INFORMATION PROCESSING 74 - NORTH-HOLLAND PUBLISHING COMPANY (1974)

PREDICATE LOGIC AS PROGRAMMING LANGUAGE*

Robert KOWALSKI

University of Edinburgh, Department of Computational Logic
Edinburgh, Scotland

The interpretation of predicate logic as a programming language is based upon the interpretation of

implications

B if A; and ... and An

as procedure declarations, where B is the prccedure name and Ay,...,A, is the set of procedure calls A
constituting the procedure body. An axiomatisation of a problem domain is a program for solving

problems in that domain.

Individual problems are posed as theorems to be proved.

Proofs are

computations generated by the theorem-prover which executes the program incorporated in the axioms.
Our thesis is that predicate logic is a useful and practical, high-level, non-deterministic programming

language with sound theoretical foundations.

1. INTRODUCTION

The purpose of programming languages is to enable the
communication from man to machine of problems and
their general means of solution.

The first programming languages were machine langu-
ages.. To communicate, the programmer had to learn
the psychology of the machine and to express his
problems in machine-oriented terms. Higher-level
languages developed from machine languages through
the provision of facilities for the expression of
problems in terms closer to their original
conceptualisation.

Concerned with the other end of the man-to-machine
communication problem, predicate logic derives from
efforts to formalise the properties of rational
human thought. Until recently, it was studied with
little interest in its potential as a language for
man-machine communication. This potential has been
realised by recent discoveries in computational logic
which have made possible the interpretation of
sentences in predicate logic as programs, of deri-
vations as computations and of proof procedures as
feasible executors of predicate logic programs.

As a programming language, predicate logic is the
only language which is entirely user-—oriented. It
differs from existing high-level languages in that it
possesses no features which are meaningful only in
machine-level terms. It differs from functional
languages like LISP, based on the A-calculus, in that
it derives from the normative study of human logic,
rather than from investigations into the mathe-
matical logic of functions.

This paper deals only in a preliminary way with some
of the issues raised by the consideration of predi-
cate logic as a programming language. The semantics
of predicate logic as a programming language is
investigated in another paper with Maarten van Emden
{5}. A more comprehensive investigation of the use
of predicate logic for the representation of knowledge
is in preparation. Hayes {8 } and Sandewall {23}
have also concerned themselves with topics related to
the programming language interpretation of predicate
logic. An earlier investigation with similar
objectives was carried out by Cordell Green {7 }.

2. SYNTAX
All questions concerning logical implication in first

order logic can be replaced by questions concerning
unsatisfiability of sentences in clausal form.

*This research was sponsored by a grant from the
Science Research Council.

Such sentences have an especially simple syntax and
lack none of the expressive power of the full predicate

calculus. A sentence in clausal form is a set of
clauses. A clause is a pair of sets of atomic

formulas, written
Bl,...,Bm"' Al,...,An

An atomic formula has the form P(t seeesty) where P is
a k-ary predicate symbol and the t; are terms. A
term is either a variable x,y,z,... or an expression
f(tl,...,tk),‘where f is a k-ary function symbol and
the t; are terms. The sets of all predicate symbols,
function symbols and variables are any three sets of
mutually disjoint symbols. Constants are O-ary
function symbols.

3. SEMANTICS

The semantics of sentences in clausal form is as
simple as their syntax. Interpret a set of clauses
{C;,...,Cn} as a conjunction,

C; and C; and ... and Ch -
Interpret a clause By,..yBy < Ar,...,A,, containing
variables X1,++.,Xg @S a universally quantified
implication,

for all X1s..45Xy, By or ... or By

is implied by A; and ... and Ag.
The special cases where m = 0 or n = 0 deserve
special readings.
If n = 0, read
for all Xlyeeesr Xy, By or ... or By .
Ifm=0

for no X15...,%X, Ay and ... and Ap.

If bothm = 0 and n = 0, write the null clause,

O

interpreted as denoting falsity (or contradiction).

Methods for transforming arbitrary first-order
sentences into clausal form are described in Nilsson's
book {19}. It is our thesis, however, that clausal
form defines a natural and useful language in its own
right, that thoughts can conveniently be expressed
directly in clausal form, and that literal trans-
lation from another language, such as full predicate
logic, often distorts the original thought.

4. EXAMPLE: A PROGRAM FOR COMPUTING FACTORIAL

(F1) Fact(0,s(0)) «
(F2) Fact(s(x),u) + Fact(x,v),Times(s(x),v,u)

Regard the terms O, s(0), s(s(0)),...as the numerals
0,1,2,... . Read Fact(x,y) as stating that the

570 Logic and Data Bases

factorial of x is y and Times(x,y,z) as stating that
X times y is z. Read s(x) as referring to the
Successor of x. Given a program (or set of clauses)
for computing the Times relation, (F1) and (F2)
constitute a program for computing the factorial
relation. To compute the factorial of the number 2,
we add to the program the clause

(F3) « Fact(s(s0)),x)

which states that no x is the factorial of s(s(0)).
This contradicts (F1) and (F2) which logically imply
that the factorial of 2 is 2. There exist proof
procedures which detect the contradiction by finding
the counter-instance s(s(0)) of x which is the
factorial of s(s(0)). These proof procedures
compute the factorial of 2 without deriving any
logical consequences of (F1)-(F4) which do not belong
to the computation.

5. EXAMPLE: A PROGRAM FOR APPENDING LIST STRUCTURES.

(A1) Append(nil,z,z)+
(A2) Append(cons(x,y),z,cons(x,u))*'Append(y,z,u)

Interpret a term such as cons (x,cons (y,cons(z,nil)))
as a list [x,y,z}, as is dome in such list processing
languages as LISP. The constant term nil represents
the empty list. Read Append(x,y,z) as stating that
z results from appending the list y to the list x.
The first clause asserts that the result of appending
any list z to the empty list nil is just z itself.
The second clause asserts that the result of appending
z to the non-empty list cons(x,y) is cons(x,u) where
u is the result of apvending z to y. To append the
list [c] to the list [a,b], we add to the program

the clause

(A3)4—Append(cons(a,cons(b,nil»,cons(c,nil),x)

which states that no list x results from appending
[c} to [a,b}. This statement contradicts (Al) and
(A2) which logically imply that [a,b,c] results from
appending [c] to [a,b ' Any correct and complete
proof-procedure will prove the unsatisfiability of
the set of clauses [(Al),(AZ),(AB)]. Some proof-
procedures will do so by constructing the counter-
instance cons(a,cons(b,cons(c,nil)) of x, without
deriving logical consequences of (A1)-(A3) which do
not play an essential rdle in the construction.

6. HORN CLAUSES

The preceding two examples used only the Horn clause
subset of predicate logic. Robert Hill has shown
that, in general, Horn clauses are adequate for
defining all relations computable over the domains of
Herbrand universes. A Horn clause is a clause

B],...,Bm* Al,...,An

containing at most one disjunct in the conclusion,
i.e. m< 1.. 1In order to convert existing programs
into Horn clause programs (or, better, to reformulate
them) it is useful to bear in mind the procedural
intergretation of Horn clauses. There are four
kinds of Horn clauses.

(1) B*-A;,...,An (when neither n=0 nor m=0) is
interpreted as a Procedure declaration. The
conclusion B is interpreted as the procedure name.
The antecedent {AI,...,An} is interpreted as the

procedure body. It consists of a set of
procedure calls Aj.

(2) B+« (when n=0) is interpreted as an assertion of
fact. It can be regarded as a special kind of
procedure which has an empty body.

(3) +~A1,...,An (when m=0) is interpreted as a goal
statement which asserts the goal of successfully
executing all of the procedure calls A;. A goal
statement can be regarded as procedure which has
no name.

(4) E] (when n=0 and m=0), the null clause is inter-
preted as a halt statement. It can be regarded
as a satisfied goal statement, i.e. as a nameless

procedure with an empty body.

In the rest of this paper we will generally use the
term procedure in the wide sense which includes
assertions, goal statements and the halt statement as
special cases.

7. PROCEDURE INVOCATION

Useful inference systems for demonstrating the
unsatisfiability of sentences in clausal form can be
formulated without logical axioms and with just a
single inference rule called resolution {21}. 1In the
procedural interpretation, resolution is interpreted
as procedure invocation. For example, from the goal
Statement

+ Fact(s(s(0)),x)

and from the procedure

Fact(s(x),u)*-Fact(x,v),Times(s(x),v,u)
resolution derives the new goal statement

+ Fact(s(0),v),Times (s (s(0)),v,x).
More generally, given a goal statement

“ AL A LALA, ok

+1°°
and a procedure

B« By,...,B_

whose name B matches the selected procedure call A.
(in the sense that some most general substitution 8
of terms for variables makes A; and B identical,
resolution derives the new goal statement

"(Al, ce ,Ai_l,Bl, e ’Bm’Ai+1’ cee ,An) 6.

Notice that treating variables as universally quanti-
fied within the clause in which they occur means that
all variable occurrences are interpreted as local to
the procedure in which they occur.

Procedure invocation, in the form of resolution, can
also be used to derive new assertions from old
assertions using procedures as antecedent theorems in
PLANNER { 9}. More generally, procedure invocation
can be applied to derive new procedures from old
procedures. In its general form, given a selected
procedure call A; in a procedure

A< A, ..,A LALA A

i+1’° "%
and given a procedure

B« By,...,B

B

whose name matches (with substitution 0) the selected

procedure call, resolution derives the new procedure
(A < A;,...,Ai_l,Bl,...,Bm,Ai+1,...,An) 6.

In this paper we concern ourselves primarily with the

use of resolution to derive new goal statements from

old ones.

8. COMPUTATION

The standard notion of computation, applied to Horn
clause programs, concerns the repeated use of procedure
invocation in order to derive new goal statements from
old ones with the ultimate objective of deriving the
halt statement. More precisely, given a set S of
Horn clauses and an initial goal statement C, €S, a

computation is a sequence of goal statements Cy,...,C

. - . . n
such that Ci+ is derived by procedure invocation from
Ci using a procedure in S whose name matches some
selected procedure call in C;. A computation is

successful if it ends with the halt statement, i.e.

if ¢, = O A computation terminates without success
if the selected procedure call in the end goal state-
ment Cn matches the name of no procedure in S.

Fig. 1 illustrates the only successful computation
determined by the program (F1),(F2), activated by the
initial goal statement (F3), and employing the crit-
erion of selecting procedure calls of the form Fact
(s,t) inpreference to calls of the form Times(s',t',u').

R. Kowalski, Predicate logic as programming language 571

+Fact(s(s(0)),x)
’ (F2) I

+Fact(s(0),v)
Times (s (s (0)),v,x)

o+« Fact(0,v"),

Times (s(0),v',v),

Times (s(s(0)),v,x)

(F1) v':= s(0)

+ Times (s (0),s(0),v),
Times (s (s (0)),v,x)

(F2)

Times (s(0),s(0),s(0)) « vi= s(0)
+Times (s (s(0),s(0),x)
Times (s(s(0)),s(0),s(s(0)) < x:= s(s(0))

O

Fig. 1. A computation of the factorial of 2. In each
goal statement, the selected procedure call is under-
lined. The arc, connecting Cs with Ci4+1 is labelled
by the procedure used to derive Ci+1 from C;. The
same arc is labelled by the assignment of terms to
variables which”is that part of the matching substi-
tution which-can be interpreted as passing output from
the procedure name to the procedure call.

In the logic interpretation, computations are reso-
lution derivations. The end goal statement of a
computation is a logical consequence of the original
set of sentences S. In particular, if the computation
is successful, then it is a refutation of S, i.e. a
demonstration of the unsatisfiability of S. Among
existing theorem-proving systems, Loveland's model
elimination {14}, Reiter's ordered resolution {20} and
our SL-resolution {10} are general purpose systems
which, given a set of Horn clauses and an initial goal
statement, admit the generation of no derivationwhich
cannot be interpreted as a computation in the sense
defined above. Kuehner's system {12} is special-
purpose in that it is designed to deal only with sets
of Horn clauses. However, his system has a bi-
directional facility which can supplement the capa-
bility for generating new goal statements from old
goal statements with a complimentary capability for
generating new assertions from old ones. Our
connection graph system {11} is a general purpose
system which also provides bi-directional capabilities
as well as providing facilities for deriving new
procedures from old ones, as in macro-processing.

Except for the connection graph system whose complete-
ness has not yet been demonstrated, all of these
systems are complete and correct in the sense that a
set of Horn clauses S is unsatisfiable if and only if
the inference system admits a refutation of S. All
of these systems avoid redundancy by selecting, for
the application of procedure invocation, only a single
procedure call in every goal statement. Other systems
{14,15} which allow only the generation of new goal
statements from old ones differ from these by admitting
all the n! redundant sequences possible for selecting
in turn n procedure calls from a goal statement

« Al,...,An.

In the sequel, we refer to proof procedures which
derive new goal statements from old ones, using a
selection criterion to avoid redundancy, as top-down
procedures, to distinguish them from bottom-up
procedures which derive new assertions from old
assertions.

9. NON-DETERMINISM

Predicate logic is an essentially non-deterministic
programming language. Non-determinism is due to the
fact that a given program and activating goal state-
ment may admit more than a single legitimate compu-
tation. Consider the following program for selecting
an element from a list

(M1) Member (x,cons (x,y)) +
(M2) Member (z,cons (x,y)) « Member (z,y)

Fig. 2 illustrates the space of all computations
determined by the program (M1), (M2) activated by the
goal statement

(M3) « Member (x,cons (a,cons (b,nil))
which asserts the goal of finding an x which is a
member of the list [a,b].

+ Member (x,cons(a,cons (b,nil))

[]o <+ Member(x,nil)

Fig. 2. The space of all computations determined by
(M1)-(M3). The space contains two successful compu-

tations and one unsuccessfully terminating computation.

The non-determinism of predicate logic programs does
not arise in the manner foreseen by McCarthy { 16} and
Floyd {6}, through the addition to a deterministic
language of an explicit amb or choice primitive.
Predicate logic is essentially non-deterministic since
it provides for the computation of relations, treating
functions as a special kind of relation. As in PLANNER
non-determinism is implemented by means of pattern—
directed procedure invocation. It is the possibility
that more than one procedure can have a name which
matches a selected procedure call which gives rise to
non~determinism.

The implementation of procedure call by pattern-
matching has other consequences besides providing a
tool for the implementation of non-determinism. In
particular, the use of pattern-matching makes it
unnecessary to use selector functions for accessing
the components of data structures. Thus, for example,
when using the cons function symbol for list processing
it is unnecessary to use car and cdr functions for
accessing the first and second components of pairs
cons(s,t). A related use of pattern-matching is for
the implementation of conditional tests on the form
of data structures. This is illustrated, for
instance, in the factorial example where pattern-
matching implements a conditional test on the
structure of the first argument t of a procedure call
Fact(t,u). If t is O then the assertion (F1)
responds. If t is s(x), for some x, then the
recursive procedure (F2) responds. If t is a
variable, then both (F1) and (F2) respond non-
determinist%cally.

Predicate logic programs exhibit a second kind of non-
determinism due to the fact that procedure bodies
consist of a set of procedure calls which can be
executed in any sequence. This kind of non-
determinism is investigated in the section after next.

10. INPUT-OUTPUT

The generation and application, during procedure
invocation, of the substitution 6 which matches the
selected procedure call Aj in a goal statement

CALL LA LALAL LA
with the name B of a procedure

B « By;,...,B

has to do with the transfer of input and output.
Instantiation of variables occurring in the procedure
name B by terms occurring in the procedure call A.
corresponds to passing input from A; to the body
By,...,By of the procedure through the procedure name.
The instantiated procedure body (B1,...,Bp)8 is the
result of the input transfer. Instantiation of
variables.occurring in the procedure call Aj by terms
occurring in the procedure name B corresponds to
passing output (or, rather, partial output) back to
the procedure call Aj which distributes it to the
remaining procedure calls AI""’Ai-l’Ai+l""’

A .
. . . n
The instantiated residue (A;,...,Ai_l,Ai+1,..., n)e

m

572 Logic and Data Bases

of the original goal statement is the result of this
output transfer.

Fig. 3 illustrates the only successful computation
determined by the program (Al),(A2) activated by the
initial goal statement (A3). The assignments
labelling the arc which connects consecutive goal
statements C; and C, are the output components of
the substitution generated in deriving Cj4+] from Cj.
Notice how the final output x:= cons(a,cons(b,cons
(c,nil))) is the composition of the intermediate
partial outputs x:= comns(a,x'), x':= cons(b,x"),
x'":= cons(c,nil). Computation of output from input
is computation by successive approximation. In this
example the successive approximations to the final
output are x:= cons(a,x'), x:= cons(a,cons(b,x")),
x:= cons(a,cons(b,cons(c,nil))). Notice how the
predicate logic notion of procedure differs from the
usual notion of a procedure which initially accepts
input and eventually returns output only upon
successful termination.

s Append (cons (a,cons (b,nil)), cons(c,nil),x)

(A2) x:= cons(a,x')
« Append(cons(b,nil),cons(c,nil),x")
(A2) x':= cons(b,x")

« Append(nil,cons(c,nil),x")

(Al) x":= cons(c,nil)

8

Fig. 3. Computation of output from input by
successive approximation.

In fact, predicate logic programs do not explicitly
distinguish between input and output. For this
reason the rdle of input and output arguments of a
procedure name can change from one procedure call to
.another. For example, in the goal statement

(F4) « Fact(x,s(0))

the second argument of Fact behaves as an input
position whereas the first argument behaves as output
position. In the goal statement (F3) the input and
output positions are reversed. Fig. 4 illustrates
the space of all computations determined by the
program (F1),(F2) activated by (F4). Notice how
changing the input-output positions of a procedure
can turn a deterministic program which computes a
function into a non-deterministic program which
computes the function's inverse.

+ Fact(x,s(0))

+Fact(x',v),Times(s(x'),v,s(0))

Times(s(0),5(0),5(0) «| x'i= 0, vi= 5(0)

+Fact (0,s(0))

Fig. 4. The transformation of a 'deterministic'
program into a non-deterministic one by changing the
r8le of input and output arguments.

The ability to exploit the lack of explicit disti-
nction between input and output is available also in
the assertional programming languages ABSYS and ABSET
{ 4}, which in other ways resemble predicate logic as
a programming language.

11. SEQUENCING OF PROCEDURE CALLS

A procedure body consists of a set of procedure calls.

Although a top-down proof procedure selects and
executes procedure calls in some sequence, the
specification of this sequence is not determined by

the predicate logic program itself. The sequencing
of procedure calls has no syntactic representation.
Neither does it have a semantics, in the sense that
sequencing does not affect the input-—output behaviour
of programs. This does not mean that sequencing is
not important. Intelligent sequencing of procedure
calls is a necessity for practical programming.

Consider the following program for sorting lists.
This same program was also investigated for a similar
purpose in { 11},

(S1) Sort(x,y)* Perm(x,y),Ord(y)

(S2) Perm(nil,nil) «

(S3) Perm(z,cons(x,y)) « Perm(z',y),Del(x,z,2")
(84) Del(x,cons(x,y),y)*

(S5) Del(x,cons(y,z),cons(y,z')) « Del(x,z,z")

(S6) Ord(nil) «

(S7) Ord(cons(x,nil)) +«

(S8) Ord(cons(x,cons(y,z)) «LE(x,y),0rd(cons (y,z))
(S9) LE(1,2) + (S10) LE(1,3) « -
(S11) LE(2,3)« (S12) LE(x,x) +

Here read Sort(x,y) as stating that y is a sorted
version of the list x; Perm(x,y), that y is a
permutation of x; Ord(y), that y is ordered;
Del(x,y,z), that z results by deleting one occurrence
of x from y; and LE(x,y), that x is less than or
equal to y.

(S1) states that y is a sorted version of x if y is a
permutation of x and y is ordered. If (S1) is inter-
preted by a top-down proof procedure which selects

and completes the execution of the procedure call
Perm(x,y) before activating Ord(y), and if in
addition the first arguments of Sort, Perm and Ord

are considered as input positions, then (S1) can be
read as stating that

(S1.1) in order to sort the list x, first
generate a permutation y of x, then test
that y is ordered; 1if it is, then y is a
sorted version of x.

The meaning of the program does not change, however,
if it is interpreted by a top-down proof procedure
which selects and completes the execution of Ord(y)
before selecting Perm(x,y). In such a case, still
reading x as input variable, (S1) can be read as
stating that

(S1.2) in order to sort the list x, first
generate an ordered list y, then test that
y is a permutation of x; 1if so then y is
a sorted version of x.

Clearly the difference in efficiency can be enormous,
but the meaning, as determined by the input-output
relation Sort(x,y), computed by the program, is the
same. It is in this sense that the sequencing of
procedure calls can be said to have no semantics.

The use of parallel processes and co-routines is a
particular way of sequencing procedure calls. The
possibility of independent parallel processing arises
when, for example, different procedure calls in the
same body share no variables. In such a case, the
independent procedure calls can be activated
simultaneously and, given a single processor, their
execution sequences can be interleaved arbitrarily.
On the other hand, the procedure (S1) in the sorting
example illustrates a situation where two procedure
calls can be executed semi-independently as co=
routines. That the use of co-routines is possible
in this example is due, in the first place, to the
fact that partial output from the procedure call
Perm(x,y) is transmitted to the latent call Ord(y)
and secondly that such partially specified input can
initiate computation as efficiently as totally
specified input. Fig. 5 illustrates anunsuccessfully
terminating computation determined by selecting for
activation an instance of the procedure call Ord(y)
before completing the execution of Perm(x,y). If
(S1) is interpreted by a top-down proof procedure
which selects the procedure call Perm(x,y) before

R. Kowalski, Predicate logic as programming language 573

Ord(y) but interrupts the execution of Perm(x,y)
activating Ord(y) in order to monitor the partial
output of Perm(x,y), then reading x as input variable,
(S1) states that

(S1.3) in order to sort the list X, beginning
with the empty sublist nil, first generate
an initial sublist of a permutation of X,
then test that the sublist is ordered. If
it is not ordered, generate another sublist
if there is any which has not been generated.
If it is ordered but is not a complete
permutation, then add another element to the
sublist and test that the new sublist is
ordered. If it is ordered and is a
complete permutation of x, then it is the
desired sorted version of x.

The equivalence of (81.1),(S1.2) and (S1.3) can be
demonstrated by noting that they differ only with
respect to the different sequencing of procedure calls
which they impose on the same program (S1).

« sore(f2,1,3),u)
(s1)

f “ Perm([2,1,3],u),0rd(u)
(S83) u:= cons(x,y)

———2 T

x:i= 2, z':= [1,3]
Perm([1,3],y),0rd(cons (2,y))
(83) yi= (cons(x',y")

> < Perm(z2",y'),Del (x',[1,3],2"),
Ord(cons(2,cons(x',y)

(86) | x':=1, 2":=[3]
b« Perm(fB],y'),Ord(cons(z,cons(l,y'D)

f « Perm(z',y),pel(x,[Z,l,B],z'),Ord(cons(x,y»
(84)
’) -

(s8)

6 « Perm([3},y'),LE(2,1),Ord(cons(l,y'»

Fig. 5. An unsucessfully terminating computation
determined by the program (81)-(S12) activated by the
goal of sorting the list [2,1,3] incorporated in the
goal statement *-Sort([2,1,3],u). Here the notation
[2,1,3] is an abbreviation for cons(2,cons(1,cons
(3,nil)). The computation terminates because no
procedure name matches the call LE(2,1).

It is interesting that a sequencing of procedure calls
which may be useful for one specification of input and
output positions may be unusable for a different
specification. Fig. 4 illustrates how a different
sequencing of procedure calls is appropriate in (F2)
when the second argument of Fact(x,y) is used for
input rather than the first. For another example,
suppose that the predicate symbols P and Q denote
relations which are one-one functions. Consider the
procedure declaration

R(x,2) « P(x,y),Q(y,z).

Given a procedure call of the form R(t,z), where t
contains no variables, the first argument position of
the call acts as the input position and the second
argument acts as output position. The selection of
P(t,y) in preference to Q(y,z) in the instantiated
procedure body leads to a deterministic computation.
The unique output y:= t' of the procedure call P(t,y)
is obtained and passed as input to the latent
procedure call Q(y,z). The call Q(t',z) then
succeeds with unique output z:= t", The alternative
selection of Q(y,z) in preference to P(t,y) determines
the much less efficient, non-deterministic algorithm
which first generates pairs of output (t',t") for the
procedure call Q(y,z) and then checks that P(t,t").
However, if the original procedure call has the form
R(x,s), where s contains no variables, the first
argument acts as output position and the second acts
as input position. Efficient sequencing of procedure
calls in the instantiated body +P(x,y),Q(y,s) requires
the activation of Q(y,s) in preference to P(x,y).

37-IFIP

The viability of predicate logic as a programming
language depends upon the eventual provision of an
auxiliary control language which would provide a
programmer with the ability to specify appropriate
sequencing instructions to the interpreting proof
procedure. Such a control language ought to be
incapable of affecting the meaning of programs,
influencing only their efficiency. Some day it may
be possible to devise autonomous proof procedures
which are able to determine for themselves efficient
ways of sequencing procedure calls and of sequencing
the application of procedures when more than ome
responds to a selected procedure call. In the
meanwhile, it will not be possible to program
effectively without the aid of an auxiliary control
language. The importance and utility of such a
control language has been argued by Pat Rayes {8}.

ACKNOWLEDGMENT

That sets of axioms are like programs, in the way that
different formulations can have equivalent meanings
but very different influences on efficiency, is a
point of view which runs counter to the prevailing’
moods in symbolic logic and in artificial intelligence.
In particular, the attacks by Anderson and Hayes {1}
and by Minsky and Papert {17} against the utility of
the theorem-proving paradigm depend upon the assum-
ption that axioms convey meaning but not pragmatic
information. Our contrary point of view was re-
inforced by joint research with Alain Colmerauer
(reported in {11}) on axiomatisations of grammars,
regarded as programs for syntactic analysis. Further
reinforcement was provided by the work of Philippe
Roussel { 22}, who showed that many uses of the
equality relation could be replaced by the more
efficiently mechanisable identity relation. Roussel's
experience encouraged us to abandon the equality
relation altogether, replacing equalities, not
interpretable as identities, by implications, as in
the procedural interpretation of Horn clauses. The
work of Colmerauer and Roussel has since resulted in
the elaboration, at the University of Aix-Marseille,
of the PROLOG. language {3} based on predicate logic.
The work of Hayes, arguing that control structures are
needed to provide pragmatic information which cannot
usefully be expressed by axioms, has now been reported

{8}.

Another common impression about theorem-proving is
that deduction is completely consequence-oriented and
therefore unsuitable for goal-oriented problem-solving.
Our contrary attitude was substantiated by our studies
of Loveland's model elimination { 13} and by our inter-
pretation of model elimination as a goal-oriented
resolution system { 10}. Later, the discovery by Bob
Boyer and J Moore {2} that certain ways of efficiently
implementing theorem-provers resemble ways of imple-~
menting programming language interpreters, helped to
suggest that theorem-provers can be regarded as inter-
preters for programs written in predicate logic. The
work of Boyer and Moore led to the implementation of
BAROQUE { 18}, an experimental -language with a LISP-
like interpreter written in predicate logic and inter-
preted in turn by a resolution theorem-proving program
written in POP-2,

The initiation of the work reported in this paper owes
much to the profitable interactions we have had with
Hayes, Colmerauer, Roussel, Boyer and Moore. In
particular, the general thesis that computation and
deduction are very nearly the same is due to Pat Hayes.
This paper would not have been written, however,
without the encouragement and enthusiasm for predicate
logic programming of my colleagues David Warren and
Maarten van Emden. We owe a special debt to

Michael Gordon for his continuing interest and helpful
criticsms, and to Aaron Sloman for his detailed and
useful comments on an earlier draft of this paper.

This research was initiated during a visit to the
University of Aix-Marseille, supported by C.N.R.S.
It was continued with the aid of a Science Research
Council grant to Bernard Meltzer.

574

{1}

{2}

{3}

{4}

{5}

{6}
{7}

{8}

{9}
{10}
{11}
{12}
{13}
{14}
{15}
{16}
{17}
{18}

- (19}
‘ { 20}

{21}
1 {22}

{23}

Logic and Data Bases

REFERENCES

D.B. Anderson and P.J. Hayes, The logician's
folly, D.C.L. Memo No 54, University of
Edinburgh, 1972,

R.S. Boyer and J S. Moore, The sharing of
structure in theorem—-proving programs, Machine
Intelligence 7, Edinburgh University Press,
Edinburgh, 1972, 101-116.

A. Colmerauer, H. Kanoui, R. Pasero and P.Roussel,
Un systéme de communication homme-machine en
frangais, Rapport preliminaire, Groupe de
Researche en Intelligence Artificielle, Université
d'Aix-Marseille, Luminy, 1972.

E.W. Elcock, J.M. Foster,P.M.D. Gray,J.J.McGregor
and A.M. Murray, ABSET, a programming language
based on sets: motivation and examples, Machine
Intelligence 6, Edinburgh University Press,
Edinburgh, 1971, 467-492.

M. van Emden and R. Kowalski, The semantics of
predicate logic as programming language, D.C.L.
Memo No 73, University of Edinburgh, 1974.

R.W. Floyd, Non-deterministic algorithms, J.A.C.M.
vol. 14, No. &, 1967, 636-644. .

C. Green, Application of theorem proving to
problem solving, Proceedings of IJCAI, Washington
D.C., 1969, 219-239.

P.J. Hayes, Computation and deduction, Proceedings
MFCS Conf., Czechoslovakian Academy of Sciences,
1973.

C. Hewitt, PLANNER: a language for proving theorems
in robots, Proceedings of IJCAI, Washington D.C.,
1969, 295-301.

R. Kowalski and D. Kuehner, Linear resolutionwith
selection function, Artificial Intelligence 2,
1971, 227-260.

R. Kowalski, A proof procedure using connection
graphs, D.C.L. Memo No. 74, University of
Edinburgh, 1973.

D. Kuehner, Some special purpose resolution
systems, Machine Intelligence 7, Edinburgh
University Press, Edinburgh, 1972, 117-128.

D.W. Loveland, A simplified format for the model-
elimination theorem-proving procedure, J.A.C.M.
vol. 16, 1969, 349-363.

D. Loveland, A linear format for resolutionm,
Proceedings IRIA Symposium on Automatic
Demonstration, Springer-Verlag, 1970, 147-162.

D. Luckham, Refinement theorems in resolution
theory, Proceedings IRIA Symposium on Automatic
Demonstration, Springer—Verlag, 1970, 162-190.

J. McCarthy, A basis for a mathematical theory

of computation, Computer Programming and Formal
Systems, North Holland, Amsterdam, 1963.

M. Minsky and S. Papert, Progress Report,
Artificial Intelligence memo no. 252, M.I.T.,
January 1972.

J S. Moore, Computational logic: structure
sharing and proof of program properties, Part I,
D.C.L. Memo No, 67, University of Edinburgh, 1973,
N. Nilsson, Problem solving methods in artificial
intelligence, McGraw-Hill, New York, 1971.

R. Reiter, Two results on ordering for resolution
with merging and linear format, J.A.C.M. vol 15,
no. 4, 1971, 630-646,

J.A. Robinson, A machine-oriented logic based on
the resolution principle, J.A.C.M., vol 12, 1965,
23-41.

P. Roussel, D&finition et traitement de 1'égalite
formelle en demonstration automatique, Thése,
U.E.R. de Luminy, 1972.

E. Sandewall, Conversion of predicate-calculus
axioms, viewed as non-deterministic programs, to
corresponding deterministic programs,

Proceedings of IJCAI-3, August, 1973, 230-234.,

