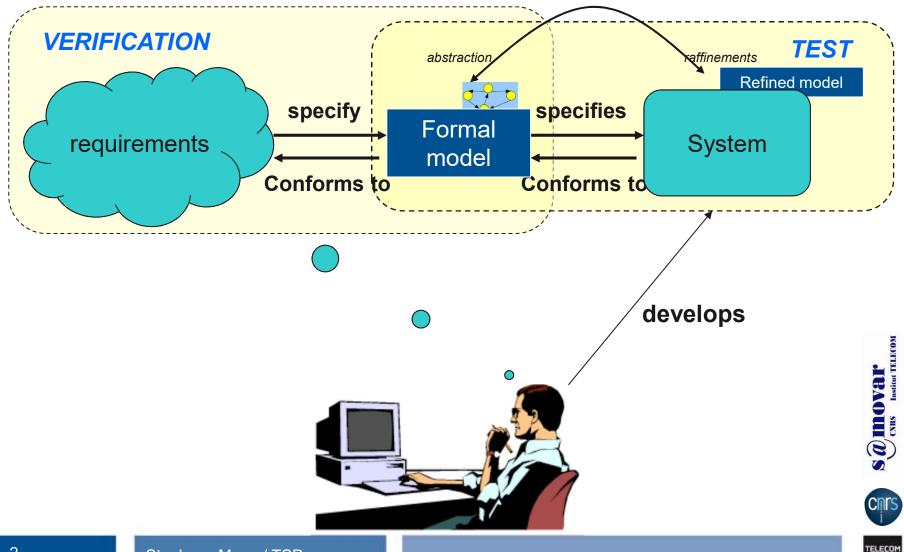


CTL for Testing


Basics

Stephane Maag
CNRS Samovar

Stephane.Maag@telecom-sudparis.eu

Flash back - reminder ...

選出

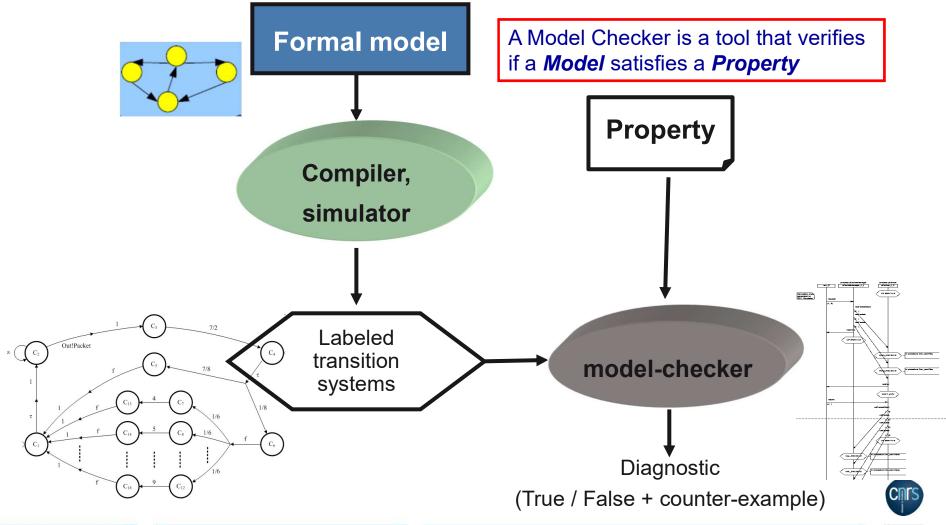
Formal verification techniques

3 main techniques

Code verification

- Static analysis no formal models
- Reverse engineering
- □ BLAST, SLAM for C prog.
- Bandera: JAVA
- Verisoft: C++

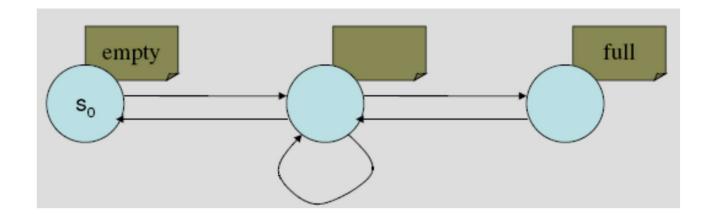
3 kinds of methods


- Model equivalences
- Deductive methods (proof)
- Model checking

Model-checking Basis

Model: a term with so many meanings!

- Here models as they are used for model-checking are just annotated graphs:
 - A finite set of states, S
 - Some initial state s₀
 - A transition relation between states, T⊆S×S
 - A finite set of atomic propositions, AP
 - A labelling function L : S → P(AP)
- known as a Kripke structure:
 - Labelled Transition systems, LTS
 - Finite State machines, FSM
 - State charts, ...


* For a physicist a "model" is a differential equation; For a biologist, it may be ... mice or frogs

An Example

AP = {empty, full}

Some LTL formula that are valid for this model:

empty
$$\Rightarrow$$
 (X \neg empty) full \Rightarrow (X \neg full)

(X is for neXt)

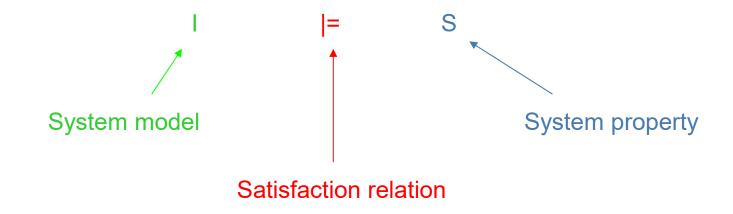
Systems are the actual objects of interest

- How to ensure that a system satisfies certain properties?
 - But what are properties ?!
- Properties?
 - 1. Texts in natural languages...

"Calls to lock and unlock must alternate."

- Formulas in a given specification logic
 (locked ⇒ X unlocked) ∧ (unlocked ⇒ X locked)
- 3. Sets of mandatory or forbidden behaviors

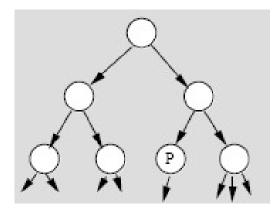
問題


Kinds of functional properties

Reachability	A state in a system may be reached
	The train may cross the railroad crossing
Liveness	Under some conditions, an event will come
	When the train announced its arrival, the gate is closed
Safety	A non desired event will never occur
	It is not possible to have the gate open while the train cross the railroad crossing.
No deadlock	The system will never reach a state from which it can not evolve anymore.
	When the gate is closed, it can still be opened.
Fairness	An event will occur indefinitely often
	The gate will be open indefinitely often.

| 接触

Model-checking problem



The CTL Logic Computation Tree Logic

CTL allows to reason on computation tree

Examples

There exists a path with a state in which P holds

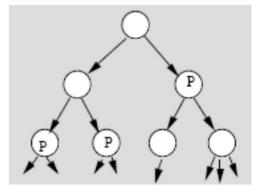
EF P

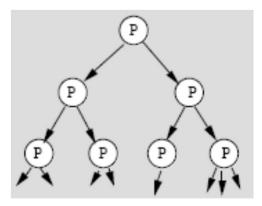
Temporal operators on an execution : X, F, G, U

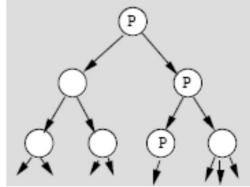
- $\mathbf{X} \mathbf{\phi}$: the next state satisfies $\mathbf{\phi}$ (neXt)
- F φ : there exists a state in the future which satisfies φ (Future)
- G φ : all the states satisfy φ (Global)

$$G \varphi (= \neg F \neg \varphi)$$

φ U Ψ : a state in which Ψ holds and up to this state φ holds true (Until)






EXAMPLES

On each path there exists a state in which P holds true AF P (= ¬E¬F P)

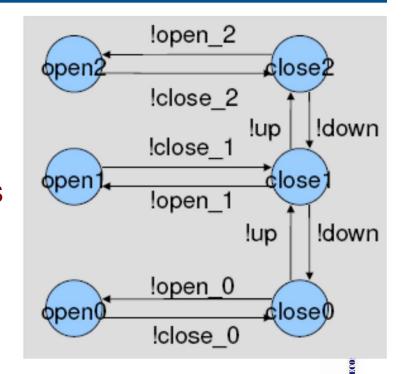
In all reachable states, P holds true AG P (= ¬EF ¬P)

There exists an infinite path on which P holds in each state EG P (= E ¬F ¬P)

The temporal operators are of two types

- on an execution (a path) E
- on all executions (all paths) A

Samovar CNR Institut TEL

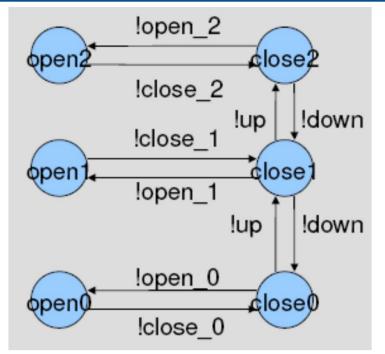


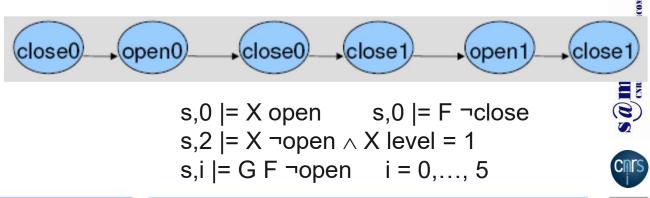
1878

Models - Reminder

A model is:

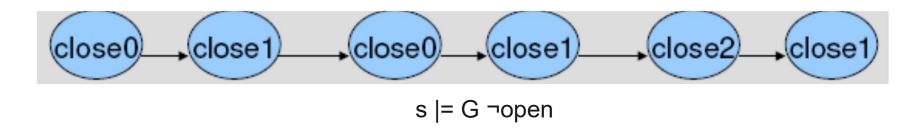
- A finite set of states, S
- Some initial state s₀
- A transition relation between states, T⊆S×S
- A finite set of atomic propositions, AP
- A labelling function L : S → P(AP)

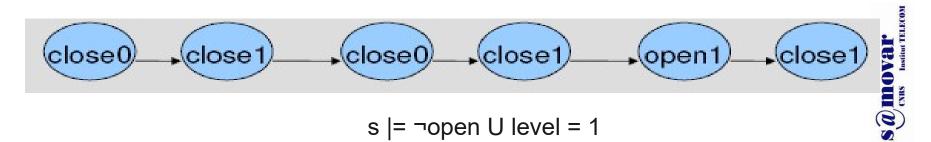

Formulas associated to the states of the automaton $L(openi) = \{open, level = i\}, i=0,1,2$ $L(closei) = \{\neg open, level = i\} i=0,1,2$



||祝國選

Formulas associated to the states of the automaton L(openi) = {open, level = i}, i=0,1,2 L(closei) = {¬open, level = i} i=0,1,2


an execution of the automaton



||一個

Notation: $s = P \Leftrightarrow s,0 = P$

Temporal operators on all executions : A, E

 $\blacksquare A \phi$: all the executions starting from the current state

satisfy ϕ

E φ : there existate φ

 \blacksquare E F ϕ : we ca

 $\blacksquare A F \phi : we w$

from the current

afety property eness property

Examples

Asc the controller of the lift:

Asc
$$\mid$$
= AG (¬open \Rightarrow EX open)

II P

Precise definition of CTL

- Syntactical restrictions:
 - Each temporal operator X, F, G, U have to be on immediate scope of a A or E, the combinations are:
 - AX,AF, AG, AU, EX, EF, EG, EU
- Syntax: atomic propositions are CTL formulas
 - if f and g are CTL formulas, then
 ¬f, f ∧ g, AX f, EX f, A(fUg), E(fUg) are also CTL formulas
- Extensions :
 - $f \lor g = \neg(\neg f \land \neg g)$
 - AF g = A(true U g) EF g = E(true U g)
 - AG f = \neg E(true U \neg f) EG f = \neg A(true U \neg f)

||祝夏選

Semantic of CTL

- s = f (f atomic) iff $f \in L(s)$
- s |= ¬f
- **iff** s |≠ f
- \blacksquare s |= f \land g

iff s = f and s = g

■ s,0 |= AX f

iff for all s such that $s_0 = s,0$, s,1|= f

■ s,0 |= EX f

iff it exists a s such that $s_0 = s,0$ and s,1 = f

■ s,0 |= A (f U g)

- iff for all s s.t. s_0 = s,0, it exists i≥0 s.t. s,i |= g and
- for all j < i, s, j |= f
- s,0 |= E (f U g)

iff

it exists a s s.t. $s_0 = s,0$ and

it exists i≥0 s.t. s,i |= g and

for all j < i, s, j | = f

Cons and pro of CTL

Model checking of linear complexity

Ø difficulties or unwillingness to express some kinds of properties (but they are advanced techniques resolving that issue!)

Other temporal logics:

CTL*, PLTL (PSPACE complet), FCTL (*Fairness*), TCTL (*Timers*), Logics with *past:* no model-checkers.

Exercises

■ See the PDF

