Real-time Malicious Fast-flux Detection
Using DNS and Bot Related Features

Sergi Martinez-Bea
Artificial Intelligence Research
Institute, 08193 Bellaterra, Spain

Abstract—Fast-flux is a protection technique used by botnets
to protect their communication servers. We present a detection
method for the real-time discovery of fast-flux services. We
implemented our approach and conducted experiments that
verify the superiority of our approach to previous efforts.

Index Terms—Network Security, Botnets, Fast-Flux, Domain
Name System, Malware

I. INTRODUCTION

In the context of the botnets, fast-flux refers to the strategy
of hiding the C&C (Command and Control) servers. Such
servers are crucial for the life cycle of the botnet. The idea
is to place the servers behind proxy nodes using the DNS
(Domain Name System) protocol to map the hidden servers.
This way, botnet operators often increase the robustness of
their C&C services by deploying and enabling complete fast-
flux service networks. The mapping of DNS names to IP
addresses (e.g., via the A record of a DNS response) can
change very quickly over the time, thereby making the botnet
much more robust against countermeasures and failures of
individual proxy nodes. However, and for the very same
reason, the discovery of fast-flux services and their associated
resources is a valuable way to discover botnet activities during
the life cycle of a botnet.

The detection of fast-flux service networks is a hot research
topic. There is a great number of approaches for malicious
fast-flux detection, ranging from training classifiers, such as
[5], [6], [11], [9], [12], to collaborative systems, such as [13],
[14], [15]. To our knowledge, most relevant proposals in the
literature are machine learning based. A relevant approach
in this category is the work of McGrath ef al. presented in
[9]. The authors build a linear classifier grounded on Support
Vector Machines (SVM) [10], and define a minimum set of
features required to detect a fast-flux domain. Such features are
the number of IP addresses associated to a given domain, the
number of ASN (Autonomous System Numbers), the number
of different prefixes, and the number of different countries that
the associated IP addresses belong to. Hsu et al. presented in
[6] an enhanced SVM classifier, whose detection features are
completely different to those of McGrath et al. work. The new
classifier bases their features in the intrinsic characteristics that
bots have, such as the network delay, the request processing
delay, and the document fetching delay.

Sergio Castillo-Perez
Autonomous University of
Barcelona, 08193 Bellaterra, Spain

Joaquin Garcia-Alfaro
Telecom SudParis, CNRS
Samovar UMR 5157, Evry, France

In this paper, we extend these two above mentioned efforts,
and present a novel approach. We show that our solution
reduces the likelihood of erroneous detection, while providing
better results than those two previous research efforts.

Paper organization — Section II elaborates further our
motivation and provides the set of detection features. Section
IIT presents the experimental evaluation and results. Section
IV concludes the paper.

II. OUR DETECTION PROPOSAL

A fast-flux detector system must provide real-time deci-
sions. This way, it is possible to warn potential victims before
they connect to a malicious site. Most existing proposals in
the literature rely on the number of IP addresses by querying a
certain domain name, or by passively monitoring DNS queries,
for a certain period of time. Thus, the time required to detect
a fast flux domain of such strategies is counterproductive. At
the same time, an efficient fast-flux detector system should
minimize the number of erroneous detections (i.e., both false
positive and negative rates). Erroneous detections are often
caused by the similarities between illicit fast-flux network
systems and similar (legitimate) services such as Round Robin
DNS and Content Delivery Networks. Therefore, the goal of
our proposal is twofold: (i) to provide a real-time detection
strategy which does not require a long period of time for
the detection, and (ii) to prevent erroneous recognition of
legitimate DNS-based services that can be flagged as malicious
fast-flux domains by mistake.

We propose the construction of a novel linear SVM clas-
sifier that extends those of McGrath et al. and Hsu et al
presented, respectively, in [9], [6]. These two approaches based
their detection properties on the definition of certain fast-flux
features. The main drawback of the McGrath et al. classifier
is that it can be misled by botmasters, due to the nature of
its set of detection features. For instance, the botmaster can
assign less IP addresses to a domain, or use heuristics to
select only those bots geolocated in the same country [7].
This would lead the McGrath et al. classifier to a great rate
of false negatives. Contrarily, the set of features of the Hsu
et al. classifier are intrinsic to malicious fast-flux networks
and cannot be manipulated by the botmaster. Nevertheless,
it also presents an important drawback. It can be misled by
legitimate servers, e.g., Round Robin DNS servers or Content



Delivery Network servers, and end with a great number of
false positives.

Our proposal addresses these two aforementioned limita-
tions. First, it differentiates malicious fast-flux networks by
their own features. It does so in an automatic way by using
machine learning techniques to build a new SVM classifier
trained via real features extracted from domains and bots. In
the sequel, we list our proposed set of detection features.

A. Detection Features

Applying the features from [9] and [6] separately leads to
false positives and false negatives. We propose to merge both
kind of features with the aim of reducing false detection rates.
The rationale is that those false positives and false negatives
caused by the features of the first classifier shall be countered
by the features from the second classifier, and vice versa.
Based on this idea, we build a new set of features. The set can
be divided in two different groups: (1) DNS-related features
and (2) bot-intrinsic features. The former being features that
are related to the DNS resolution process. The latter being
features that are inherent to infected computers. In the sequel,
we detail each of the feature sets.

1) DNS-related Features: Our proposed set of DNS-related
features contains those characteristics that can be obtained by
using DNS information. The information is extracted by using
a DNS request issued to the authoritative name server for a
given domain, and then is processed to obtain the features.
The features that are contained in this group are the minimum
set of DNS-related features needed to detect fast-flux [9]. We
describe some sample DNS-related features next.

e Number of IP addresses associated to the same
domain: Conventional legitimate domains usually have
either one or two IP addresses associated to them. In
fast-flux networks (legitimate or not) and similar tech-
nologies, such as CDNs (Content Delivery Networks) or
RRDNS (Round Robin DNS), the number of associated
IPs tends to be much higher. In fact, fast-flux, CDNs and
RRDNS use multiple IP addresses for a given domain,
with the goal of providing high availability and greater
performance to the end user. This feature, then, tends to
discriminate those conventional legitimate domains from
fast-flux networks, CDNs, and RRDNS.

o Number of associated Autonomous System Numbers:
The servers associated to a given conventional legitimate
domain are usually located within the same autonomous
system, as they are usually managed by the same com-
pany. In botnets, however, this is not the case. They are
composed by infected domestic host computers that are
spread across the world. Regarding CDNs or RDDNS,
they exhibit the same behavior as legitimate domains,
i.e., appear as a single vantage point within a unique
autonomous system.

o Number of associated prefixes: IP address prefixes
also give information about whether a domain is either
legitimate or part of a fast-flux service. The IP addresses
of hosts of legitimate networks usually belong to a few

BGP prefixes per hostname, while in networks exhibiting
fast-flux are usually associated to multiple BGP prefixes
per hostname.

o Number of associated countries: As in the case of the
Autonomous System Numbers, the servers associated to
a legitimate domain are typically located within the same
country. In fact, hosts belonging to a particular country
code TLD (Top Level Domain) are typically located
on IP addresses physically residing within that country.
However, hosts of fast-flux domains are typically spread
around the world. Therefore, a hostname associated to
multiple countries is likely to be part of a fast-flux
service.

2) Bot-intrinsic Features: The bot-intrinsic features are
those strongly related to the characteristics of the compromised
machines, that is, the bots. In this group of features we
assume that botnet owners exploit the bots to execute web-
based malicious services such as phishing pages and malware
delivery sites. Therefore, the malicious software operating on
each bot is assumed to provide an HTTP service and related
flows.

Remember that botnets are typically formed by malware-
infected home computers. Usually, there are big differences
in hardware and software between home computers and ded-
icated hosting servers. Dedicated hosting servers are much
more powerful, and connected to Internet via high bandwidth
connections in order to obtain the best possible performance.
Their running processes are those dedicated to provide web
services. On the contrary, home computers have a more limited
hardware, the bandwidth of their connection is also much more
limited, and they run all kinds of software. These differences
can be used to extract features to help discriminate legitimate
domains from fast-flux domains. We describe some sample
bot-intrinsic features next.

o Network delay: Refers to the time required to transmit
packets back and forth over the Internet between a
client and a server. It can be obtained by computing the
difference between the time a client sends out the first
TCP SYN packet to the server and the time the client
receives the corresponding TCP SYN+ACK packet from
the server.

o Processing delay: Refers to the time required for the
server to process an erroneous HTTP request that does
not incur any additional computation and I/O operations.
Its measurement is done by sending out an HTTP re-
quest with an undefined method, such as a nonsense
BADMETHOD method, and computing the difference be-
tween the sending time of the non valid request and
the time when a 400 (Bad request) or 405 (Method Not
Allowed) response is received. Then, the network delay
has to be subtracted to this value, in order to obtain the
processing delay.

e Document fetch delay: Refers to the time required
from the server to fetch a web page, either from a hard
disk or from a backend mothership. The fetch operation



TABLE I
DATA SET EXAMPLE

[ Domain #IP  #ASN  #PREF #C ND PD DFD Label |
adultdatinghouse.info 3 3 3 3 0.1362  1.5847 1.5117  malicious
google.com 11 1 1 1 0.0481 0.0280 0.2593  legitimate
cosmodatelab.info 3 3 3 3 0.1160  0.2609  1.1189  malicious
cupidlocals.com 2 2 2 2 04668 0.1136  0.1718  malicious
youtube.com 11 1 1 1 0.0460 0.0314  0.3419 legitimate
yahoo.com 3 3 3 1 0.2443 03965 0.5745  legitimate

occurs at the server side and we cannot know exactly
what happens, we compute it by doing the following.
We compute the time difference between the send out of
an HTTP GET request and the time the client receives
the corresponding HTTP response (200 OK), and then
subtracting the network delay. This way, we obtain an
estimator of the document fetch delay.

B. Building the SVM Classifier

In order to detect fast-flux behavior we build a linear
classifier by using the features presented in Section II-A. The
linear classifier used is based on Support Vector Machines
(SVM) [10]. The result is a non-probabilistic binary classifier
that constructs a hyperplane in a very high-dimensional space.
It achieves a good separation when the hyperplane have the
largest possible distance to the nearest training data point.

More formally, given some training data D represented as a
set of n points of the form described in Equation (1), where y;
indicates the class to which x; belongs to. We want to find a
hyperplane with the maximum margin that divides those points
having y; = 1 from those having y; = —1.

D:{(xi7yi) | L4 eRpa Y€ {_171}}?:1 (])

When the data to be classified is linearly separable, as it
is our case, two planes can be selected so they separate the
data points without having any point between them, trying to
maximize their distance. Those hyperplanes can be described
by Equations (2) and (3).

2)
3)

w-rz—b=1

w-r—b=-1

To prevent data points from falling into the margin, the
constraint described by Equation (4) is added.

yi(w-z; —b) >1, forall 1 <i<n 4

Given that the distance between the two planes is ﬁ the
goal is to minimize the value of ||w]|| subject to the constraint
described by Equation (4).

III. EXPERIMENTS

To validate our SVM classifier, we retrieved some sample
lists of malicious fast-flux domains as well as legitimate
domains. We used these lists to extract the features presented
in Section II and label them accordingly (i.e., labeling each
domain as malicious or legitimate domains). We obtained a
list of 81 active malicious fast-flux domains from the Atlas
Web site [2], and a list of 81 legitimate active benign domains
from the Alexa Top Sites site [1]. These lists were processed
in order to extract the features. For that purpose, we built
a set of Python scripts. To obtain the different DNS related
features, the script issues DNS requests in order to obtain
the NS records as well as the A records. Then, using the
IP addresses obtained with the requests and connecting to the
cymru whois service [3], their respective autonomous systems,
countries and prefixes are obtained. To obtain the bot-intrinsic
features, the script sends a TCP SYN packet in order to
measure the network delay, an HTTP GET request to measure
the document fetch delay, and an invalid HTTP BADMETHOD
request to measure the processing delay. The measurements
of the delays are repeated 10 times and then the average is
computed. An example of the data set can be found in Table I.

Once the data sets have been collected, the SVM classifier
—written in Java and using the library Java-ML [4]— is
validated by using the k-fold cross-validation method [8]. With
this method, the data sets are split in &k different groups, using
one of them to train the classifier, and the other £k — 1 to
classify. This is repeated other k — 1 times, so that every time
the training is done with a different group. The results obtained
from these experiments are presented next.

Obtained Results: Table II outlines the corresponding number
of true positives, false positives, true negatives, and false
negatives associated to each of the three evaluated classifiers
(i.e., McGrath [9], Hu [6], and ours). Our proposal obtains
better results than just using the features from [9] and [6]
separately. Therefore, and as expected, by combining the two
kind of features we noticeably reduce the false positives and

TABLE 11
COMPARATIVE STUDY BETWEEN [9], [6] AND OUR PROPOSAL

McGrath [9] | Hsu [6] | Our proposal
True Positive 78 63 81
False Positive 4 9 1
True Negative 77 72 80
False Negative 3 18 0




the false negatives, at the same time that we slightly increase
the true positives and true negatives. One can observe that our
proposal provides only 1 misclassified results, which happens
to be a false positive. Thus, all the malicious fast-flux domains
were correctly detected, and only 1 legitimate domain is mis-
classified as a malicious fast-flux domain from our classifier.
In order to clarify the weaknesses of the strategies proposed
by McGrath and Hsu, we analyzed their corresponding false
positives and negatives obtained in our experimental results.
We discovered that such misclassifications were deeply tied
with the features used by them, and not with the classifier
itself.

On one hand, the McGrath’s classifier exhibited only one
false positive that was caused by a legitimate domain with
a set of 7 IP addresses associated to 6 different autonomous
systems, 7 different prefixes, and distributed along 5 differ-
ent countries. This is not a common characterization of a
legitimate domain, and this was the reason why the classifier
considered it as a fast-flux domain. With respect to the false
negatives, all the malicious domains classified erroneously
had a reduced number of IP addresses, autonomous systems,
prefixes and countries. This confirms our hypothesis that a
malicious botmaster can create a fast-flux domain with a
particular chosen set of features, and whose aim is to evade
any detection based on using only DNS-related information.

On the other hand, the false positives obtained after using
the Hsu proposal were caused by high values of network
delays, processing delays and document fetch delays. Proba-
bly, such values were a consequence of a network problem
(e.g. network congestion) or a high resource consumption
from the server side. This corroborates that by using the bot-
intrinsic features in an isolated manner cannot be sufficient
for an efficient detection, since some random perturbation
from the network or server standpoint can lead to undesirable
misclassifications. From the false negatives point of view, we
observed that the delay values associated to such fast-flux
domains were low enough to consider them as benign domains.
It is likely that the botmaster in charge of those fast-flux
domains built them by using bots with a good network and
server resources, leading to an evasion mechanism.

After analyzing how a malicious fast-flux domain could
evade the proposals of McGrath and Hsu independently, one
could think that the unification of both evasion strategies could
also be applied to elude the detection process of our classifier.
However, although theoretically possible, our experimental
results show that none of the studied domains revealed yet
such a behaviour. In fact, what our work shows is that the
combination of features increases the difficulty of constructing
a malicious fast-flux domain that is able to evade the detection.
The resulting combination has proved to be much more robust
against false positives introduced by legitimate values related
to the DNS features, or by random noise in the delay measure-
ments. This is possible since the DNS features counterbalance
the bot-intrinsic features —or vice versa— in case of a false
positive related with one of both scopes.

IV. CONCLUSION

Botnets use fast-flux as an evasion strategy to make
difficult the trace-back and posterior take down. Despite
that, there are also legitimate fast-flux networks, as well as
similar technologies such as round robin DNS and content
delivery networks. Detecting malicious fast-flux networks
implies being able to discriminate them among those similar
technologies. Most approaches in the literature use detection
features that may mislead the discovery process and end
with high rates of false positives and false negatives. We
have extended two existing classifiers that suffer from
such limitations, and conducted simulations that verify the
feasibility and superiority of our approach.

Acknowledgments: This work was partially supported by a
student grant of the Master in Security of Information and
Communication Technologies (MISTIC), at the Autonomous
University of Barcelona (UAB) through; and by the Span-
ish Government projects TSI2007-65406-C03-03 E-AEGIS,
TIN2011-27076-C03-02 CO-PRIVACY, TIN2010-15764 N-
KHRONOUS, and CONSOLIDER INGENIO 2010 CSD2007-
0004 ARES grants.

REFERENCES

[1] Alexa Top 500 Global Sites. http://www.alexa.com/topsites.

[2] Arbor Summary Report on Global Fast Flux. http://atlas.arbor.net/
summary/fastflux.

[3] Team Cymru IP to ASN Lookup v1.0. http://whois.cymru.com.

[4] T. Abeel, Y. Van de Peer, and Y. Saeys. Java-ML: A Machine Learning
Library. J. Mach. Learn. Res., 10:931-934, June 2009.

[5] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling. Measuring and
Detecting Fast-Flux Service Networks. In Proceedings of the Network
and Distributed System Security Symposium (NDSS), 2008.

[6] C.-H. Hsu, C.-Y. Huang, and K.-T. Chen. Fast-Flux Bot Detection in
Real Time. In S. Jha, R. Sommer, and C. Kreibich, editors, Recent
Advances in Intrusion Detection, volume 6307 of Lecture Notes in
Computer Science, pages 464—483. Springer Berlin / Heidelberg, 2010.

[71 M. Knysz, X. Hu, and K. Shin. Good guys vs. Bot Guise: Mimicry
attacks against fast-flux detection systems. In INFOCOM, 2011 Pro-
ceedings IEEE, pages 1844—1852, april 2011.

[8] R. Kohavi. A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection. In International Joint Conference on
Artificial Intelligence, pages 1137-1145, 1995.

[9] D. McGrath, A. Kalafut, and M. Gupta. Phishing Infrastructure Fluxes
All the Way. Security Privacy, IEEE, 7(5):21-28, sept.-oct. 2009.

[10] I Steinwart and A. Christmann. Support Vector Machines. Information
Science and Statistics. Springer, 2008.

[11] Y. Xu, Y. Lu, and Z. Guo. The Availability of Fast-Flux Service Net-
works. In Mobile and Wireless Networking (iCOST), 2011 International
Conference on Selected Topics in Mobile & Wireless Networking, pages
89-93, oct. 2011.

[12] X. Yu, B. Zhang, L. Kang, and J. Chen. Fast-Flux Botnet Detection
Based on Weighted SVM. Information Technology Journal, 11(8):1048—
1055, 2012.

[13] C. Zhou, C. Leckie, S. Karunasekera, and T. Peng. A Self-Healing, Self-
Protecting Collaborative Intrusion Detection Architecture to Trace-Back
Fast-Flux Phishing Domains. In Network Operations and Management
Symposium Workshops, 2008. NOMS Workshops 2008. IEEE, pages
321-327, april 2008.

[14] C. V. Zhou, C. Leckie, and S. Karunasekera. Collaborative Detection
of Fast Flux Phishing Domains. Journal of Networks, 4(1):75-84, Feb.
2009.

[15] C. V. Zhou, C. Leckie, and S. Karunasekera. A Survey of Coordinated
Attacks and Collaborative Intrusion Detection. Computers & Security,
29(1):124-140, 2010.



