) =

p2,θ(rk|rk−1)p
2(yk|yk−1, rk−1:k)p

2,θ(rk−1|y0:k−1)
∑

rk−1
N (rk−1:k)

, (56)

E(xk|y0:k, rk)=
∑

rk−1

p2,θ(rk−1|rk,y0:k)(Ck(rk−1:k)×

E(xk−1|y0:k−1, rk−1)+Dk(rk−1:k,yk−1:k)), (57)

E(xkx
T
k |y0:k, rk)=

∑

rk−1

p2,θ(rk−1|rk,y0:k)×
(
Σx

k(rk−1:k)+

Ck(rk−1:k)E(xk−1x
T
k−1|y0:k−1, rk−1)Ck(rk−1:k)

T

+Dk(rk−1:k,yk−1:k)(E(xk−1|y0:k−1, rk−1))
TCk(rk−1:k)

T

+Ck(rk−1:k)E(xk−1|y0:k−1, rk−1)Dk(rk−1:k,yk−1:k)
T

+Dk(rk−1:k,yk−1:k)Dk(rk−1:k,yk−1:k)
T
)
. (58)

Finally Φk can be computed as (7).

Remark 3 Let us briefly explain why Φk can be computed

with a cost linear in the number of observations. Of course,

in models of Proposition 2

p2,θ(xk|y0:k)=
∑

r0:k

p2,θ(r0:k|y0:k) p
2,θ(xk|y0:k, r0:k)
︸ ︷︷ ︸

N (xk;mk(r0:k);Σk(r0:k))

; (59)

for given r0:k each Gaussian can be computed, yet in general

p2,θ(xk|y0:k) is a GM which grows exponentially (even if (54)

is satisfied). Let us however turn to expectations. From (59)

Φk=
∑

rk−1:k

∑

r0:k−2

p(r0:k|y0:k)mk(r0:k). (60)

The aim is to compute (60) from p2,θ(rk−1|y0:k−1) and

E(xk−1|y0:k−1, rk−1) =
∑

r0:k−2

p2,θ(r0:k−2|y0:k−1, rk−1)×

mk−1(r0:k−1) (61)

which are assumed known at k−1. If condition (54) is satisfied,

mk(r0:k) = Ck(rk−1:k)mk−1(r0:k−1) +Dk(rk−1:k,yk−1:k).
(62)

in which Ck(rk−1:k) and Dk(rk−1:k,yk−1:k) are respectively

given by (51) and (52). On the other hand, (54) implies that

(yk, rk) is an MC, so

p2,θ(r0:k|y0:k)=
p2,θ(yk, rk|yk−1, rk−1)p

2,θ(rk−1|y0:k−1)
∑

rk−1:k
N (rk−1:k)

×

p2,θ(r0:k−2|y0:k−1, rk−1) (63)

(again N (.) stands for numerator). Plugging (63) and (62) in

(60) we see that the sum on r0:k−2 has already been computed

since (61) is known. So computing (60) only requires a sum

on rk−1:k.

2) Summary and algorithm: Let us summarize the dis-

cussion so far. We have proposed a class of condi-

tionally linear and Gaussian PMC models p2,θ(z0:k, r0:k)
(35)-(37) which locally coincide with physically rele-

vant pdfs, i.e. which satisfy p2,θ(r0:k) = p1(r0:k),
p2,θ(xk|xk−1, rk) = N (xk;Fk(rk)xk−1;Qk(rk)) and

p2,θ(yk|xk, rk) = N (yk;Hk(rk)xk;Rk(rk)) for given

Fk(rk), Hk(rk), Qk(rk) and Rk(rk), and in which Φk

can be computed exactly (no Monte Carlo nor numerical

approximations are needed) at a computational cost which is

linear in the number of observations.

The algorithm is as follows. At time k − 1, we

have p2,θ(rk−1|y0:k−1), E(xk−1|y0:k−1, rk−1) and

E(xk−1x
T
k−1|y0:k−1, rk−1); for rk−1:k ∈ {1, · · · ,K} ×

{1, · · · ,K},

S.1 Deduce the class of conditionnally linear and Gaussian

PMC models parametrized by F2
k(rk−1:k), H2

k(rk−1:k)
using Proposition 2;

S.2 Choose H2
k(rk−1:k) satisfying (54);

S.3 Compute matrices Ck(rk−1:k), Dk(rk−1:k,yk−1:k) and

Σx
k(rk−1:k) in (51)-(53);

S.4 Compute p2,θ(rk|y0:k), E(xk|y0:k, rk) and

E(xkx
T
k |y0:k, rk) via (55)-(56).

Finally, compute E(f(xk)|y0:k) via (7).

C. A particular application: approximate computation of Φk

in a linear and Gaussian JMMS

Until now, we have proposed a class of conditionally linear

and Gaussian PMC models parametrized by F2
k(rk−1:k) in

which Φk can be computed exactly, and which share given

properties of interest. Now, remember that the linear and

Gaussian JMSS p1(.) shares those properties as well. So in

this subsection we focus on the approximation of Φk in a

linear and Gaussian JMSS p1(.) via the exact computation of

Φk in some model p2,θ(.) 6= p1(.) but belonging to the same

class. We thus assume that the data indeed follow (2)-(4) and

we look for parameters F2
k(rk−1:k) which best fit this original

model.

In a linear and Gaussian JMSS, F2
k(rk−1:k) = 0 and

H2
k(rk−1:k) = 0. However, F2

k(rk−1:k) = 0 should not be

our choice here, as we now see, because in our models,

H2
k(rk−1:k) is different of 0 due to constraint (54). The idea is

to tune F2
k(rk−1:k) such that constraint (54) is balanced. Here,

we use a criterion based on the Kullback-Leibler Divergence

(KLD) and we tune F2
k(rk−1:k) such that the KLD between

p2,θ(z0:k, r0:k) (which satisfies (54)) and the target model

p1(z0:k, r0:k) is minimum. We have the following result (a

proof is given in Appendix D).

Proposition 4 Let p1(.) be the linear and Gaussian JMSS

model (2)-(4) and p2,θ(.) be the class of models of Proposition

2 in which condition (54) holds, and thus Φk can be computed



6

exactly. Parameters F2
k(rk−1:k) which minimize the KLD

between p2,θ(z0:k, r0:k) and p1(z0:k, r0:k) are given by

F
2,opt
k (rk−1:k) = Qk(rk)Hk(rk)

T×
[
Rk(rk) +Hk(rk)Qk(rk)Hk(rk)

T
]−1

H2
k(rk−1:k). (64)

IV. PERFORMANCE ANALYSIS AND SIMULATIONS

We now validate our discussions via simulations. In section

IV-A we first describe our methodology step by step in a scalar

model in which the jumps are assumed fixed. So we generate

data from an HMC model and we estimate the hidden data

with a filter based on a PMC model out of the class described

by Proposition 1 which satisfies conditions (54) and (64). We

compare the performance of this approximation with the KF

which here is the benchmark solution. Next in section IV-B we

compare our new approximate filtering solution for linear and

Gaussian JMSS with the IMM algorithm and the PF. When

simulations are involved, we generate, for a given model, P =
200 sets of data of length T = 100.

A. A step by step illustration

Let us describe our methodology step by step on the popular

scalar model with jumps (p = m = 1), see e.g. [6][27] and

references therein:

fk|k−1(xk|xk−1, rk) = N (xk; a(rk)xk−1;Q(rk)), (65)

gk(yk|xk, rk) = N (xk; b(rk)xk;R(rk)), (66)

where |a(rk)| ≤ 1 and {rk}k≥0 is a given MC with transition

probabilities p1(rk|rk−1). We first omit the jumps and we

consider the underlying model described by the two following

pdfs:

fk|k−1(xk|xk−1) = N (xk; axk−1;Q), (67)

gk(yk|xk) = N (yk; bxk;R), (68)

where |a| ≤ 1. According to Proposition 1, the linear and

Gaussian PMC models (parameterized by F 2
k = c and H2

k =
d) which satisfy the properties described by (67)-(68) are

p2,θ(zk|zk−1) = N
(
zk;

[
a− bc c
ab− db d

]

zk−1;

[
Q− c2R bQ− cdR
bQ− cdR R(1− d2) + b2Q

]
)
. (69)

According to (54), we look for parameter d such that ab−db =
0, so from now on we set d = a.

Assume next that the goal is to approximate the HMC

model built from (67)-(68). From (64), the parameter c
which minimizes the KLD between p2,θ

k|k−1(zk|zk−1) and

p1
k|k−1(zk|zk−1) is c = abQ

R+b2Q
; so among all PMC models

(69) we choose

p2,θ
k|k−1(zk|zk−1) = N

(
zk;

[

a− ab2Q
R+b2Q

abQ
R+b2Q

0 a

]

zk−1;

[

Q− a2b2Q2R
(R+b2Q)2 bQ− a2bQR

R+b2Q

bQ− a2bQR
R+b2Q

R(1− a2) + b2Q

]

)
. (70)

It is easy to check that the covariance matrix of

p2,θ
k|k−1(zk|zk−1) is positive definite, whatever −1 ≤ a ≤ 1,

b, Q > 0 and R > 0. It is now interesting to compare

the KLD between p2,θ
k|k−1 and p1

k|k−1 (which reduces to that

between p2,θ(yk|yk−1) and p1(yk|xk−1) since we have chosen

the optimal parameter c, see the proof of Proposition 4). In

HMC (67)-(68), p1(yk|xk−1) = N (yk; abxk−1; b
2Q+R) and

in PMC (70), p2,θ(yk|yk−1) = N (yk; ayk−1;R(1−a2)+b2Q);
using classical results on the KLD between two Gaussians (see

e.g. [28]), we have

DKL(p
2,θ(yk|yk−1), p

1(yk|xk−1)) = 0.5×
[

−
a2R

R+ b2Q
+
a2(yk−1 − bxk−1)

2

R+ b2Q
−ln(

R+ b2Q− a2R

R+ b2Q
)

]

,

which depends on r.v. yk−1 and xk−1 via (yk−1 − bxk−1)
2.

However, in such models E((yk−1 − bxk−1)
2) = R, so

E(DKL(p
2,θ(yk|yk−1), p

1(yk|xk−1))) =

− 0.5ln(1−
a2(R/Q)

R/Q+ b2
). (71)

It is an increasing function of ratio R/Q, so when R/Q
is small, i.e. the process noise is large as compared to the

observation one, then PMC model (70) is close to the original

HMC model built from (67)-(68), so estimating the hidden

data from (70) (although data indeed follow (6), (67)-(68)) is

expected not to have a serious impact.

We generate data from the HMC model (6), (67)-(68) where

we set a = b = R = 1. We compute a KF for PMC [25]

based on model (70) and the KF for (6), (67)-(68), which of

course is optimal for this model in the sense that is minimizes

the MSE. xk,p, x̂k,p,1 and x̂k,p,2 respectively denote the true

state, the estimator based on the original HMC model and that

based on the PMC model for the p-th simulation at time k.

For each estimate, we compute the MSE averaged over time

and realizations: J i = 1
T

∑T
k=1[

1
P

∑P
p=1(x̂k,p,i − xk,p)

2]. In

Figure 1 we display both the averaged KLD (71) between

p1
k|k−1 and p2,θ

k|k−1 and the relative averaged MSE (RMSE)

(J 1 − J 2)/J 2 as a function of Q. As expected, the RMSE

decreases when DKL(p
2,θ
k|k−1, p

1
k|k−1) decreases, i.e. when Q

increases. Particularly interesting, values of RMSE are below

0.10 when Q ≥ 4 and for high values of Q (Q = 10), they are

close to 0.03; estimates of Φk in a PMC model of Proposition 1

in which H2
k and F 2

k respectively satisfy (54) and (64) (without

the dependency in jumps) will be very close to the optimal

estimate in the original HMC model as long as Q is not too

small.

B. Performance Analysis on jumps Scenario

We now consider two scenarios with jumps. We compute

our estimate (x̂k,p,1), an estimate based on the SIR algorithm

with importance distribution p1(rk|rk−1) (it only requires one

KF per particle) with N = 100 particles [1] (x̂k,p,2), an

IMM algorithm [9] (x̂k,p,3) and a KF (x̂k,p,Kalman) which

uses the true jumps and which is our benchmark solution. For

each estimate, we compute the averaged mean squared errors

MSEi(k) = 1
P

∑P
p=1(x̂k,p,i − x̂k,p,Kalman)

2.
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Fig. 1. RMSE between a classical KF based on (6), (65)-(66) and a PMC-
KF based on (70) (blue circle), and averaged KLD between transitions of the
HMC model built from (65)-(66) and model (70) (black dotted line). When
Q increases, both RMSE and averaged DKL decrease; the estimates based on
model (70) are very close to the optimal ones.

1) Scalar model with jumps: We go on with model (65)-

(66) where now rk ∈ {1, 2, 3}, ak(rk) ∈ {1,−0.9, 0.9}, b =
1, Q(rk) ∈ {3, 10, 10} and R = 1. The transition probabilities

of MC {rk}k≥0 are defined by p1(rk|rk−1) = 0.8 if rk =
rk−1 and p1(rk|rk−1) = 0.1 if rk 6= rk−1. Data are generated

from the JMSS model (2). A typical scenario is displayed in

Fig. 2(a). Remember from section IV-A that our new filtering

technique is based on the conditional linear and Gaussian PMC

model (37) with

Bk(rk−1:k)=

[

a(rk)−
a(rk)b

2Q(rk)
R+b2Q(rk)

a(rk)bQ(rk)
R(rk)+b2Q(rk)

0 a(rk)

]

,

Σk(rk−1:k)=

[

Q(rk)−
a(rk)

2b2Q(rk)
2R

(R+b2Q(rk))2
bQ(rk)−

a(rk)
2bQ(rk)R

R+b2Q(rk)

bQ(rk)−
a(rk)

2bQ(rk)R
R+b2Q(rk)

R(1−a(rk)
2)+b2Q(rk)

]

.

MSEs of the different estimates are displayed in Fig 2(b) and

are normalized w.r.t. that of our solution x̂k,p,i. Particularly

interesting, we see that our algorithm outperforms the IMM

based solution and slightly improves (in mean) the PF based

one. However, our technique is not based on Monte Carlo

samples and is more interesting from a computational point of

view. It turns out that the ratio of the averaged computational

time used by the PF and by our solution is approximately equal

to 15: our solution is thus much faster than the bootstrap PF. If

we increase the number of particles, the performances of the

PF are improved and are identical to those of our exact filtering

technique. Thus, it may be interesting to average the efficiency

Eff(k) = 1/(MSE(k)E(C(k))) over time where C(k) is the

CPU time to compute the estimate [29]. The efficiency of our

algorithm does not depend on the number of particles and is

8.5× 104 while for the PF the efficiency decreases when the

number of particles increases and varies between 5× 103 for

100 particles and 0.1× 103 for 1000 particles.

2) Target Tracking: We now consider a target tracking

scenario. We use model (3)-(4) with

Fk(r) =








1 sin(ωrT )
ωr

0 − 1−cos(ωrT )
ωr

0 cos(ωrT ) 0 − sin(ωrT )

0 1−cos(ωrT )
ωr

1 sin(ωrT )
ωr

0 sin(ωrT ) 0 cos(ωrT )
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Fig. 2. (a) - Example of scenario of model (65)-(66) and restoration with
a conditional PMC model of Proposition 2 which satisfies (54) and (64).
True states (red dotted line), estimates based on our new approximation
(black circles) and observations (blue crosses). (b) - Normalized MSE of
our estimator (black line), the PF based one (red circles) and IMM based one
(blue squares).

Qk(r) = σ2
v(r)
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,

Hk = I4 and Rk = I4. We set T = 2, rk ∈ {1, 2, 3}
represents the behavior of the target: straight, left turn and

right turn. So we set wr ∈ {0, 6π/180,−6π/180} and

σv(r) ∈ {7, 10, 10} and the transition probabilities of MC

{rk} are defined by p1(rk|rk−1) = 0.8 if rk = rk−1 and

p1(rk|rk−1) = 0.1 if rk 6= rk−1.

a) JMSS case: we first generate the data according to

a linear and Gaussian JMSS p1(.). A typical run of this

manoeuvring scenario is displayed in Fig. 3(a). Here we

set H2
k(rk−1:k) = Fk(rk) (so that (54) is satisfied) and

F2
k(rk−1:k) satisfies (64). Normalized MSEs are displayed in

Fig. 3(b). Our solution outperforms the IMM estimate and

presents similar performances with the PF based one; however,

the execution time of our algorithm is still fifteen times faster

than that of the PF. We have also averaged the MSE (w.r.t. the

KF) over time and we get 0.0058 for our solution, 0.0059 for

the PF and 0.0074 for the IMM.
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Fig. 3. (a) - Example of a manoeuvring tracking scenario; data are generated
according to model (2)-(4). (b) - Normalized MSE of our estimator (black
line), the PF based one (red circles) and IMM based one (blue squares).

b) General case: in all these simulations, we have con-

sidered unfavorable cases in the sense that we have generated

data from linear and Gaussian JMSS. However, data may

follow a more general statistical model sharing the same

local constraints, such as models of the class described

by Proposition 2. Let us now generate data according to

a general conditional PMC model p2,θ(.) of Proposition 2

with F
2,true
k (rk−1:k) = 0.7Fk(rk) and H

2,true
k (rk−1:k) =

0.9Fk(rk). Consequently, the benchmark solution is now the

KF for PMC models [25] which uses the true jumps. We

compute estimates using the same PF and IMM algorithms as

above. If we compute our solution with F2
k(rk−1:k) satisfying

(64) (i.e. we try to compute Φk as if data were generated

according to p1(.)) and we compute the normalized MSE,

then we obtain the same global results as those displayed

in Fig. 3(b). However, remember that approaching p1(.) in

this case may not be optimal since data are not generated

according to p1(.). So since F2
k(rk−1:k) is a free parameter

in our solution, another choice of F2
k(rk−1:k) may improve

the performances. Actually, several values of F2
k(rk−1:k)

improve them but it has been experimented that the setting

F2
k(rk−1:k) = 0.8Fk(rk) indeed gives the best results (note

that F2
k(rk−1:k) = F

2,true
k (rk−1:k) may not be optimal be-

cause H2
k(rk−1:k) 6= H

2,true
k (rk−1:k)).

In Fig. 4(a) we display a realization of the scenario. As

we see, its properties (straight, left turn and right turn) are

kept even if data are not generated from a classical linear and

Gaussian JMSS model. However, in Fig. 4(b) we display the

normalized MSE and we see that tuning F2
k(rk−1:k) enables

to improve both PF and IMM algorithms.
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Fig. 4. (a) - Example of a manoeuvring tracking scenario where data
are now generated from a conditionally linear and Gaussian PMC model

with F
2,true

k
(rk−1:k) = 0.7Fk(rk) and H

2,true

k
(rk−1:k) = 0.9Fk(rk).

Properties of scenario of Fig. 3(a) are kept. (b) - Normalized MSE of our
estimator (black line), the PF based one (red circles) and IMM based one
(blue squares). Classical solutions are no longer adapted for such models
while our approximation remains valid. This is because our algorithm offers
the possibility to adjust parameter F2

k
(rk−1:k).

V. CONCLUSION

In this paper, we proposed a new filtering technique for

dynamical models with jumps. Starting from a given set of

pdfs which model some problem of interest we derived a

class of conditionally linear and Gaussian PMC models which

locally coincide with these pdfs, and in which E(f(xk)|y0:k)
can be computed exactly (without resorting to any numerical

or Monte Carlo approximations) and efficiently (at a computa-

tional cost linear in the number of observations). We validated

our technique on simulations. Our method provides results

which are comparable to those given by the classical SMC
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solutions, but at a lower computational cost, in the particular

case where the data are produced by a JMSS model; and which

are better adapted in other cases.

APPENDIX A

CONDITIONING IN RANDOM GAUSSIAN VECTORS

We recall in this section two classical results on Gaussian

pdf which are used in our derivations [30].

Proposition 5 Let ζ ∈ IRp, η ∈ IRq , Q (resp. P) be a p× p
(resp. q×q) positive definite matrix (other vectors and matrices

are of appropriate dimensions), then
∫

N (ζ;Fη+d;Q)N (η;m;P)dη=N (ζ;Fm+d;Q+FPFT ),

Proposition 6 Let ζ ∈ IRp, η ∈ IRq , Pζ (resp. Pη) be a p×p
(resp. q× q) positive definite matrix and Pζ,η a p× q matrix.

Let us assume that pdf of (ζ, η) is a Gaussian,

p(ζ, η) = N (ζ, η;

[
mζ

mη

]

;

[
Pζ Pζ,η

Pζ,ηT Pη

]

).

Then p(ζ, η) = N (η;mη;Pη)N (ζ; m̃ζ(η); P̃ζ), with

m̃ζ(η) = mζ +Pζ,η(Pη)−1(η −mη),

P̃ζ = Pζ −Pζ,η(Pη)−1Pζ,ηT .

APPENDIX B

PROOF OF EQUATIONS (31)-(34)

We begin with (31). Let p2,θ(xk,yk|xk−1,yk−1) be the

transition pdf of a PMC model of Proposition 1. We have

p2,θ(xk,yk|xk−1) =

∫

p2,θ(yk−1|xk−1)
︸ ︷︷ ︸

gk−1(yk−1|xk−1)

×

p2,θ
k|k−1(xk,yk|xk−1,yk−1)dyk−1.

Now gk−1(yk−1|xk−1) = N (yk−1;Hk−1xk−1; Rk−1) and

p2,θ
k|k−1(xk,yk|yk−1,xk−1) is a Gaussian given by parameters

(23)-(27). Using Proposition 5, we get (31). We now prove

(33) by induction. So let us assume that

p2,θ(yk−1|x0:k−1) = p2,θ(yk−1|xk−1) = gk−1(yk−1|xk−1)
(72)

((72) is true at time k = 1). Since (x0:k,y0:k) is a PMC, we

get successively

p2,θ(xk,yk|x0:k−1)
PMC
=

∫

p2,θ
k|k−1(zk|xk−1,yk−1)×

p2(yk−1|x0:k−1)dyk−1 (73)
(72)
= p2,θ(zk|xk−1)

(31)
= fk|k−1(xk|xk−1)gk(yk|xk).(74)

From (74) we get

p2,θ(xk|x0:k−1) = fk|k−1(xk|xk−1), (75)

and consequently p2,θ(yk|x0:k) = gk(yk|xk), which is noth-

ing but (72) at time k, which proves (33). Now since

(72) is true (75) holds too, whence (32). It remains to

prove (34). Let N stand for numerator. Since {(xk,yk)}n≥0

is a MC, p2(yi|y0:i−1,x0:k) = p2(y0:i,x0:k)∫
p2(y0:i,x0:k)dyi

=
p2(xi:k,yi|xi−1,yi−1)p

2(x0:i−1,y0:i−1)∫
Ndyi

= p2(yi|yi−1,xi−1:k),

whence (34).

APPENDIX C

PROOF OF PROPOSITION 3

Our construction is based on the results in [21], where it

is shown that Φk can be computed (among other conditions)

when given zk−1 and rk−1:k, yk does not depend on xk−1,

i.e. when

p(yk|zk−1, rk−1:k) = p(yk|yk−1, rk−1:k). (76)

So we extract models which satisfy (76) out of the class

described by Proposition 2. In models of Proposition 2,

p2,θ(yk|zk−1, rk−1:k) depends on xk−1 via its mean which

reads (Hk(rk)Fk(rk) − H2
k(rk−1:k) Hk−1(rk−1))xk−1+

H2
k(rk−1:k)yk−1; so p2,θ(yk|zk−1, rk−1:k) does not depend

on xk−1 and coincides with p2,θ(yk|yk−1, rk−1:k) =
N (yk;H

2
k(rk−1:k)yk−1;Σ

22
k (rk−1:k)) if one can find

H2
k(rk−1:k) which satisfies (54). Next (55)-(58) can be

obtained as follows. From (76) (yk, rk) is a MC, so (55) and

(56) are immediate. Next,

E(xk|y0:k, rk) =
∑

rk−1

p2,θ(rk−1|y0:k, rk)×

∫ ∫

xkp
2,θ(xk|xk−1,y0:k,rk−1:k)dxk

︸ ︷︷ ︸

E(xk|xk−1,y0:k,rk−1:k)

p2,θ(xk−1|y0:k, rk−1:k)dxk−1,

(77)

Let us now compute the quantities involved in (77). Since

(xk,yk, rk) is a MC,

E(xk|xk−1,y0:k, rk−1:k) = Ck(rk−1:k)xk−1

+Dk(rk−1:k,yk−1:k) (78)

in which Ck(rk−1:k) and Dk(rk−1:k,yk−1:k) are given by

(51) and (52). From (54)

p2,θ(xk−1|y0:k, rk−1:k) = p2,θ(xk−1|y0:k−1, rk−1). (79)

Finally, plugging (56) (78), and (79) in (77), we get (57).

E(xkx
T
k |y0:k, rk) is computed similarly.

APPENDIX D

PROOF OF PROPOSITION 4

Let us consider the class of conditionally linear and Gaus-

sian PMC models of Proposition 2 which satisfy (54). We

compute the KLD DKL(p
2,θ(z0:k, r0:k), p

1(z0:k, r0:k)) which

can be rewritten as

DKL(p
2,θ(z0:k, r0:k), p

1(z0:k, r0:k)) =
∑

r0:k

p1(r0:k)×

DKL(p
2,θ(z0:k|r0:k), p

1(z0:k|r0:k))

because p1(r0:k) = p2,θ(r0:k) (see Proposition 2). p1(r0:k)
does not depend on {F2

k(rk−1:k)}k≥1, so we focus on
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DKL(p
2,θ(z0:k|r0:k), p

1(z0:k|r0:k)). Using Markovian proper-

ties, we have

DKL(p
2,θ(z0:k|r0:k), p

1(z0:k|r0:k))=
k∑

j=1

∫

p2,θ(zj−1|r0:j−1)×

DKL(p
2,θ
j|j−1(zj |zj−1, rj−1:j), p

1
j|j−1(zj |zj−1, rj−1:j))dzj−1

where, according to Propositions 2 and 2,

p2,θ(zj−1|r0:j−1) = p1(zj−1|r0:j−1) and so does

not depend on F2
j (rj−1:j). So we just minimize

DKL(p2,θ
j|j−1(zj |zj−1, rj−1:j), p

1
j|j−1(zj |zj−1, rj−1:j)).

We have

p2,θ(yj |yj−1, rj−1:j) = N (yj ;H
2
j (rj−1:j)yj−1;Rj(rj)−

H2
j (rj−1:j)Rj−1(rj−1)H

2
j (rj−1:j)

T
+Hj(rj)Qj(rj)Hj(rj)

T ),
(80)

p2,θ(xj |zj−1,yj , rj−1:j) = N (xj ;m
xj

j ;P
xj

j ), (81)

m
xj

j =(Fj(rj)−F2
j (rj−1:j)Hj−1(rj−1))xj−1+F

2
j (rj−1:j)yj−1+

(Σ21
j (rj−1:j))

T(Σ22
j (rj−1:j))

−1(yj−H
2
j (rj−1:j)yj−1), (82)

P
xj

j = Σ11
j (rj−1:j)− (Σ21

j (rj−1:j))
T×

(Σ22
j (rj−1:j))

−1Σ21
j (rj−1:j), (83)

where Σ11
j (rj−1:j), Σ

21
j (rj−1:j) and Σ22

j (rj−1:j) are defined

in (43)-(45). Next, the KLD between p2,θ
j|j−1(zj |zj−1, rj−1:j)

and p1
j|j−1(zj |zj−1, rj−1:j) writes as

DKL(p
2,θ
j|j−1, p

1
j|j−1) =

∫

p2,θ
j|j−1(zj |zj−1, rj−1:j)×

log

(
p2,θ
j|j−1(zj |zj−1, rj−1:j)

p1
j|j−1(zj |zj−1), rj−1:j

)

dzj ,

= DKL(p
2,θ(yj |yj−1, rj−1:j), p

1(yj |xj−1, rj))+
∫

p2,θ(yj |yj−1, rj−1:j)×

DKL(p
2,θ(xj |zj−1,yj , rj−1:j), p

1(xj |xj−1,yj , rj−1:j))dyj

and is minimum when p2,θ(xj |zj−1,yj , rj−1:j) =
p1(xj |xj−1,yj , rj) (from (80), p2,θ(yj |yj−1, rj−1:j) does

not depend on F2
j (rj−1:j)). From Proposition 2, we know

that

p2,θ(xj |xj−1,yj , rj−1:j) = p1(xj |xj−1,yj , rj−1:j)

so DKL(p
2,θ
j|j−1(zj |zj−1, rj−1:j), p

1
j|j−1(zj |zj−1, rj−1:j)) is

minimum when p2(xj |zj−1,yj , rj−1:j) does not depend on

yj−1. From (82) we finally get (64).
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