RFID Tags

- Radio frequency devices that transmit information (e.g., serial numbers) to compliant readers in a contactless manner
- Classified in the literature as:
 - Passive: transmission power is derived from reader
 - Active: energy comes from on-board battery
 - Semi-passive: battery powered chips, but transmission powered by reader
- Electronic Product Code (EPC) tags
 - Main kind of low-cost tags in use on today's RFID supply chain applications
 - Passive UHF RFID tags
 - EPCglobal inc: Main organization controlling EPC development

Sample representation of an EPC number

Security Problems

- Threats to and from front-end components (i.e., tags and readers)
- Privacy concerns during the receiving of information
 - Lack of authentication between readers & tags
 - Necessity of a fine grained access control for the interaction of principals

Threat Analysis Methodology

- Based on a methodology proposed by the European Telecommunications Standards Institute (ETSI)
 - Risk Factors: Likelihood of threat occurrence & Impact on user or system
 - Likelihood Assessment Factors: Motivation of attacker & Technical difficulty
 - Overall Risk Assessment: Critical, Major, Minor

EPC Inventory Protocol

- Lack of authentication between readers & tags
 - 16-bit random sequences (denoted as RN16) to acknowledge the process
- Any compatible reader can obtain the code
 - Illicit readers can impersonate legal readers

Rogue Scanning

- Powering the tag to obtain tag ID
 - The use of special hardware (e.g., highly sensitive receivers and high gain antennas) can ease the attack.

Motivation	Difficulty	Likelihood	Impact	Risk	
High	Solvable	Possible	High	Critical	

Eavesdropping Reader Channel

- Passive observation or recording of the communication
 - The distance at which an attacker can eavesdrop the signal of an EPC reader can be much longer than the operating environment of the tag.
 - Some data items (e.g., 16-bit random sequences) can be eavesdropped at long distances.

Motivation	Difficulty	Likelihood	Impact	Risk	
High	Solvable	Possible	High	Critical	

Cloning of Tags

• Using the codes eavesdropped or scanned, an attacker may successfully clone the tags

Motivation	Difficulty	Likelihood	Impact	Risk	
Moderate	Solvable	Possible	Medium	Major	

Location Tracking

- Adversaries can distinguish any given tag by just getting the EPC
- Correlating reader's position, adversary can trace location of bearers
- It can also provide useful data for fingerprinting and profiling

Motivation	Difficulty	Likelihood	Impact	Risk	
Moderate	Solvable	Possible	Medium	Major	

Tampering of Data (1/3)

- Gen2 tags are required to be writable
- Although this feature can be protected with a 32-bit password, bypassing the protection is solvable

Tampering of Data (2/3)

- Gen2 tags are required to be writable
- Although this feature can be protected with a 32-bit password, bypassing the protection is solvable

Tampering of Data (3/3)

- Gen2 tags are required to be writable
- Although this feature can be protected with a 32-bit password, bypassing the protection is solvable

Motivation	Difficulty	Likelihood	Impact	Risk	
Moderate	Solvable	Possible	High	Critical	

Denial of Service

• Tag data destruction or interference by attacks such as (1) attacks targeting writing or self-destruction routines and (2) use of jamming or strong electromagnetic pulses.

Motivation	Difficulty	Likelihood	Impact	Risk	
Moderate	Solvable	Possible	Medium	Major	

Evaluation of Threats (Summary)

Threats	Motivation	Difficulty	Likelihood	Impact	Risk
Eavesdropping, Rogue Scanning	High	Solvable	Possible	High	Critical
Cloning of Tags, Location Tracking	Moderate	Solvable	Possible	Medium	Major
Tampering of Data	Moderate	Solvable	Possible	High	Critical
Destruction of Data, Denial of Service	Moderate	Solvable	Possible	Medium	Major

How to deal with these threats?

- Shielding or jamming the signal
 - It may work on some other RFID applications, but not on EPC setups
- Third party blockers or guardians
 - Requires the management of new components
- Use of lightweight countermeasures, such as:
 - Message Authentication Codes
 - Lock-based Access Control Schemes
 - Random Pseudonyms
 - Threshold Cryptography
 - Physically Unclonable Functions

Message Authentication Codes

• Tags & readers share a secret that allows the verification of the integrity and authenticity of exchanged messages

Lock-based Access Control Schemes

• Simplified Scheme:

- Readers and tags share a common secret
- When a tag receives a proof ownership of the secret (e.g., a hash of it), it locks itself
 → when interrogated, it only answers with this pseudo ID
- Tag unlocks itself when it receives the secret

Random Pseudonyms

- Tags storing a pseudonym, or a list of pseudonyms, instead of the real object or tag identifier (i.e., EPC number)
- To handle the location tracking threat, pseudonyms must be generated at random and they must change frequently
- Authorized readers must know how to match the pseudonyms to the real tag identifiers

Threshold Cryptography

• Exploit the natural movement of tag populations on the supply chain to distribute secrets and enforce privacy

Physically Unclonable Functions (1/2)

• Originated from optical mechanisms for generating unique secrets in the form of physical variations

• E.g.:

Physically Unclonable Functions (2/2)

- Promising for the implementation of challenge-response protocols in low-cost EPC tags.
- Optical designs have been improved towards new schemes exploiting other physical random variations
 - Delays of wires and logic gates of integrated circuits
 - SRAM startup values as origin of randomness
- Can be used to handle the authentication threat, as well as the cloning and location tracking threats