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Abstract. This paper introduces an Event-B formal
model of the adaptive exterior light system for cars,
a case study proposed in the context of the ABZ2020
conference. The system describes the different provided
lights and the conditions under which they are switched
on/off in order to improve the visibility of the driver
without dazzling the oncoming ones. The system can be
viewed as a lights controller that reads different infor-
mation form the available sensors (key state, exterior
luminosity, etc.) and takes the adequate actions by act-
ing on the actuators of the lights in order to ensure a
good visibility for the driver according to the informa-
tion read. Our model is built using stepwise refinement
with the Event-B method. We consider all the features
of the case study, all proof obligations have been dis-
charged using the Rodin provers. Our model has been
validated using ProB by applying the different provided
scenarios. This validation has permitted us to point out
and correct some mistakes, ambiguities and oversights in
the first versions of the case study.

Key words: Adaptive Exterior Light System, Event-B
method, Refinement, Verification

1 Introduction

This paper presents a formal system model of an adap-
tive exterior light system (ELS) for a car. This system
has been proposed as a case study for the ABZ2020 con-
ference. We use Event-B to construct and represent
this formal model.

Send offprint requests to: Amel Mammar, E-mail:
amel.mammar@telecom-SudParis.eu

⋆ This work was supported in part by NSERC (Natural Sciences
and Engineering Research Council of Canada).

The objective of the exterior light system subject is
to adapt the brightness of the different lights with re-
spect to the status of the car but also the oncoming
ones. For that purpose, the cars are equipped with dif-
ferent lights that can be switched on/off under specific
conditions. In this paper, we stress more on the mod-
eling of low beams, tail lamps and direction indicators.
Roughly speaking, the low beams illuminate the road
when the vehicle is running or vehicle surrounding while
leaving the car during darkness; tail lamps permit to illu-
minate the vehicle if it is parked on a dark road at night,
whereas the direction indicators allow to inform the fol-
lowing vehicle that the car will turn on the right/left. To
control these exterior lights, the driver acts on the dif-
ferent physical elements like the key, the hazard switch
etc. The position of the key (NoKeyInserted, KeyIn-
serted, KeyInIgnitionOnPosition) is transmitted to the
controller of the lights via the sensor keyState. Similarly,
the hazard warning switch, with two positions (On/Off),
permits to make both director indicators flashing at the
same time.

Using the Event-B method and its associated tools,
the models have been entirely developed by the first
author who has been involved in the formal specifica-
tion and verification of railway interlocking systems with
the collaboration of Thales and RATP. A good experi-
ence has also been gained from the development of the
previous ABZ case studies. During the development of
these models, she very frequently exchanges with Frank
Houdek in order to clarify some ambiguous informal de-
scriptions but also to fix some errors detected during the
animation and/or the proof phases. During the paper
writing, performed by the other authors, the adopted
choices/modelings have been discussed to make them
clearer.
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1.1 Event-B method

Event-B [2] is the successor of the B method [1] permit-
ting to model discrete systems using mathematical no-
tations. The complexity of a system is mastered thanks
to the refinement concept that allows to gradually intro-
duce the different parts that constitute the system start-
ing from an abstract model to a more concrete one. An
Event-B specification is made of two elements: context
and machine. A context describes the static part of an
Event-B specification; it consists of constants and sets
(user-defined types) together with axioms that specify
their properties:

CONTEXT
Cont

Sets
S

Constants
C

Axioms
A

END

The dynamic part of an Event-B specification is included
in a machine that defines variables V and a set of events
E. The possible values that the variables hold are re-
stricted using an invariant, denoted Inv, written using
a first-order predicate on the state variables:

MACHINE
Name

SEES
Cont

Variables
V

Invariants
Inv

Events
E

Each event has the following form:

ANY
X

WHEN
G

THEN
Act

END

This event can be executed if it is enabled, i.e. all
the conditions G, named guards, prior to its execution

hold. Among all enabled events, only one is executed. In
this case, substitutions Act, called actions, are applied
over variables. In this paper, we restrict ourselves to the
becomes equal substitution, denoted by (x := e).

The execution of each event should maintain the in-
variant. To this aim, proof obligations are generated. For
each event, we have to establish that:

∀S,C,X. (A ∧G ∧ Inv ⇒ [Act]Inv)

where [Act]Inv gives the weakest constraint on the before
state such that the execution of Act leads to an after
state satisfying Inv.

Refinement is a process of enriching or modifying a
model in order to augment the functionality being mod-
eled, or/and explain how some purposes are achieved.
Both Event-B elements context and machine can be re-
fined. A context can be extended by defining new sets
Sr and/or constants Cr together with new axioms Ar.
A machine is refined by adding new variables and/or re-
placing existing variables by new ones Vr that are typed
with an additional invariant Invr. New events can also
be introduced to implicitly refine a skip event. In this
paper, the refined events have the same form:

ANY
Xr

WHEN
Gr

THEN
Actr

END

To prove that a refinement is correct, we have to
establish the following two proof obligations:

– guard refinement: the guard of the refined event should
be stronger than the guard of the abstract one:

∀(S,C, Sr, Cr, V, Vr, X,Xr).
(A ∧Ar ∧ Inv ∧ Invr ⇒ (Gr ⇒ G))

– Simulation: the effect of the refined action should be
stronger than the effect of the abstract one:

∀(S,C, Sr, Cr, V, Vr, X,Xr).
(A ∧Ar ∧ Inv ∧ Invr ∧ [Actr]Invr ⇒ [Act]Inv)

To discharge the proof obligations, the Rodin plat-
form1 offers an automatic prover but also the possibility
to use external provers as plugins, like the SMT and
Atelier B provers that we use in this work. Both provers
can be used either in automatic or interactive modes to
discharge the proof obligations.

1 http://www.event-b.org/install.html

http://www.event-b.org/install.html
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1.2 The ProB model checker

ProB [12] is an animator and explicit automatic model
checker, originally developed for the verification and vali-
dation of software development based on the B language.
Developed at the University of Düsseldorf starting from
2003, ProB2 implements an automatic model checking
technique to check LTL (linear temporal logic) [22] and
CTL (Computational Tree Logic) [5] properties against a
B specification. The core of ProB is written in a logical
programming language called Prolog; its purpose is to be
a comprehensive tool in the area of formal verification
methods. Its main functionalities can be summarized up
as follow:

1. ProB can find a sequence of operations that, starting
from a valid initial state of the machine, moves the
machine into a state that violates its invariant,

2. giving a valid state, ProB ProB can exhibit the op-
eration that make the invariant violated,

3. ProB allows the animation of the B/EventB speci-
fication to permit the user play different scenarios
from a given starting state that satisfies the invari-
ant. Through a graphical user interface implemented
in Tcl/Tk, the animator provides the user with: (i)
the current state, (2) the history of the operation ex-
ecutions that has led to the current state and (3) a
list of all the enabled operations, along with proper
argument instantiations. In this way, the user does
not have to guess the right values for the operation
arguments.

4. ProB supports the model checking of the LTL and
CTL assertions.

1.3 Contributions

The development of the Event-B models provided in
[16] took about two months. Since we had already mod-
eled all the features of the case study in preparation for
the first paper published at the ABZ’20 conference [15],
this paper essentially provides a more detailed account
of our model and its development. We have slightly im-
proved our model following comments received from at-
tendees at the conference regarding the modeling of the
key/switch behaviors. The main additional contributions
of this paper are as follows:

– A detailed description of the errors and ambiguities
identified in the specification document.

– A comparison with similar approaches, presented at
ABZ’20 conference, for the formal modeling of the
case study

– A detailed presentation of our approach to deal with
the timed aspects.

2 https://prob.hhu.de/

1.4 The structure of the paper

The rest of this paper is structured as follows. Section 2
presents our modelling strategy. Section 3 describes our
model in more details. The validation and verification of
our model are discussed in Section 4. Section 5 identifies
the weaknesses of the requirements document provided
for the case study, and the adequacy of the Event-B
method for constructing a model of this case study. Sec-
tion 6 compares our model with other solutions of this
case study. We conclude in Section 7.

2 Requirements and modelling strategy

We reuse the terminology introduced in [21]. A control
system interacts with its environment using sensors and
actuators. Fig 1 illustrates the structure of the interac-
tion between the controller interacting and its environ-
ment, and the variables used to represent them. A sensor
measures the value of some environment characteristic
m, called a monitored variable (e.g., the state of the
ignition key), and provides this measure (e.g., whether
the key is inserted or not) to the software controller as
an input variable i. In a perfect world, we have m = i,
but a sensor may fail. The software controller can influ-
ence the environment by sending commands, called out-
put variable o to actuators. An actuator influences the
value of some characteristics of the environment, call a
controlled variable c. Variables m and c are called envi-
ronment variables. Variables i and o are called controller
variables. Finally, a controller has its own internal state
variables to perform computations. We use Event-B
state variables to represent environment (i.e., monitored
and controlled) variables, and controller variables. We
do not model sensor/actuator failures.

2.1 Control Abstraction

A typical implementation of a control system such as the
ELS is either a control loop that reads all input vari-
ables at once and then computes all output variables in
the same iteration, or it can be driven by interruption
triggered when a sensor provides a new value. The body
of a control loop represents a single event and state tran-
sition. This allows for the definition of priorities between
input variable changes. In our model, we use a more ab-
stract approach, as it is common in the Event-B style
of system modeling. We define one event for each in-
put variable change, which allows for a more modular
specification that is easier to prove. This is closer to an
interrupt-driven control system. Our Event-B abstrac-
tion is also a reasonable abstraction for a control loop,
considering that in most cases, a single input variable
changes between two control loop iterations. The control
loop can be derived from our specification by merging all
events and defining priorities between events.

https://prob.hhu.de/
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Fig. 1. Environment and controller variables

2.2 Model Structure

As depicted in Figure 2, the specification is structured
into five refinements steps (five contexts and six ma-
chines). At the most abstract level we introduce vari-
ous kinds of lights controlled by the system. They are
declared as constants in Context C0. The considered
lights are: the direction indicators (left or right), the low
beam headlights (left and right), the tail lamp (left and
right), the reverse light (that indicates that the vehicle
will move backwards), the brake lights and the corner-
ing lights (that illuminate the cornering area separately
when turning left or right). The high beam headlights
are considered in Context C4 and Machine M5 since
their behavior is different from the other lights, as it
can be adaptive. Constant LigntnessLevel indicates the
high beam light range, as specified in the requirement
document [8].

Machine M0 in Fig. 3 contains a unique variable
headingState that associates a level of brightness to each
light declared in Context C0, and a unique event head-
LightSet that assigns an arbitrary level of brightness to
these lights.

The first refinement, Machine M1 and Context C1,
introduces the elements that the car driver can control
and that can have an impact on the state of the lights
declared in Context C0, namely the ignition key, the pit-
man arm, the light rotary switch, the brake pedal and
the hazard warning light switch. For each of these ele-
ments, there is one event that refines headLightSet and
that arbitrary modifies the lights impacted by this ele-
ment.

Each of the subsequent refinements describes the be-
havior of particular lights. The choice of the lights taken
into account in the refinements is arbitrary. Machine M2
and Context C2 consider the direction indicators, the
hazard warning light and the emergency brake light. Ma-
chine M3 and Context C3 consider the low beam lights.
Machine M4 considers the cornering lights and Machine
M5 and Context C4 consider the high beam headlights.

2.3 Formalization of the Requirements

Table 1 relates the components of our model with the re-
quirements listed in [8]. As one can remark, some require-
ments are specified as invariant whereas others are only
considered in the related events. Requirement ELS-10
for instance stating the duration of a flashing cycle does
not correspond to an invariant but it is considered in the
event flashingDark that makes the current time progress
by a unit of time. Specifying such requirements as an
invariant would require the introduction of two extra
variables to store the starting and the ending moment
of the cycle to set that the difference should be equal
to a unit of time. Roughly speaking, a timed require-
ment, an action duration more precisely, is modelled as
an event if there is no other requirement that refers to
such a duration otherwise an invariant is associated with
it. Moreover, let us note that M3 is the refinement with
the most invariants number because it models several
interrelated lights, that is the low beams, the tail lamps,
the parking lights etc.

2.4 Modeling of Temporal Requirements

Some properties of the requirements depend on two con-
secutive states. For example, requirement ELS-16 ap-
plies only when the rotary switch is turned to Auto while
the ignition is already Off. This requirement can be ex-
pressed using an LTL formula as follows:

G ((keyState ̸= KeyInIgnitionOnPosition ∧
lightSwitch ̸= Auto)

⇒
X (lightSwitch = Auto

⇒ headingState[LowBeams] = 0))

Unfortunately Event-B does not support the expres-
sion of LTL formula as part of the specification even if
the ProB model-checker can check LTL formulas on an
Event-B specification with a finite state space, but it
does not terminate for our model on such properties, be-
cause of the size of the state space. On the other hand, a
proof-based approach for temporal formulas is proposed
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Fig. 2. Event-B structure of the project

MACHINE M0
SEES C0
VARIABLES

headingState
INVARIANTS

inv1: headingState ∈ HeadLights
→ LigntnessLevel

EVENTS
Initialisation

begin
act1: headingState := HeadLights× {0}

end
Event headLightSet =̂

any
hl

where
grd1: hl ∈ HeadLights 7→ LigntnessLevel

then
act1: headingState := headingState◁− hl

end
END

Fig. 3. Machine M0

in [17], but it generates a large number of proof obliga-
tions for a model of this size. Thus, we have chosen to
express these properties as invariants by adding an ex-
tra variable to store the previous value of a state variable
that is needed in a two-consecutive-state property. For
example, to express ELS-16 as an invariant, we have to
say that: (1) the current and previous states of the ig-
nition are not equal to On, (2) the previous state of the
switch is different from Auto, and (3) the current state
of the switch is equal to Auto, which is represented by
the following invariant (Machine M3, Invariant inv18)

ELS16 = TRUE ∧ ELS16P = FALSE
⇒
keyState ̸= KeyInIgnitionOnPosition ∧
keyStateP ̸= KeyInIgnitionOnPosition ∧

lightSwitch = Auto ∧ lightSwitchP ̸= Auto

Variable ELS16 represent the satisfaction of the con-
ditions of ELS-16 and it is maintained by event move-
SwitchAuto representing the state change of the rotary
switch to position Auto. Variable ELS16P represents its
previous value. It conditions the invariant to the state
change of the rotary switch.

These extra variables storing previous values must
obviously be maintained in the events that change the
value of the corresponding variable, but also in events
that rely on the previous value for making a decision,
even if they do not modify the corresponding variable.

3 Model Details

In this section, we describe some specific ways of mod-
elling that characterize our specification. The complete
archive of the Event-B project is available in [16].

3.1 Modeling Complex User Interface Elements

There are elements manipulated by the car driver that
have several positions and that control several lights de-
pending on their positions. This is the case of the key
and the light rotary switch. For each of these elements,
the position it can take depends on the current position
and thus can be described by a state-transition diagram.
In the more abstract levels, we have chosen to gather all
the possible transitions into a single event because at
these levels the invariants do not depend on a specific
position.

Let us take the case of the key. In Context C1, set
keyStates describes all the states of the key:



6 3 MODEL DETAILS

Requirements [8] Component Invariant/Event
ELS-1, ELS-2, ELS-4, ELS-23 M2 inv5, inv7
ELS-3 movePitmanUD
ELS-5, ELS-23 M2 inv8
ELS-6 M3 inv10
ELS-7 M2 movePitmanUD
ELS-8 M2 inv6, inv8
ELS-10 M2 flashingDark
ELS-11 to ELS-13 M2 movePitmanUD
ELS-14 M3 inv2
ELS-15 M3 inv3
ELS-16 M3 inv4
ELS-17 M3 inv5
ELS-18 M3 inv6,7,8,9
ELS-19 M3 inv10
ELS-21 M3 inv3-5, inv10,inv14
ELS-22 M3 inv11,12,13
ELS-24,25,26,27 M4 inv2-inv13
ELS-28 M3 inv14
ELS-29 all invariants defining the brightness level
ELS-30, ELS-31 M5 inv3,5
ELS-32..38 M5 inv6-11
ELS-39 M2 inv12,13
ELS-40 M2 inv14
ELS-41 M1 inv12,13
ELS-42 M5 inv4
ELS-43...49 M5 inv6-11

Table 1. Cross-reference between the components of our model and the requirements of [8]

partition(keyStates,
{NoKeyInserted}, {KeyInserted},
{KeyInIgnitionOnPosition})

In the context C1, we also define a constant Key-
Moves to represent the authorized transitions for a key:

KeyMoves = {NoKeyInserted 7→ KeyInserted,
KeyInserted 7→ KeyInIgnitionOnPosition,
KeyInIgnitionOnPosition 7→ KeyInserted,
KeyInserted 7→ NoKeyInserted}

In Machine M1, Variable keyState represents the cur-
rent state of the key, Variable keyStateP contains the
previous state of the key and the authorized transitions
are specified in Invariant inv2:

keyStateP 7→ keyState ∈ KeyMoves
∨

keyStateP = keyState

Event moveKey specifies the new state of the key ac-
cording to its previous state and restricts the value of
the event parameter hl to the lights controlled by the
key.

Event moveKey =̂
refines headLightSet

any
hl,valkey

where
grd1: hl ∈ LowBeams ∪ tailLamps ∪

directionIndicators

∪ {corneringLightLeft, corneringLightRight}
7→ LigntnessLevel

grd2: (keyState 7→ valkey ∈ KeyMoves)
then

act1: headingState := headingState◁− hl

act2: keyState := valkey

act3: keyStateP := keyState

act4: pitmanArmUDP := pitmanArmUD
end

In Machine M2, Event moveKey is refined to specify the
behavior of the direction indicator and the tail lamps
according to the position of the key and the position of
the hazard warning switch.

In Machine M3, we have split Event moveKey into
four events (i.e., insertKey, insertKeyputIgnitionOn, in-
sertKeyputIgnitionOff, removeKey) to be more precise on
the state of the lights according to the position of the
key.

Let us take the two events insertKey and insertKey-
putIgnitionOn. In Event insertKey, Action act4 specifies
that if the hazard warning switch is not activated then
the direction indicator is off, otherwise it is on and the
two flashing lights are on. It uses an idiom to mimic a
conditional if c then x := v1 else x := v2 construct,
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because the Event-B notation does not provide a con-
ditional statement for actions. This idiom has the form

x := {TRUE 7→ v1, FALSE 7→ v2}(bool(c))

The term {TRUE 7→ v1, FALSE 7→ v2} denotes a func-
tion, so it is evaluated at point bool(c). Operator bool(c)
evaluates formula c and returns a result of the predefined
set BOOL = {TRUE,FALSE}.

Event insertKey =̂
refines moveKey

any
hl

where
grd1: hl ∈ LowBeams ∪ tailLamps ∪

directionIndicators→ LigntnessLevel

grd2: keyState = NoKeyInserted

grd3: ...
grd4: hazardWarningSwitchOn = FALSE

⇒ (directionIndicators)× {0} ⊆ hl

...
with

valkey : valkey= keyInserted
then

act1: headingState := headingState◁− hl

act2: keyState := KeyInserted

act3: keyStateP := keyState

act4: direcIndF lash :=

{TRUE 7→ {blinkRight 7→ FALSE,

blinkLeft 7→ FALSE},
FALSE 7→ directionIndicators× {TRUE}
}(bool(hazardWarningSwitchOn = FALSE))

...
end

In Event putIgnitionOn action act4 specifies that if the
hazard warning switch is not activated then the direction
indicator is activated to the left or right according to the
position of the pitman arm, otherwise it is on and the
two flashing lights are on.

Event putIgnitionOn =̂
refines moveKey

any
hl

where
grd1: hl ∈ LowBeams ∪ tailLamps ∪

directionIndicators→ LigntnessLevel

...
with

valkey : valkey= KeyInIgnitionOnPosition
then

act1: headingState := headingState◁− hl

act2: keyState := KeyInIgnitionOnPosition

act3: keyStateP := keyState

act4: direcIndF lash :=

{TRUE 7→

{blinkRight 7→
bool(pitmanArmUD ∈ Upward),

blinkLeft 7→
bool(pitmanArmUD ∈ Downward)},

FALSE 7→ directionIndicators× {TRUE}
}(bool(hazardWarningSwitchOn = FALSE))

...
end

We have applied the same modeling process to the
Light Rotary Switch.

Splitting the event makes the proof obligations easier
to discharge even if more proof obligations are generated.

3.2 Managing Priorities between Requirements

Some requirements can be in conflict because they have
common system states with different transitions. This is
the case for Requirements ELS-16 and ELS-17. On one
hand, ELS-16 states that if the key state is inserted
then the low beam headlights are off. This is specified
in Invariant inv4 of Machine M3 where Variable ELS16
is TRUE if the key state is inserted:

ELS16 = TRUE ∧ ... ⇒ headingState[LowBeams] = 0

On the other hand, ELS-17 states that if the daytime
running light is activated then the low beam headlights
are activated after starting the engine and remain acti-
vated as long as the key is not removed, that is, either
the key position is inserted or the ignition is on.

We have detected the conflict when we have animated
the specification. The solution is to prioritize the require-
ments. After discussing with the case study authors, a
priority for ELS-16 over ELS-17 has been set; this is
specified in Invariant inv5 of Machine M3 that translates
ELS-17:

(... ∨ dayT imeLightCont = TRUE) ∧ ...∧
ELS16 = FALSE ∧ ...

⇒
headingState[LowBeams] = 100

where Variable dayTimeLightCont is true if the daytime
running light is activated.

3.3 Modeling Time Duration

In Event-B, a specification of requirements that in-
volves time duration requires to explicitly model time. In
this case study, time can trigger changes on the state of
lights (e.g. Requirements ELS-18, 19, 24, ... specify time
intervals where particular lights have to be activated or
not). A variable currentTime (currentT ime ∈ N) has
been introduced in Machine M1 to model the time pro-
gression together with Event progress that increments
this variable by an arbitrary positive number (Action
act2). Action act1 specifies the lights whose state can be
modified by a time progress.



8 4 VALIDATION AND VERIFICATION

Event progress =̂
refines headLightSet

any
hl
step

where
grd1: hl ∈ LowBeams ∪ tailLamps ∪

directionIndicators ∪
{corneringLightLeft, corneringLightRight}

7→
LigntnessLevel

grd2: step ∈ N1
then

act1: headingState := headingState◁− hl

act2: currentT ime := currentT ime+ step

...
end

Event progress is refined in Machines M3, M4, M5
by detailing how each kind of lights is impacted. For in-
stance, in M3, the exterior brightness (ELS-18) and the
ambient light (ELS-19) imply to activate the low beam
headlights for a given time interval. To model the timed
part of the requirement ELS-18: If the light rotary switch
is in position Auto and the ignition is On, the low beam
headlights are activated as soon as the exterior brightness
is lower than a threshold of 200 lx. If the exterior bright-
ness exceeds a threshold of 250 lx, .... In any case, the
low beam headlights remain active at least for 3 seconds.,
we have defined the deadline variable threeSecondsLater
which is updated when the following condition are ful-
filled:

1. light rotary switch is in position Auto
2. the ignition is On,
3. the exterior brightness is lower than a threshold of

200

In that case, the requirement ELS-18 is modelled by
the following invariant:

daytimeLights = FALSE ∧ brightnessSensor > 250 ∧
threeSecondsLater ̸= 0 ∧ lightSwitch = Auto ∧

keyState = KeyInIgnitionOnPosition
⇒

headingState[LowBeams] = {100}

To satisfy this behaviour, the event putIgnitionOn is
refined by adding the following action to set the deadline
variable to the desired value:

threeSecondsLater :=
{TRUE 7→ currentT ime+ 30, FALSE 7→ 0}

(bool(brightnessSensor < 200∧
lightSwitch = Auto...))

Moreover, the event progress is refined by adding the
following elements:

– a guard to prohibit time progression beyoud the dead-
line:

threeSecondsLater ̸= 0
⇒

currentT ime+ step ≤ threeSecondsLater

– an action that resets the deadline threeSecondsLater
if the three seconds are elapsed:

threeSecondsLater :=
{TRUE 7→ 0, FALSE 7→ threeSecondsLater}
(bool(currentT ime+ step =

threeSecondsLater))

3.4 Model Statistics

Table 2 describes the size of the model. Since Rodin
does not use text files to store models, there are various
ways of counting the lines of code (LOC) of a model.
Moreover, code is inherited when refinement and event
extension is used. Lines of code are computed using the
Camille editor representation of the Event-B model,
which does not count inherited LOC through event ex-
tension and puts all variables on the same line. Total
LOC, which includes inherited LOC, is provided within
“( )”, and computed using the pretty printer of the Rodin
Event-B Machine Editor. Comments are excluded. Since
we do not use data refinement (i.e., no variable is re-
placed through refinement), we provide the total number
of variables for each machine along with the number of
new variables (i.e., introduced in a refinement) enclosed
by “( )”. Invariants are specific to each machine. Since
some events are renamed by refinement, we provide the
total and new events introduced in each machine.

4 Validation and Verification

To verify and validate the Event-B models presented
in the previous sections, we have proceeded into three
steps detailed hereafter.

4.1 Model checking of the specification

In this step, ProB is used as a model checker to ensure
that the specification is free of invariant violation for
trivial scenarios. From a practical point of view, ProB
can find a sequence of events that, starting from a valid
initial state of the machine, leads to a state that vio-
lates its invariant. Such scenarios (or counterexamples)
may result from a guard/action missing but also from
an incorrect invariant. This step permits us to fix triv-
ial bugs before the proof phase that can be very long
and hard. It is worth noting that even if the tool does
not find any invariant violation, it does not mean that
the specification is correct. Indeed, there may be a sce-
nario that the tool fails to find for different reasons like
a timeout on the model checking process. In the present
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Component Size in LOC Constants / Axioms / Events
(Extended) Variables Invariants

Total (New) New Total (New)
C0 15 (17) 7
C1 15 (17) 7
C2 8 (2) 2
C3 10 (2) 2
C4 16 1 10
M0 21 (28) 1 (1) 1 1
M1 215 (320) 15 (14) 13 12 (11)
M2 382 (691) 25 (10) 18 14 (2)
M3 908 (1619) 37 (12) 36 19 (5)
M4 885 (2377) 50 (13) 15 20 (1)
M5 416 (2694) 61 (11) 15 23 (3)

Total 2875 126

Table 2. Model size

case study, the model checking step permits us to de-
tect missing actions, in particular those related to the
variables representing the previous state of an element.
Indeed, this makes the invariants depending on such vari-
ables violated as they should be verified only when the
current and the previous values of these variables are
different. In an initial version of the event moveKey, the
action act2 has been omitted causing the violation of the
invariant inv2 for the trace execution depicted by Ta-
ble 3. Indeed, the values of the variables keyStateP and
keyState are different and the tuple NoKeyInserted 7→
KeyInIgnitionOnPosition does not belong to the set
KeyMoves that represents the behavior of the key.

4.2 Validation with scenarios

The goal of this phase is to be sure that the specifi-
cation satisfies the requirements. To this aim, we used
the animation capability of ProB and played the dif-
ferent scenarios provided with the case study. This step
permits us to exhibit several flaws/ambiguities in the
initial release of the description documents (see Section
5 for more details). As examples of such flaws, we can
cite the lack of prioritization between some requirements
like ELS-16 and ELS-17 that share the same activation
conditions when the daytime running light option is ac-
tivated with the ignition in the Off position and the
driver turns the switch in the Auto position. To correct
these flaws/ambiguities, we have discussed with the case
study authors because we are not specialists of the do-
main. For the above particular example, a priority is
given to ELS-16 over ELS-17. It is worth noting that
such flaws/ambiguities can not be detected in the model
checking phase because they make the guard of some
events unsatisfied, thus the event is not enabled and the
invariant is thus not violated. Let us note that we had
some problems to animate the first version of our models
where we have defined the event parameter hl as a par-
tial function on the set of all the lights. The number fo

such partial functions being very large, ProB could not
terminate in a reasonable time. To overcome this issue,
we have replaced each partial function by a more restric-
tive total function on the right domain, that is, the lights
whose state actually changes after the execution of the
event.

4.3 Proof of the specification

It is the last step, whose goal is to ensure the correctness
of the specification by discharging proof obligations gen-
erated by Rodin. These proof obligations aim at proving
invariant preservation by each event, but also to ensure
that the guard of each refined event is stronger than that
of the abstract event. These guard strengthening refine-
ment proof obligations ensure that event parameters like
hl are properly refined. For instance, hl is defined as a
partial function in the abstract event headLightSet; it
is refined using total functions by giving its value for
each refining event. So, we have to ensure that these val-
ues satisfy the initial guard. Figure 4 provides the proof
statistics of the case study: 1643 proof obligations have
been generated, of which 23% (385) were automatically
proved by the various provers. The remaining proof obli-
gations were discharged interactively since they needed
the use of external provers like the Mono Lemma prover
that has shown to be very useful for arithmetic formulas.
In addition, we have added some theorems on min/max
operators (a min/max of a finite set is an element of the
set, etc).

Let us note that the results of this phase has es-
pecially impacted some modeling choices. For instance,
to speed up the proof phase, we have included in the
guards some properties tagged as theorems in order to
prove them only once and reuse them in all the proofs
that need them for that event. This is the case of Guards
grd9,grd10 of insertKey in Machine M3 that state:

grd9: lowBeamRight ∈ dom(hl)
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Step Event keyStateP keyState
1 Initialisation NoKeyInserted NoKeyInserted
2 moveKey NoKeyInserted KeyInserted
3 moveKey NoKeyInserted KeyInIgnitionOnPosition

Table 3. Execution trace violating an invariant

⇒
hl(lowBeamRight) ∈ 0..100

grd10: lowBeamLeft ∈ dom(hl)
⇒
hl(lowBeamLeft) ∈ 0..100

5 Other Points

5.1 Feedback on the requirements document

The formal modeling of the requirements document [8]
lead us to identify a number of ambiguities and some
contradictions with the test scenarios provided. We have
communicated these to the authors of the requirements
document, and a number of revisions were produced, fol-
lowing our comments. Our comments induced 9 of the 17
versions produced after the publication of the initial ver-
sion of the requirements document. These modifications
impacted 18 of the 49 requirements of the Exterior Light
System. A detailed list of these elements are described
in the last version (i.e., 1.17) of the requirements docu-
ment. Table 4 gives the main modifications we made on
the first release of the requirement document. We have
mainly rephrased some requirements for which the appli-
cability conditions should hold at different time points.
For instance, in requirement ELS-16, the condition "the
switch in position Auto" should happen after the condi-
tion "the ignition is already Off". Moreover, we have de-
fined priorities between requirements to make the speci-
fication deterministic: ELS-16 has priority over ELS-17,
ELS-19 has priority over ELS-17, etc. We have also
rephrased some sentences to clarify them. For instance
in the first version of the document, the word "released"
was used with the meaning "button pushed" in some
places and with the meaning "button not pushed" in
some others. To remove this ambiguity, we have replaced
it with the terms "active" and "not active". Finally to
make the modeling easier and after a discussion with the
case study authors, the signal pitmanArm has been split
into signals pitmanArmForthBack and pitmanArmUp-
Down with their corresponding positions (states) and
the possible transitions between them.

5.2 Modeling temporal properties

Dealing with previous values to prove temporal proper-
ties turned out to be a significant burden. To improve

and facilitate the specification of such kind of proper-
ties, which are probably very common in control sys-
tems, it would be interesting to study how they could
be handled in Rodin or in some other plugin like the
Event-B State machines plugin3. This plugin permits
to generate Event-B events from a state machine in-
cluding their guards that specify the requirements mod-
eled by the state machine but without producing the
related invariants. In that case, it becomes difficult to
trace and justify the usefulness of the generated guards.

5.3 Identifying a refinement strategy

The crux in defining the structure of the Event-B model
was to define the requirements elements to include at
each refinement level. Recall that once a variable is in-
troduced in a model, it cannot be modified by new events
of subsequent refinements. Thus, when a variable is in-
troduced, each event that needs to update it must be also
introduced. In this case study, there are several depen-
dencies between requirements elements. As many lights
mutually rely on the same sensors and are correlated
in terms of behavior, we have defined a single event, in
the first machine, to model the light state changes and
refined it according to the different actuators/sensors.
But, we think that it would be interesting to look deeper
into the existing structuring approaches for Event-B:
decomposition [23] or modularization [9], in order to
structure the specification into smaller logical units to
make the proofs easier. A refactoring tool based on the
read/update dependencies between events and state vari-
ables would be nice. It could help in finding an optimal
decomposition based on the connected components of a
dependency graph for a given machine. Building such
a graph from the requirements is not easy, as one typ-
ically needs to formalize the requirements to precisely
understand which variables are needed and where. So,
the specifier typically finds the ideal refinement struc-
ture only after creating a potentially non optimal refine-
ment structure. Often a lot of effort has been invested
in creating this first model, and there is no resource left
to do a refactoring to obtain a better model. By better,
we mean a model whose refinement decomposition would
yield easier proofs for the same set of properties.

3 http://wiki.event-b.org/index.php/Event-B_State machines



5.4 Dealing with variable requirements 11

Fig. 4. Rodin proof statistics of the case study

5.4 Dealing with variable requirements

The requirement document of the case study includes
the following three variability points:

– driverPosition: it states weather the vehicle is con-
figured for left-hand or right-hand traffic.

– armoredVehicle indicates, if the current car is an ar-
mored vehicle or not.

– marketCode parameter specifies the market for which
the car is to be built(001 = USA, 002 = Canada, 003
= EU).

In this case study, these variability elements induce that
some functionalities are only available for specific val-
ues of these elements. For instance, the darkness switch
being only available on armored cars, the requirements
ELS-21 and ELS-24 make sense only for this kind of
vehicles. Similarly, tail lamps are only used as rear di-
rection indicator on USA and Canadian cars. Moreover,
from the requirement document, we have not identify
any element that would be impacted by the position
driver. This is why we did not consider that in the formal
modelling of the case study.

In Event-B, we defined two constants: armoredVe-
hicle in the context C1 (armoredVehicle∈ BOOL) and
marketCode in the context C2 (marketCode∈ {1, 2, 3}).
Then, we have expressed the invariants corresponding to
the related requirement by including conditions on the
values of these constants. For instance, to specify that
the darkness switch is only available for armored cars, we
define an invariant that makes the variable darknessMod-
eSwitchOn always false if the constant armoredVehicle is
false:

armoredV ehicle = FALSE
⇒

darknessModeSwitchOn = FALSE

Moreover, we included the guard (armoredV ehicle =
TRUE) in the event moveDarknessSwitch that models
the actions on the darkness switch. Similarly, we model
the flashing of the tail lamps as a partial function by
stating that its domain is empty for European cars:

tailLampsF lash ∈ tailLamps 7→BOOL∧
(marketCode ∈ {1, 2} ⇒ dom(tailLampsF lash) = tailLamps∧

marketCode = 3 ⇒ dom(tailLampsF lash) = ∅)

6 Comparison

In the context of the ABZ conference, this case study has
been dealt with using different approaches/techniques.
In [11], a low level modelling using MISRA C, a pro-
gramming language close to C, is presented. The require-
ment and the behavior of the system is directly coded
in MISRA C, then the verification is performed in two
steps. In a first step, simple requirements, related to sin-
gle elements, are verified as unit test, then the CBMC
model checker[6] is used to verify complex requirements
that relate several elements. The authors report on some
flaws/ambiguities but did not state how they dealt with
them. Moreover, even if this approach has the advantage
of directly producing the executable code, its correctness
cannot be guaranteed since model checking does not en-
sure the absence of bugs.

In [3], a refinement-based approach, very similar to
ours, using ASM [4] is presented. The modelling starts
with a very abstract ASM which is then gradually refined
by introducing more details. The validation of the devel-
oped models is carried out by animating them with the
provided scenarios. The verification of the requirement is
performed by applying a model-checking technique, us-
ing NuSMV, on the corresponding CTL/LTL formulas.
As stated by the authors, since model-checking is only
effective on finite state space, the domain of values have
been restricted to be finite. As for the previous approach,
model checking can not ensure that the specification is
error-free.

In [7], Electrum [14], a formal language close to Al-
loy [10], is used for the modelling of the automotive light.
The structural aspect of the system are modelled as sig-
natures whereas its behavior is represented by predicates
setting the output element according to the inputs of the
system. The validation and the verification of the built
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specification is achieved into two steps. During the vali-
dation phase, the authors first define a number of scenar-
ios to check requirements related to simple behaviours
in order to rapidly detect some obvious consistencies,
Then to check more complex scenarios, like those pro-
vided in the case study description document, a validator
has been implemented. This validator permits to check
whether there exists a valid trace that produces given
outputs from specific values of inputs. The validator is
also used to animate the model on a set of inputs and
to produce outputs that are validated by the domain ex-
perts. In a last step, the requirements, as described in
the document, are modelled as assertions to be checked
on the developed models. As stated by the authors, these
different validation/verification steps have permitted to
detect some flaws and ambiguities reported to the case
study chair. These flaws/ambiguities include the need
for requirement prioritisation and infeasible scenarios.
Due to limitations of Electrum (representation of con-
crete integer values and time), the time requirements
and those involving arithmetic calculation have not been
considered.

Classical B and Event-B have been used in [13] to
model a subset of the same case study (blinking lamps
and Pitman controller). Classical B is used to take ad-
vantage of its specification modularization capabilities,
and Event-B is used to take advantage of its stronger
proving environment. The proposed approach proceeds
into three steps: (1) Modeling independently the behav-
iors of the different elements with operations defined in
separate machines; (2) Defining a new machine to relate
dependent elements; this new machine includes the ma-
chines corresponding to these elements and defines oper-
ations that calls that operations defined in the included
machines; (3) Translating the obtained B specification
into Event-B for verification purpose. In this paper,
the authors model time as we did in [20]. The approach
also permitted to detect some inconsistencies during the
model-checking of the specification using ProB, for which
the authors propose some corrections.

7 Conclusion

We have presented an Event-B model for the ELS case
study. Our model takes into account all of the require-
ments. The model was verified by proving a large num-
ber of properties (98 invariants) and by simulation using
ProB. Temporal properties involving two consecutive
states were proved using variables storing previous state
values. Due to the model size (61 state variables), ProB
was unable to verify invariant or temporal properties.
The proof effort was quite significant: 1258 proofs obli-
gation (76 %) had to be manually discharged. The last
Event-B machine is quite large (2 694 LOC), which
denotes that the case study was an interesting modeling
and verification challenge. The Rodin provers were less

efficient than in previous ABZ case studies, where the
manual proofs ratio was closer to 30 % [19], [18].

The formalization lead us to identify several small
ambiguities in the requirements. They have been dis-
cussed with the case study authors as they were dis-
covered, which lead to 9 out of the 17 revisions of the
case study text that were published during the model-
ing process. This shows that formalization is an effective
technique to discover defects early in the software devel-
opment process. It is well-known in the software engi-
neering literature that the earlier a defect is found, the
cheaper it is to fix it.

Determining the best refinement strategy remains a
challenge in Event-B. We fell short of time to try out
the model decomposition plugins available in Rodin.
They might have been useful in decomposing the speci-
fication into smaller, more manageable parts. This case
study is of a different nature than the previous ones
in the ABZ conference series (i.e., 2014 Landing gear,
2016 Hemodialysis, 2018 ERTMS). Its elements are more
tightly coupled, which made it more difficult to find an
appropriate refinement strategy. It contains more prop-
erties to prove than the previous ones, but they are
more localized properties (i.e., each property referring
to a small number of events on at most two consecutive
states) that do not depend on the relationship between
monitored variables and controlled variables. However,
we really think that the Event-B method must include
modularization clauses as native structuring mechanisms
like those of the B method that permit to have a mod-
ular specification right from the first phases of the de-
velopment. This will make Event-B more suitable for
the development of big and complex systems. For com-
parison, in the ERTMS case study, we had to build a
relationship between the real (actual) positions of the
trains and the controller view of the train positions to
prove safety properties. There were no such issues in the
ELS case study.
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