Capacity Requirements in Networks of Quantum Repeaters and Terminals

Michel Barbeau1 Joaquin Garcia-Alfaro2
Evangelos Kranakis1

1Carleton University
2Institute Polytechnique de Paris

October 13, 2020
Outline of the work

- Topic: Path congestion avoidance in networks of quantum repeaters and terminals
- Assumption: Complete paths between terminals
- What is the required quantum memory size in repeaters?
- Contributions:
 - Lower and upper bounds for the required qubit memory size of repeaters for general graphs and two-dimensional grid network topologies
 - Congestion avoidance algorithm: Layer-peeling path establishment
Repeater r capacity

$C_P(r)$ is the number of supported paths
Simple error model: single qubit errors in Bell-EPR pairs
Achieve fidelity with purification
Adjacent nodes use direct communications to establish entanglement
Remote nodes use entanglement swapping and teleportation
Quantum memory size of a repeater is equal to the sum of the lengths of the paths going through it (Lemma 7)
For each simulation, we compute the following metrics

- **Congestion**: \# of paths passing through most visited repeater

- **Entanglement rate**: Following existing work (cf. [24,25,26])

\[
\mathcal{T}(n) = \begin{cases}
1/R(n), & \text{if } \mathcal{X}_{ch} \geq \tau(n) - (\mathcal{X}_s - \tau(1)) \\
0, & \text{else}
\end{cases}
\]

(precise calculation is summarized in the paper)
General Graphs

- Minimum required quantum memory (Corollary 9)

\[M_P(r) \geq 2 \left\lceil \frac{1}{|R|} \left(\frac{|T|}{2}\right) \right\rceil \text{ qubits} \]

- Maximum required quantum memory (Lemma 10)

\[M_P(r) \leq \delta \left(\frac{|T|}{2}\right) \text{ qubits} \]

where \(\delta \) is the diameter of the graph.
In general, the quantum memory required by a repeater r (Corollary 16)

$$M(r) \in \Omega(k^2) \text{ qubits.}$$
Simulation Results

- Assumption 1: Path establishment for all terminals
 - End-to-end paths from every terminal to any other terminal:

- Assumption 2: Random arrangement of repeaters using Bernoulli bond percolation
 - Probability p of ensuring repeater connectivity greater than 0.5

- NetworkX library\(^1\) to conduct Monte Carlo simulations\(^2\)
- A (step-by-step) construction example follows

\(^1\) Python Library available online at: https://networkx.github.io
\(^2\) Code available online at: http://j.mp/QCECodeGitHub
Initial Parameters

- \(k = 20 \) #k quadratic (2D) lattice
- \(p = 1 \) #Bernoulli probability for bond percolation
- \(q = 1 \) #Bernoulli probability for terminal arrival

- DrawGrid=True
- ShowLabels=False
- AdditionalRing=True
- BondPercolation=False
- ComputePaths=False
- PathSearchAlgorithm=1 #1=shortestPaths 2=peelingPaths
- CSVFormat=False

Output:
The graph contains 324 repeaters and 72 terminals [(k^2 nodes 0, 19, 380, and 399 removed, to avoid terminal adjacency)]
Initial Parameters

```
#k quadratic (2D) lattice
k = 20

#bernoulli probability for bond percolation
p = 0.55

#bernoulli probability for terminal arrival
q = 1
```

DrawGrid=True
ShowLabels=False
AdditionalRing=True
BondPercolation=True
ComputePaths=False
PathSearchAlgorithm=1 #1=shortestPaths 2=peelingPaths
CSVFormat=False

Output:
The graph contains 254 repeaters and 105 terminals.

Run 1
Initial Parameters

\[k = 20 \] #\(k \) quadratic (2D) lattice
\[p = 0.55 \] #bernoulli probability for bond percolation
\[q = 1 \] #bernoulli probability for terminal arrival

DrawGrid=True
ShowLabels=False
AdditionalRing=True
BondPercolation=True
ComputePaths=False
PathSearchAlgorithm=1 #1=shortestPaths 2=peelingPaths
CSVFormat=False

Run 2

Output:
The graph contains 266 repeaters and 108 terminals.
Initial Parameters

- $k = 10$ # Quadratic (2D) lattice
- $p = 0.65$ # Bernoulli probability for bond percolation
- $q = 1$ # Bernoulli probability for terminal arrival

- DrawGrid=True
- ShowLabels=True
- AdditionalRing=True
- BondPercolation=True
- ComputePaths=True
- PathSearchAlgorithm=1 # 1=shortestPaths 2=peelingPaths
- CSVFormat=False

Output:

The graph contains 56 repeaters {11, 12, 13, 14, 15, 16, 17, 18, 21, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 36, 37, 38, 41, 42, 43, 45, 46, 47, 48, 51, 52, 53, 54, 55, 57, 58, 61, 62, 63, 67, 68, 71, 72, 73, 74, 75, 77, 78, 81, 82, 83, 84, 85, 86, 87, 88} and 37 terminals {1, 2, 3, 4, 5, 6, 7, 8, 10, 19, 20, 29, 30, 39, 40, 49, 50, 59, 60, 69, 70, 79, 80, 89, 91, 92, 93, 94, 95, 96, 97, 98, 22, 35, 44, 64, 76}.

Paths:

- 1 -> 2 : [1, 11, 12, 2]
- 1 -> 3 : [1, 11, 21, 31, 32, 33, 34, 24, 14, 13, 3]

...
22 -> 35 : [22, 21, 31, 41, 42, 43, 53, 54, 55, 45, 35]
22 -> 44 : [22, 21, 31, 41, 42, 43, 44]
22 -> 64 : [22, 21, 31, 41, 51, 61, 62, 63, 64]
22 -> 76 : [22, 21, 31, 41, 51, 61, 62, 63, 73, 74, 75, 77, 78, 81, 82, 83, 84, 85, 86, 87, 88]
35 -> 44 : [35, 45, 55, 54, 53, 43, 44]
35 -> 64 : [35, 45, 55, 54, 53, 52, 51, 61, 62, 63, 64]
35 -> 76 : [35, 45, 55, 54, 53, 52, 51, 61, 62, 63, 73, 74, 75, 77, 78, 81, 82, 83, 84, 85, 86, 87]
44 -> 64 : [44, 43, 42, 41, 51, 61, 62, 63, 64]
44 -> 76 : [44, 43, 42, 41, 51, 61, 71, 72, 73, 74, 75, 77, 78, 81, 82, 83, 84, 85, 86, 87]
64 -> 76 : [64, 63, 73, 74, 75, 77, 78, 81, 82, 83, 84, 85, 86, 87]

Congestion = 288 (Repeater 31 appears in 288 paths, repeater 41 appears in 245 paths, repeater 51 appears in 223 paths, etc.)
Entanglement rate = 200
Congestion Results

Fig. 10. Congestion results using (a,c) shortest path and (b,d) peeling path strategies. Values of \(p \) and \(q \) are 0.95 in (a,b) and 0.65 in (c,d).

(a,c) shortest path and (b,d) peeling path strategies. Values of \(p \) and \(q \) are 0.95 in (a,b) and 0.65 in (c,d).
Entanglement Rate Results

Fig. 11. Entanglement rate results using (a,c) shortest path and (b,d) peeling path strategies. Values of p and q are 0.95 in (a,b) and 0.65 in (c,d). Values of p and q are 0.95 in (a,b) and 0.65 in (c,d).
Topic: Path congestion avoidance in networks of quantum repeaters and terminals

Assumption: Complete paths between terminals

Evaluation
 - shortest-path establishment vs. layer-peeling path establishment

Main results:
 - Both strategies provide an equivalent entanglement rate
 - Layer-peeling establishment considerably reduces congestion
 → Repeaters in the inner layers get less congested and would require a lower number of qubits, while providing a similar entanglement rate
References

