Introduction to SDL
e

TSP
Stephane Maag

Specification Description

Language
.

Outline

=SDL, a FDT for complex system specification

=MSC to SDL

=SDL system

=SDL notations

=SDL process

xFrom the specification to the simulation
2RTDS

... and conclusion.
2

Stephane.Maag@telecom-sudparis.eu

SDL - a Formal Description

Technique
-]

@FDTs (also called specification language):

a»specify the functional properties of a system according
to its environment

&»are conceived to describe distributed systems composed
by processes that are executed in parallel, synchronize
themselves and communicate by messages

20ther techniques: process algebra (CCS), finite
state machines, temporal logic, Petri networks, ...

=54 L | Stephane.Maag@telecom-sudparis.eu 3

Briefly, SDL
]

2SDL (Specification Description Language):

aDefine and normalized by ITU(-T) (1988,
1992, 1996, 2000)

abased on the Extended Finite State Machines
(EFSM), asynchronous

&2 visions: SDL-GR (graphical) and SDL-PR
(textual)

&Abstract data types, ASN.1

Stephane.Maag@telecom-sudparis.eu 4

SDL for

Reactive and Discrete Systems
e

= Communication:
& Message exchanges between the system and its environment

& Mainly asynchronous interactions, but synchronous ones also
supported

= Nevertheless:
& SDL is not adapted to cyclic data-driven inputs

&> SDL is unable to describe non real-time aspects, such as:
» Data bases
» GUIs

aris

=54 L | Stephane.Maag@telecom-sudparis.eu 5

SDL applications

=Wide range of applications

a»safety and mission critical
communicating systems

areal-time applications

=Wide range of architectures

aworkstation-based distributed system, B —=
32-bits communication board, 8-bits
micro-controller embedded system

Stephane.Maag@telecom-sudparis.eu 6

SDL architecture and behaviors
e

2 To specify, to describe without ambiguities
telecommunication systems

@ T0 represent functional properties of a system:

a»structural properties: system architecture, its
decomposition into interconnected functional blocks

abehavioral properties: system reactions after stimuli
coming from the environment

xThe architecture = The behavior

Stephane.Maag@telecom-sudparis.eu 7

SDL

Two normalized representations
-]

wGraphical representation: GR
wTextual representation: PR

xExchange format: PR+CIF
(information+extensions)

Textual
grammar

Graphical
grammar

common

HE Stephane.Maag@telecom-sudparis.eu 8

*SDL, a FDT for complex system specificatior
- sssssssss
*SDL system
MSC - to provide the
*SDL process
*From the specification to the simulation
*ObjectGEODE
beh -

Message Sequence Chart

2 /.120 Recommendation managed by the ITU

¥ S to provide a trace language for the
specification and description of the
communication behavior of system
components and their environment by means
of message interchange”

HE Stephane.Maag@telecom-sudparis.eu 9

SD L WIth Msc Name of the MSC Name of the

= To describe cases by WithdrawalReceipt
sequences of interactions St |
between instances and the ATM .
environment Ingtance
messages\ amount (102 head
= allows to observe the e
interactions, but difficult to <
assign values and process < eceipt
operations ... we use SDL and e
we may control with MSC.
Instance talil

(not termination)

SudParis
T Stephane.Maag@telecom-sudparis.eu 10

System specification
]

Three aspects in order to specify:

>
t

"he definition of the system structure with
ne interconnections

P

"he dynamic behavior of each process (or

machines) and their interaction with the other
processes and the environment

aoperations on data (into the processes)

Stephane.Maag@telecom-sudparis.eu 11

Semantic models -
Hierarchy

xSystem architecture:

aDecomposition by interconnected structural
entities: system, block, channel, process

xSystem behavior:

a&communicating processes: signals,
variables as inputs/outputs: EFSM

wData: variables, signals, sorts, ASN.1,

Stephane.Maag@telecom-sudparis.eu

=

[Process

]

U

Procedure

12

*SDL, a FDT for complex system specification
*MSC to SDL

*SDL system

+SDL notations

*SDL process

*From the specification to the simulation
*ObjectGEODE

System architecture

Environment

S1 S2

System I

Block B1 L pfocess

4 _—\/_|signal >| M4 I M35

channel

S(X,Y,Z)

J block
| M1 | - M2 |« _: A -

TELECOM
SudParis

T Stephane.Maag@telecom-sudparis.eu 13

System SDL: example
]

Signal \\ SYSTF%S 7parameter 1
definition £ [S1]
/?e/ S1, S2, S3, S4(INTEGER);
P /f%f 2rsh e I
SIGNALLIST L3 = L1, S3;

System name

[S2]
(L2)]
C3
[A3)]

[S4]

B B e

Channel—‘ signal block signalli

aris

T Stephane.Maag@telecom-sudparis.eu 14

Channels

unidirectional A ¢l > B
[S1, S2, S3]
C2
bi-directional) > C
[INT1] [EXT1, EXT2]
R [S1] [S1]
C
Multi-connections C . R2 [S2] [S2] R2 o >
[S3] [S3]

aris

=54 L | Stephane.Maag@telecom-sudparis.eu

15

SDL predefined types
.

« INTEGER signed integer
« REAL real
- NATURAL positive or null integer

« CHARACTER 1 character
« CHARSTRING charstring (string of characters)
« BOOLEAN boolean

 TIME absolute time (syntype of REAL)
- DURATION duration (syntype of REAL)
« PID to identify a process instance

Stephane.Maag@telecom-sudparis.eu 16

Operators on predefined

types
]

Al types

é,o:,/z

@INTEGER and NATURAL
&> -+, %, [, >, <, >=, <=, Float, Mod, Rem

REAL
& -, +, *l /I >, <, >=, <=5, Fix

HE Stephane.Maag@telecom-sudparis.eu 17

CONSTANTS
e

w2 They can be defined at any level of the
SDL hierarchy

SYNONYM maxusers INTEGER = 10;

EEEEEEE
SudParis

=54 i | Stephane Maag@telecom -sudparis.eu 18

Basic user-defined types
]

« Enumerated types

NEWTYPFPE WeekDay
LITERALS mon, tue, wed, thu, fri, sat, sun:
ENDNEWTYPE;

« Range types (often used to index arrays)

SYNTYPE Index_ T = Natural
CONSTANTS 1:12
ENDSYNTYPE;

SYNTYPE Digit_T = Character
CONSTANTS '0"'9'
ENDSYNTYPE;

SYNTYPE WeekEnd = WeekDay
DEFAULT sun; CONSTANTS sat:sun

ENDSYNTYPE;

Stephane.Maag@telecom-sudparis.eu 19

*SDL, a FDT for complex system specification
*MSC to SDL

*SDL system

+SDL notations

*SDL process

*From the specification to the simulation
*ObjectGEODE

The SDL process
]

It describes the behavior and extends the FSM
concept:

» the queue associated to each process is not necessarily a FIFO.

> A transition (not necessarily of a null length) may contain:
e receiving and sending data
e analyzing variables to determine the next transition
e execution of tasks
e procedure call
e dynamic creation of process
e triggered timers

aris

T Stephane.Maag@telecom-sudparis.eu 20

Major SDL elements in a

process
I

Running .
Timer management

Input 4

> g e @
2 Stop
Initial actions
Outp

Process Creation

O Decisi m Procedure Call

Action and some others

Stephane.Maag@telecom-sudparis.eu 21

Body of a process

o)
| |

Stimulus 1 Stimulus 2 Stimylus n \
Action 1.1 Action 2.1 ction 3.1
Action 1.2 Action 2.2 Action 3.2

> Transitions

Action 1.p Action 2.q Action 3.r
X

join
Stephane.Maag@telecom-sudparis.eu 22

Declaration in processes

process PanelControl

Variables del Declaration
) Dig Int
& declared in a Text symbol S e
of a process, service,

procedure
& No global variables at Q (Idle)
system or block level

s | |
& can be initialized: msagi/ | |
ADig = 0 Cid Digit .
DCL (cardld) (val)
nbTransactions Integer = 0, L o | |
vl v2 MyType: S
| YIRS (Idle)(GetPIN) ﬂg:g,j Eﬁﬁlg

aris

T Stephane.Maag@telecom-sudparis.eu 23

Stimuli types - inputs

State Statel

S3

S2

S1

'

4

S3orS4

| Statel |

Ssasa

/

>82

S1

I
< Transition >

Y

N

State State2

S3

S1

‘save” allows to save a signal and keeps
it in the queue until the next state ...

waiting for the next signal.

aris

Stephane.Maag@telecom-sudparis.eu

save

24

Input - Condition
.
= signal can only be consumed if

(B > Boolean expression
e
the condition is true, otherwise
CHABOK < it is saved.
dit @ ! The expression may not
W depend on current input signal

notes
available

parameters: only the previous
value is accessible

TELECCIM
SudP

T Stephane.Maag@telecom-sudparis.eu 25

Input - priority

Priority signals are processed
prior to the other signals in the queue

Priority
Input

Stephane.Maag@telecom-sudparis.eu 26

Decisions

X=Y
(=0) =)
| | (TRUE) (FALSE)
| |
=0 =0 <0) 1:10 20, 30 ELSE

be an informal text

'TYPE' | | 0 |

=0) (/=0)
('A") (ELSE) ('B") (‘CH | I

|
I | | A=A+

Stephane.Maag@telecom-sudparis.eu é 27

I
a task, may also \J> A:=1

Non-deterministic
transitions

|
(any(type name)) (any(type name)) a(x)/b a(x)/c

—
O C

Non-deterministic transitions
are used to describe random events

HE Stephane.Maag@telecom-sudparis.eu 28

Express the Time in SDL

@ A Timer is a meta-process | timer _
able to transmit signals on door_timeout, @E”%‘UHM
butt ti t:=10.0
demand to the process. i ’

floor_timeout(Natural);

@ The RESET also removes
the corresponding signal
from the process queue

(case of an expired TIMER,
but the signal is not
consumed yet.

|
(SET (30.0 , door_timeout)

N~

aris

=54 L | Stephane.Maag@telecom-sudparis.eu

) RESET (T1, T2, T3)

29

Use of Timers
-

process Withdrawal

timer tempo; \j

Ready

Withdrawal Wait >
timeout
| I

Cash > taken tempo <
We do not need }

| | | to reset the timer

/ SET
B e >< &Enﬁi}-j- Retained

" I |

Wait Idle Idle)

Stephane.Maag@telecom-sudparis.eu 30

*Delete the process

' remaining in the queue are lost
g essages to thies process are lost

process Withdrawal

() timer tempo; ﬁ Withdrawal
Ready

withdrawal
Withdrawal Wait
cas
|
> < < taken
Cash taken tempo >

v

{ SET RESET .
A (Iefn;?;:ro,}.a (tempo) Retained

(Wait) (Idle >(Idle) The timer is set and reset because
the arriving of signal taken

T Stephane.Maag@telecom-sudparis.eu 31

To ease the writing (1/2)
-

The transition associated to the state * is applicable
with all the states, while the state *(A,B) is also applicable
with all the states except Aand B

D G O D @

VTlV 'Tl'
I

Stephane.Maag@telecom-sudparis.eu 32

To ease the writing (2/2)
-

= T0 go back to the previous state
)

> SA S SB
Go back to
(B) (-) """ state A

>SA >S|B >*

54 L Stephane.Maag@telecom-sudparis.eu 33

*SDL, a FDT for complex system specification
*MSC to SDL

| ||
*SDL system
[*SDL notations
*SDL process

*From the specification to the simulation
*RTDS

The model is now syntactically correct and semantically
consistent. But it is good ?

From low costs to high quality:
= debugging
= evaluation of alternative solutions

= verification, detection of errors, comparison with MSC
requirements.

@ Test generation

= to minimize the final costs

aris

T Stephane.Maag@telecom-sudparis.eu 34

Two kind of simulation

Interactive

step-by-step
(debugging)
saccess to all data

xMSC generation
=SDL tracking

Exhaustive

fully automatic

measures state and
transitions coverage

wcheck properties

soreachability graph
generation

Stephane.Maag@telecom-sudparis.eu

35

+SDL, a FDT for complex system specification
*MSC to SDL

*SDL system

+SDL notations

*SDL process

*From the specification to the simulation
*RTDS

Pragmadev Studio
]

= A Pragmadev tool

@ The tool allowing the edition from the requirements
= Architectural and behavioral design

= Model checking capabilities,

@ Traceability information.

= Code generation

@ Testing

@ TTCN3

TELECOM

SudParis

Stephane.Maag@telecom-sudparis.eu 36

GUI - PragmaStudio

Graphical User
Interface

Then:
- New project
- SDL Z100 project

TELECOM
SudParis

=54 L | Stephane.Maag@telecom-sudparis.eu

'ﬁ; PragmaDev Studio

B ¢
|
U
|

Open
History
Close
Delete...

Studio [Project] Edit View Element Generation Validation Windows

LM Newproeat. ||

2

Ctri-W

Import SDL-PR/CIF file...
Import MSC-PR file...
Import XMI file...

Export as PR...
Convert to SDL-RT..

Generate TTCN..

Save

Save as...

Save a copy..

Save as ZIP file...

Save all

Revert...

Show project warnings...

Ctrl-S
Shift-Ctrl-S

Page setup...

Print...

Export as HTML...

Export all publications
Documentation display options...
Documentation export options...
Export documentation options...

Ctri-P

o —

Conclusion

=SDL, a language to specify complex
systems. User-friendly with its PR/GR

o Powerful to express important protocols
xAllows to simulate system behaviors

xIn the following : on the road of f
instantiating and tesz;/ﬁ ... on the road OA

Stephane.Maag@telecom-sudparis.eu

SDL the following ...

Part 2
e

TMSP
Stéephane Maag

Objectives
I

This course intends to make the participants discover:

= Structures

= Structural types
= Packages

= PID

= Procedures

= MacroDefinitions
= ASN.1 - Z.105

TI%LEE oM

SudParis

Stephane.Maag@telecom-sudparis.eu

— e dip |

Remote Variables

OEXPORT-IMPORT: to get the value of a
variable of another process (implicit signals)
N

REMOTE a Integer;

Process P1 Process P2
DCL IMPORTED a Integer;
EXPORTED a Integer; DCL b Integer;
| |
a=1 b := IMPORT
| In a block | (a, Pld_P1)
or system EXPORT(a . .
A | @) Explicit
a:= -1 export 0
|

TELECOM
SudParis

— e dip |

Stephane.Maag@telecom-sudparis.eu

Definition of Structure
]

Structure with Fields

NEWTYPE Product /(The field types
STRUCT - may be some structures
reference CHARSTRING;
price REAL,;
quantity INTEGER,;
ENDNEWTYPE Product;

TELECOM

SudParis

Stephane.Maag@telecom-sudparis.eu

— e dip |

Use of Structure
]

DCL prod Product. |

| prod!price ;= 21.0

prod = (. ‘ball’,20.0,3 .)
| prod!reference := ‘Super new ball’

assignment J

[Modify by accessing the fields]

TELECOM

SudParis

Stephane.Maag@telecom-sudparis.eu

— e dip |

Array Type

NEWTYPE Product T
ARRAY (Index_T ,Product);
ENDNEWTYPE;

N
-

Initializatic;n_]
|

prod_set := (. (. 'ball’,20.0,3 .) .)

TELECOM

SudParis

— e dip |

Stephane.Maag@telecom-sudparis.eu

Type of
the index (integer)

DCL prod_set Product_T,;
DCL prod Product;

Modify Extract
L /]
A /

prod_set(]r&: prod prod := prod_set(3)

| |

[Indexes are integer

Process: Active Class
]

=SDL allows to generate process instances:
& hey are active objects
aPerform their own actions
&Manage their own data

wSeveral possible instances may run in parallel.

Initial number
of instances

= To represent them: Maximum ﬂumbeg

of instances

Transaction(0,5)

TELECOM
SudParis

— e dip |

Stephane.Maag@telecom-sudparis.eu

Structural Types and
Instances

= Block type or Process type
aGeneral description to reuse later
&Allows to generate many block or process instances
aDefine the content of all instances

@We may define one instance or set of instances

USER firstUser: Users(10):
USER uszé
/
ﬁ3|00k type [A set of 10 instances }
TELECOM
SudParis Stephane.Maag@telecom-sudparis.eu of USER

— e dip |

Why Block and Process

type ?
-]

w They are defined once and used many times

~»a defined block may then be used in different
systems

~to define only once the content of several
processes that run in different blocks

a»structural types and instances available for
systems, blocks and processes

TELECOM
SudParis

— e dip |

Stephane.Maag@telecom-sudparis.eu

Structural Types in RTDS

Diagram Edit Search View Export Windows Help

s
o
o
o

T EeHE PPRXE P w P

block type

_________ R
K| el ecl gll |
"""" [1 start]|
{ process
@ I us{2):USER :
e | |
N g12)
© [titi]

{ process type

TELECOM
SudParis

— e dip |

gate/port
Instance

Stephane.Maag@telecom-sudparis.eu

= Structural types
need gates.

= gates define, with
channels, the
signals sent
and/or received.

@ Instances are
connected by
channels through
gates.

Examples of instantiations

system ATM
Block ATM Bank Consortium
ty;aea
Connectecq
gate
ri1 SIVA: ri3
i%a Consortium P [;([{5"}]
Block [(slf)] Y
. |
instance sl (sl s [(sIb)]
& [(sla)] y
y ¥ _ [(skf)]
x GoodBank: [& BetterBank.x[;,E -
[(5if)] Bank ATMs(nb): Bank " |[(skb)]
» ATM
rk
- Set of blocka
_— R

TELECOM

SudParis

Stephane.Maag@telecom-sudparis.eu

— e dip |

Where to use structural
types ?
0000000000
xIn package: a set of types
&=Structural types (block types, process types,...)
&»Signals and lists

aConstants
&Data types

=A package allows to reuse types in several
models.

TELECOM
SudParis

— e dip |

Stephane.Maag@telecom-sudparis.eu

Package example

PACKAGE ATMTypes

NEWTYPE ATMTypel D

STRUCT

SYNONYM ATMconst

SIGNAL ATMS1 ...

Selective
use

b A N
USE ATMTypes; USE ATMTypes/ATMS1;

// — // —
(SYSTEM)Bank1 (SYSTEM Bank2
PR format

ATMS1

DCL str_t1 ATMType:
TELECOM _/

SudParis

— e dip |

Stephane.Maag@telecom-sudparis.eu

‘2 RTDS - Diagrams
O . : — - L
} Disgram Edit Search View Export Window{ & RTDS - Project "ps.rdp .ﬁ

set of process
class instances

:‘ﬁs ﬁ E: @ @ % 33 File Edit View Element Generste '.."lminl.'ui Help

15 ‘R BRCSED

gatefport IS] (= ms-nw—__

instance

E;L/K &
q

]

i~

g

77

Diagram Edit Search View Export Windo

————— Vs i}lé\@@l

N e L gl

the signals are e fstart]] ;\
0 [—
mentioned ! L3
. | Cll—=sccl— T
in the package Il € kll [toto]
=start {via:gll}
T~ [l <toto {via:ql2}

titi {via:gl2}

o
;;2 -'.:f-ﬁ RTDS —B'\agray/
LA

\/ 2 : :
proces J/ _:Dma_g_ram £ Segrch :'p'-IE'W' Export dows Help - l_’“ :
| ; ar PP [E_I;_; P s gate/port

Instance

o N\] N\
4 NIV

/

process class
n the package

AY
use of the package l L signal stacs(inieger), st
] toto{integex), titi;
at the System level ! tart
zf+‘*‘“‘:E::t::===n~u5E userpackae; Lty
TEI ECOM - Y
SudParis i cl

EH .l Y

Dynamic Creation of

Processes
]

wProcess instance
may dynamically

creates instance of |2 "W
process in the same Emerprise)
block. \ =
d ' |
dhmaic = |
(Agency(%\/lax) J
|

TELECOM ‘ 1 and infinite by default

Stephane.Maag@telecom-sudparis.eu
et

How to dynamically create

processes
I
= The CREATE request Process Enterprise
provokes the immediate
creation of the process. (idle >

@ The created processes
may carry parameters new_on<
given by the creator.

2 The new instance has its | Agency(nbrname)
own new PID |
CREATE
i [request

Stephane.Maag@telecom-sudparis.eu

— e dip |

Process parameters

Interval for the
number of possible
created instances

PROCESS Agency(0,Max)
FPAR

nbr integer,
/name charstring «

Formal > Agen ({ Q//rgency)
parameters

We may Kill
the processes

actual
parameters

TELEl 0O M

i Paris

— e dip |

Stephane.Maag@telecom-sudparis.eu

Process IDentification
]

= The PID is the unique identifier of each instance of
process.
& Remember ... PID is a predefined type !
& The PID cannot be modified
&= The PID type has one predefined constant: NULL

= PIDs are used for communication in case of many
possible receivers.
&» Client/server, mobile topologies (broadcast),...
&= signals that are both sent and received, ...

TI%LEE oM

i Paris

=TI

Stephane.Maag@telecom-sudparis.eu

Process destination for

Output

S1

[TO process destination]
[VIA path] S1

No destination specified
unigue dest. or non-det. choice

Process name

TELECOM

SudParis

Stephane.Maag@telecom-sudparis.eu

— e dip |

VIA

v
channel ALL c1,c2,c3...
or gate Multicast,

one message for
each route

Predefined PID

expressions
0000000000

= SELF: PID of the process itself

= OFFSPRING: last process instance created by itself. If
none was created then OFFSPRING is NULL

= PARENT: PID of parent process. If SELF was not
dynamically created, then PARENT is NULL

= SENDER: PID of the process that has sent the last
consumed signal by SELF. If no consumed signal the
SENDER is NULL

TELECOM
SudParis

— e dip |

Stephane.Maag@telecom-sudparis.eu

Example of PID use

process Router
dcl
cur_panel Pld; dle Validation
| |
Panel
from Panel — pode codeQOK<{ —from Central
| .
Pld
) y cur_panel .= OK to
sender’s PID J7se"der R
[: = | J
Process name |, 4. (cid, pin ,
B to Central HElEEL
N

Validation)

TELECOM

SudParis Stephane.Maag@telecom-sudparis.eu

— e dip |

Procedures
]

wUse to factorize and parameterize actions
xEncapsulation, abstraction
xAllow to reduce the EFSM size

wExecuted in their owning process

TELECOM
SudParis

— e dip |

Stephane.Maag@telecom-sudparis.eu

Procedure definition

= It is described like process, using procedure apme“’”L./srarT

EFSM <)
= [t is executed using the queue of its

OWn process |

= It does not have any PID (even the o body
one of the process) |

= Signals are sent to process only
= It may have local variables

e It can be defined at process, block g@ eturn

or system level

m@ No Stop in a procedure
Stephane.Maag@telecom-sudparis.eu
mEAE

coffe

Procedure parameters

= Introduced by FPAR and IN or

IN/OUT: PROCEDURE GetPIN
FPAR
& FPAR: parameters of the IN/OUT pin integer,
procedure

IN no_dig integer
& IN/OUT:

> by reference <)

> it means that the parameter may |
be modified

& IN:
> by value

> it means that the caller may not
see the changes

&by default the parameter are IN.

TELECOM

SudParis

Stephane.Maag@telecom-sudparis.eu

— e dip |

Procedure Example

procedure getPIN

process panel FPAR
INJOUT pin INTEGER,
\V IN no_dig INTEGER
getPIN
idle start
| |
- PROCEDURE
(pin, dig) DEFINITION test local_state
| | |
getPIN | PROCEDURE
(pin, no_dig) CALL ‘action’ other_signal
\lf \l/
idle) local_state — return

Stephane.Maag@telecom-sudparis.eu

B 2

Procedures as classic

functions
]

PROCEDURE Incr10

xoThey may be called as |rear|iinteger
classic functions in RETURNS r Integer

expressions: allows to (|)
return explicit values. i
| [a value returﬂ é
X:=5* (1I0 J EL|SE
CALL Incr10(x) |

| r.

L
TELECOM
SudPariz)
Stephane.Maag@telecom-sudparis.eu

— e dip |

MacroDefinition

x> The Macros allow to treat the repetition of code,
a description, a behavior that is often repeated,

wUsed only within processes or procedures,
May have formal parameter, it is necessary to

transmit them.
T O

Call of a macro Macro inlet symbol Macro outlet symbol

TELECOM
SudParis

— e dip |

Stephane.Maag@telecom-sudparis.eu

Macrodefinition Example

Formal
parameters

macrodefinition hop

f}}w integer

TELECOM

CudParis

=TI

Stephane.Maag@telecom-sudparis.eu

ASN.1 and SDL
]

2/Z.105: Inclusion of ASN.1 in SDL

xStandard: ASN.1 is widely used in
standards and can be part of the
requirements

x Technically, ASN.1 allows to focus only on
data: values, set of values, ...

ephane.Maag@telecom-sudparis.eu

TELECOM
SudParis

— e dip |

Use of ASN.1 in Z2.105
]

2ASN.1 declarations located in same box
than SDL ones,

=ASN.1 and SDL declaration may be mixed,

=/.105 is not case-sensitive,

\\ 7/

whyphens (7-") cannot be used.

TELECOM
SudParis

— e dip |

ASN.1 predefined types
-]

INTEGER == INTEGER
=BOOLEAN == BOOLEAN
@REAL == REAL

2CHARSTRING == IA5String

SDL ASN.1
I

NEWTYPE colors LITERALS | colors ::= ENUMERATED
red, blue,black, yellow, white; | {red, blue,black, yellow, white};
ENDNEWTYPE colors;

SYNONYM clearcolor colors | clearcolor colors ::= white;
= white;

TELECOM
SudParis

— e dip |

Stephane.Maag@telecom-sudparis.eu

Composite types in

ASN.1:

Sequence types (Structure in SDL)

NEWTYPE T_Seq
STRUCT
a BOOLEAN;
b CHARSTRING OPTIONAL;
¢ INTEGER DEFAULT 5;
ENDNEWTYPE T_Seq;

T_Seq ::= SEQUENCE {
a BOOLEAN,
b IA5String OPTIONAL,
c INTEGER DEFAULT 5);

s1 T_Seq ::= { a TRUE,

- b ‘OK’,
c12};

s2 T_Seq ::= { a FALSE,
c 23};

s3 T_Seq ::= {a TRUE};

TI%LEE oM

SudParis

Stephane.Maag@telecom-sudparis.eu

— e dip |

%l

Sequence Example

Process procl

T _Seq ::= SEQUENCE {
a BOOLEAN,

b IA5String OPTIONAL,
c INTEGER DEFAULT 5};

>~

DCL varl, var2 T_Seq; |

obt(var1)<

(TRUE)
I

(FALSE)
I

var2:={a FALSE]}

varlla:=TRUE

Stephane.Maag@telecom-sudparis.eu

Composite types in ASN.1:

CHOICE types

Process procl
T Ch:=CHOICE{ [
a BOOLEAN,
b IA5String,
¢ INTEGERY;

DCL varll, varl2 T Ch;|

3bt(var11<

varll!present

(?)

varl2!present.= a

Stephane.Maag@telecom-sudparis.eu

(|C)

varll:= {a: FALSE}

varll:= {b: ‘NOTOK’)

%l

CONCLUSION
I

2 Think to use structural types for
reusability
xProcess ID

xReadability with procedure and
macrodefinitions

=CHOICE in ASN.1

TELECOM
SudParis

— e dip |

Exercises
]

Specify a process that receives a message
ATM_reg containing a data atrm_reg as a
structure “(quantity, ticket)”where
guantity is an integer and ticketis an
optional character.

This process sends the output OK'if ticket
is received or NOK'if not.

TELECOM
SudParis

— e dip |

