
Distributed Exchange of Alerts
for the Detection of Coordinated Attacks

J. Garcia-Alfaro†, M. A. Jaeger‡, G. Mühl‡, I. Barrera?, and J. Borrell?

†Open University of Catalonia, Computer Science and Multimedia Studies
Rambla Poble Nou 156, 08018 Barcelona, Spain

‡Technical University of Berlin, Communication and Operating Systems
EN6, Einsteinufer 17, D-10587 Berlin, Germany

?Autonomous University of Barcelona, Dept. of Inf. and Comm. Engineering,
Edifici Q, 08193 Bellaterra, Spain

E-mail: {joaquin.garcia-alfaro,michael.jaeger,g_muehl}@acm.org
ibarrera@deic.uab.es, joan.borrell@uab.es

Abstract

Attacks and intrusions to information systems cause large
revenue losses. The prevention of these attacks is not
always possible by just considering information from
isolated sources of the network. A global view of the
whole system is necessary to react against the different
actions of such an attack. The design and deployment of
a decentralized system targeted at detecting as well as
reacting to information system attacks might benefit from
the use of the publish/subscribe model. In this paper, we
discuss the advantages and convenience in using this com-
munication paradigm for a general decentralized attack
prevention framework and overview the design and imple-
mentation of our approach by using a combination of two
different publish/subscribe middleware products. Further-
more, we present a quantitative evaluation of our approach.

Keywords: Network Security, Attack Prevention System,
Publish/Subscribe, Message Oriented Middleware, IDMEF

1 Introduction

When attackers gain access to a corporate network by com-
promising authorized users, computers, or applications, the
network and its resources can become an active part of a
globally distributed or coordinated attack. Such an attack
might be a coordinated port scan or distributed denial of
service attack against third party networks—or even against

computers on the same network. Both, distributed and co-
ordinated attacks, rely on the combination of actions per-
formed by a malicious adversary to violate the security pol-
icy of a target computer system. In order to prevent these
attacks, a global view of the system as a whole is necessary.
Hence, different events and specific information must be
gathered and combined from all the sources. This affects,
for example, information about suspicious connections, ini-
tiation of processes, and addition of new files.

In [1, 3], we presented an attack prevention framework that
is targeted at detecting as well as reacting to distributed
and coordinated attack scenarios. Our approach is based
on gathering and correlating information held by multiple
sources. We use a decentralized scheme based on message
passing to share alerts in a secure communication infras-
tructure. This way, we can detect and prevent these kind of
attacks performing detection and reaction processes based
on the knowledge gained through alert correlation. In this
paper, we extend the communication infrastructure of our
proposal and evaluate a prototypical implementation of it.
This infrastructure aims at fostering the collaboration be-
tween the different components of our framework in order
to achieve a more complete view of the system as a whole.
Once this is achieved, it is possible to detect and react on
the different actions of a coordinated or distributed attack.

The structure of this paper is the following. We start in
Section 2 with analyzing related work. We continue in
Section 3 with an introduction of the publish/subscribe
communication model and an overview of the communica-
tion mechanism proposed for the exchange of information
among the components of our system. In Section 4, we

1



present the results of an evaluation of a first prototype im-
plementation. We close in Section 5 with conclusions and
give an outlook on future work.

2 Related Work

Traditional client/server solutions for the prevention of dis-
tributed and coordinated attacks can quickly become a bot-
tleneck due to saturation problems associated with the ser-
vice offered by centralized or master domain analyzers. A
master domain analyzer is the entity on top of a hierarchy
of IDSs consisting of multiple analyzers and different do-
mains to analyze. Centralized systems, such as DIDS [14]
and NADIR [8], use this approach to process their data
in a central node although the collection of data is dis-
tributed. These schemes are straightforward as they simply
push the data to a central node and perform the computa-
tion there. Hierarchical approaches such as GrIDS [15] and
NetSTAT [18] have a layered structure where data is locally
preprocessed and filtered. Although they mitigate some
weaknesses present in centralized schemes, they still cannot
avoid bottlenecks, scalability problems, and fault tolerance
issues due to vulnerabilities at the root level.

In contrast to these traditional designs, alternative ap-
proaches try to eliminate the need for dedicated elements.
The idea of distributing the detection process has some ad-
vantages regarding centralized and hierarchical approaches.
Mainly, decentralized architectures have no single point of
failure and bottlenecks can be avoided. Some message
passing designs, such as CSM [19] and Quicksand [9], try
to eliminate the need for dedicated elements by introduc-
ing a peer-to-peer architecture. Instead of having a central
monitoring station to which all data has to be forwarded,
there are independent uniform working entities at each host
performing similar basic operations. To detect coordinated
and distributed attacks, the different entities have to collab-
orate on the detection activities and cooperate to perform
a decentralized correlation algorithm. These designs seem
to be a promising technology to implement decentralized
architectures for the detection of attacks.

However, these systems still suffer from some limitations.
For instance, they might require complete knowledge of the
system: All nodes have to be connected to each other which
can make the matrix of the connections, which are used
for exchanging alerts, grow explosively and become very
costly to control and maintain. Another important disad-
vantage present in these designs is that the different enti-
ties always need to know where a received notification has
to be forwarded (similar to a queue manager). This way,
when the number of possible destinations grows, the net-
work view can become extremely complex, which leads to
a system that is not scalable. Other designs are based on
flooding which makes the system easier to maintain on the

cost of scalability, as the message complexity grows fast
with the number of brokers and messages published.

Most of these limitations can be solved efficiently by using
a publish/subscribe-based system. The advantage of this
model for our problem domain over other communication
paradigms is on the one hand that it keeps the producer of
messages decoupled from the consumer and on the other
hand that the communication is information-driven. This
way, it can avoid problems regarding the scalability and the
management inherent to other designs, by means of a net-
work of publishers, brokers, and subscribers. A publisher
in a publish/subscribe system does not need to have any
knowledge about any of the entities that consume the pub-
lished information. Likewise, the subscribers do not need
to know anything about the publishers. New services can
simply be added without any impact on or interruption of
the service to other users.

3 Publish/Subscribe Model

The publish/subscribe communication model is intended
for group communication, i.e., situations where a message
(notification) sent by a single entity is required by and
should be distributed to multiple entities. It is often used
for efficient and comfortable information dissemination to
group members which may have individual interests in arbi-
trary subsets of messages published. In contrast to multicast
communication, clients have the possibility to describe to
the events they are interested in more precisely (e.g., based
on the contents of the notification). Clients can choose to
either subscribe or unsubscribe to messages as time goes
by, and all the subscribers are independent of each other.

Figure 1. Simple publish/subscribe system.

3.1 Publish/Subscribe Systems

A publish/subscribe system consists of at least one bro-
ker forwarding notifications published by clients to other
clients that are interested in them. For scalability reasons,
it is common to implement a distributed broker network
that forms a notification service through an overlay network
consisting of brokers. This service provides a distributed in-

2



Figure 2. Proposed infrastructure for the exchange of alerts.

frastructure for notification routing which includes the man-
agement of subscriptions and the dissemination of notifi-
cations in a possibly asynchronous way. Clients can pub-
lish notifications and subscribe to filters that are matched
against the notifications passing through the broker net-
work. If a broker receives a new notification it checks if
there is a local client that has subscribed to a filter that
matches this notification. If so, the message is delivered to
this client. Additionally, the broker forwards the message
to neighbor brokers according to the applied routing algo-
rithm. We refer to [11] for a survey on publish/subscribe
systems.

An example of a simple centralized publish/subscribe sys-
tem is shown in Figure 1. Here, five clients are connected
to a single broker: three clients that are publishing notifi-
cations and two clients that are subscribed to a subset of
the notifications published on the broker. Subscribers can
choose to subscribe to the notifications available through
the broker or cancel existing subscriptions as needed. The
broker matches the notifications it receives from the pub-
lishers to the subscriptions, ensuring this way that every
publication is delivered to all interested subscribers. This
very basic publish/subscribe setup can be extended by con-
necting multiple brokers, enabling them to exchange mes-
sages. The extended design allows subscribers managed
by one of the brokers to receive messages that have been
published by clients of another broker, further freeing the
subscriber from the constraints of connecting to the same
broker the publisher is connected to. Available implemen-
tations usually make this transparent for the programmer
by keeping the same interface operations as in the central-
ized design. This way, an application can easily be dis-
tributed. The subscribers are able to formulate their inter-
ests based, e.g., on the contents of the notifications and a
special attribute they carry. This is known as content-based
and topic-based subscription, respectively.

Topic-based subscriptions are easier to handle than content-
based subscriptions. Subscribers specify their interest in a
topic and receive all messages published on this topic. Two
different matching mechanisms are commonly used here.
One matches subscriptions successfully to notifications if
the topic of the subscription exactly matches the topic un-
der which the notification is published. Using this mech-
anism, topics become equivalent to “channels”. The other
mechanism arranges topics in a subject tree such that sub-
scriptions not only match notifications if the topics are the
same, but also if the topic of the subscription is an ancestor
of the notification topic in the subject tree (in this case, a
topic becomes equivalent to a “theme”).

Content-based subscriptions allow for more sophisticated
subscriptions on the cost of higher matching load and more
complex routing decisions. Here, a subscription can be for-
mulated extremely fine-grained based on the content of no-
tifications using a query language. Moreover, there does
not have to be a system wide agreement on the set of topics
as it is in general needed for topic-based routing.

3.2 Proposed Architecture

In this section, we describe the main elements of our plat-
form, as well as their interactions for the exchange of infor-
mation. Let us start by having a look to the main compo-
nents of our attack prevention system [1, 3]. A description
of each component is presented in the following.

Analyzers – Analyzers are local elements which are re-
sponsible for processing local audit data. They process the
information gathered by associated sensors to infer possible
alerts. Their task is to identify occurrences which are rel-
evant for the execution of the different steps of an attack
and pass this information to the correlation manager via
the publish/subscribe system. They are interested in local

3



events. Each event is detected in a sensor’s input stream.
The set of derived alerts is permanently stored in a local
database and encoded in IDMEF (Intrusion Detection Mes-
sage Exchange Format) [2]—which is an IETF proposal
for the exchange of information between different security
components, such as Intrusion Detection Systems, and Fire-
walls. Each alert expressed in IDMEF format has a unique
classification and a list of attributes with their respective
types to identify the analyzer that originated the alert (An-
alyzerID), the time the alert was created (CreateTime), the
time the event(s) leading up to the alert was detected in the
sensor’s input stream (DetectTime), the current time on the
analyzer (AnalyzerTime), and the source(s) and target(s) of
the event(s) (Source and Target). All possible classifica-
tions and their respective attributes must be known by all
the components of the system (i.e., analyzers and managers)
and all analyzers must be capable of deriving instances of
local events of arbitrary types. This way, the correlation
process presented in [1, 3] can be realized.

Managers – The use of multiple analyzers and sensors to-
gether with heterogeneous detection techniques increases
the detection rate, but it also increases the number of in-
formation to process (both, local alerts generated within
the same system and those received by external compo-
nents). It is therefore necessary to distribute a set of man-
agers which are going to be in charge of executing a com-
plete process to fuse, merge, and correlate the received in-
formation [1, 3]. During a first stage, all the alerts associ-
ated to a single event, but reported by different analyzers,
should be grouped and transformed into a single instance
that uniquely identifies the occurrence of a single action
in the system. Then, in a second stage, a correlation pro-
cess allows the correlation of information between different
alerts by looking to those logical links between single oc-
currences or actions in the system. The process presented
in [1] shows how it is possible to implement this correla-
tion process in order to find out which objectives are going
to follow after these actions, and which possible counter-
measures can be selected by the system in order to stop or
neutralize malicious actions.

3.3 Publication and Subscription of Local
Alerts based on RSS Channels

As we can see in Figure 2, the set of alerts stored within the
database of each detection zone is disseminated to the rest
of the zones through a syndication of alerts based on RSS
(Really Simple Syndication) [7]. RSS is a publish/subscribe
mechanism based on channels. RSS is currently very pop-
ular and extended on web services and weblogs for the dis-
semination of news and general information. The RSS ar-
chitecture is quite simple: a set of clients manifest their in-
terests by subscribing RSS channels (or feeds) upon which
other clients are periodically publishing information. In

this manner, and based on periodic polling, subscribers re-
ceive the information in which they declared interest. In our
case, the RSS content of each channel is directly generated
by exporting the set of local alerts stored in the database
of each zone, and then encoded them into XML messages.
Then, those stored alerts are integrated into a unique chan-
nel which can be accessed by authorized RSS clients.

Through a specific RSS aggregator integrated within the
components of our platform, each zone processes the set
of alerts of their local database and publishes them through
a second publish/subscribe system in charge of distributing
those messages with other detection zones. The alerts pub-
lished with this second element, more complete and opti-
mized for operations like searches and distributed subscrip-
tions, can be finally accessed by the rest of managers of
partners collaborating in the cooperative distribution pro-
cess presented in [1, 3]. The RSS aggregator of each zone
must be properly configured in order to process the set of
subscriptions and publications. In oder to do so, a spe-
cific administration policy is set up by the administrator in
charge of each zone.

3.4 Dissemination of Global Alerts
through a Content-based Middleware

As our motivation for this work is not targeted on develop-
ing a new publish/subscribe middleware, we try to reuse as
much available code and tools as possible. For our experi-
ments (cf. Section 4) we used xmlBlaster, an open source
publish/subscribe message oriented middleware [13]. It
connects a set of nodes that build up the infrastructure for
exchanging alerts using the interface operations offered by
the underlying middleware. The notifications exchanged
through xmlBlaster are expressed in XML-based IDMEF
compliant messages. Publishers construct these messages
from the set of local alerts received by the RSS-feed of
each zone; subscribers express their interests by subscrib-
ing filters specified by means of XPath expressions. Each
xmlBlaster message consists of a header, filtering that can
be applied to, a body, and a system control section. The
body of each xmlBlaster message is directly derived from
the IDMEF messages of each detection zone; and filters are
evaluated over the header of each xmlBlaster message to
decide when a message has to be delivered to a subscriber.

The communication infrastructure offered via xmlBlaster
can be viewed as a black box with an interface (cf. Figure 3)
together with a set of operations, each of which may take a
number of parameters. Clients can invoke input operations
from the outside, and the system itself invokes output op-
erations to deliver information to clients. To publish alerts,
clients invoke the pub(a) operation, giving the alert a as pa-
rameter. The published alert can potentially be delivered to
all clients connected to the system via an output operation

4



called notify(a). Clients register their interest in specific
kinds of alerts by issuing subscriptions via the sub(F ) op-
eration, which takes a filter F as parameter. Each client can
have multiple active subscriptions which must be revoked
separately through the unsub(F ) operation.

Figure 3. Operations offered by the xml-
Blaster middleware.

All these operations are instantaneous and take parameters
from the set of all clients C, set of all alertsA, and the set of
all filters F . Formally, a filter F ∈ F is a mapping defined
by the following boolean expression:

F : a −→ {true, false} ∀a ∈ A

Please note that a notification n matches filter F ∈ F iff
F (a) = true. We also assume that each alert can only
be published once and that every filter is associated with a
unique identifier in order to enable the alert communication
infrastructure to identify a specific subscription.

For the experiments discussed in Section 4, the set of man-
agers of each zone may register their interest in a subset A
of alerts published in xmlBlaster by invoking the sub(A)
operation, which takes the filter A as parameter, with

A(a) =
{

true , a ∈ A
false , a /∈ A

Once subscribed to these filters, the communication infras-
tructure will notify the subscribed managers of all those
alerts, previously grouped by the RSS aggregator of each
zone, that apply to those filters.

4 Evaluation of CIDEX

In this section, we give an overview of CIDEX (which
stands for Communication Infrastructure for a Decentral-
ized Exchange of Alerts), a software prototype that imple-
ments the communication infrastructure proposed in this
paper. The evaluation of CIDEX is based on a set of
testbeds which we present in the following. The evalua-
tion was carried out on a set of machines Intel-Pentium 4 at
1.5 GHz, with 256 MB of memory, and running Debian
GNU/Linux 2.6 operating system configured with HTTP
Apache 1.3 server, PHP 4.3 and Java HotSpot VM 1.5 (nec-
essary for the execution of xmlBlaster brokers).

The generation of alerts was carried out by using a set of
sensors of prelude [16] (among them, snort [12], which
was compiled to be integrated as a prelude-compliant sen-
sor within our platform). The complete set of alerts, man-
aged and delivered by prelude, was permanently stored on
a database managed by PostgreSQL and delivered consec-
utively to the components. We implemented an RSS gen-
erator in PHP with the objective of publishing the set of
local alerts stored in the PostgreSQL database. The com-
munication between the rest of components was based on
the C socket library of xmlBlaster. Finally, the genera-
tion, parsing, and analysis of IDMEF messages was im-
plemented by using a modified version of the libidmef li-
brary [10] based on libxml [17].

Performance of xmlBlaster brokers– In our first exper-
iments, we evaluated the processing load and memory con-
sumption of the xmlBlaster brokers for the delivery of an
increasing set of alerts up to 10, 000 alerts. The average
and confidence interval of the results of the first test set is
shown in Figure 4. One can see in this figure that both,
CPU load and memory consumption of xmlBlaster brokers,
remained considerably stable during the whole experiment
(about 16% and 4%, respectively). The significant big con-
fidence intervals in memory consumption resulted from an
interference with the Java garbage collector and is, thus, not
relevant for our measurements.

Figure 4. Process and memory consumption
of xmlBlaster brokers.

Performance of xmlBlaster publishers– We also evalu-
ated the CPU load and memory consumption of xmlBlaster
publishers within our prototype. Figure 5 shows that both,
CPU load and memory consumption, smoothly increased
until an average of 3, 000 alerts. However, once raised this
level of alerts, the consumption of resources started to in-
crease heavily.

5



Figure 5. Process and memory consumption
of xmlBlaster publishers.

It is important to note that in the current version of our im-
plementation, the set of publishers are fed by local RSS
aggregators that send the set of local alerts as XML data.
The complete set of alerts received through this process is
parsed, analyzed, and republished by using libidmef which,
in turn, is built over the libxml library. The libxml library
provides two interfaces to parse XML data: a DOM style
tree interface, and a SAX style event-based interface. Up to
now, we are using the DOM interface for our implementa-
tion due to its ease of use. Its main drawback is, however,
that its usage of resources is proportional to the size of the
XML data. We thus think that the growing resource con-
sumption by the set of publishers is due to the processing of
XML data rather than the publication of the alerts. We are
actually moving our current implementation to the SAX-
based interface. We hope that this will help us to lower the
current consumption of resources.

Performance of xmlBlasters subscribers– Figure 6
shows the consumption of resources by the xmlBlaster sub-
scribers in our testbeds which asynchronously receive the
set of alerts forwarded by the xmlBlaster brokers. The
CPU load remains stable at about 30%, independently of
the number of alerts. The consumption of memory, on the
other hand, smoothly increases as alerts arrive, but never
bypassed the 50% threshold in the experiments. These re-
sults are very positive and give us good hope that using this
communication paradigm for the dissemination of alerts in
our platform indeed increases the scalability and efficiency
of our proposal. We envision that the consumption of re-
sources by the set of subscribers during the reception of
alerts on real case scenarios will be similarly. Moreover,
we are confident that the new management of XML data
pointed out above will improve the limitation imposed by
our current XML handling.

Figure 6. Process and memory consumption
of xmlBlaster subscribers.

Latency of the notification service– In the second stage
of our experiments we analyzed the latency of the notifi-
cation service. We evaluated the latency by publishing the
alerts in three different ways: (1) all the sets of alerts were
organized by xmlBlaster on a single principal node (key)
from which all the alerts are associated; (2) the alerts were
organized on three different categories taking into account
the impact of the alert (high, medium, low) and leaving
the organization of alerts to xmlBlaster on a tree with three
principal nodes (one for each category of impact); and (3)
each alert is classified by using its own alert identification–
in this case, xmlBlaster generated a node for each alert.

Figure 7. Latency of the xmlBlaster notifica-
tion service.

When analyzing the delivery time for the two first scenarios
(i.e., one and three keys), we see that for a number of alerts
below 100 the difference in latency is minimal. However,
as soon as the number of alerts passes this threshold, we the
second scenario offers better results for the same number of
exchanged alerts. We conclude that this difference is due to
the routing algorithm of the notification service, which hap-

6



pens to be faster as the number of keys increases. However,
the analysis of latency in the third scenario shows that if
the number of keys increases proportionally to the number
of alerts, the delivery of alerts takes much longer. Further
experiments are going to be performed in future in order to
find out which organization handles the best balance in or-
der to guarantee the lowest delay. However, it is important
to note that message delivery did not become a bottleneck
in all three organization as all messages were processed in
time and never reached the saturation point.

Latency of the delivery service of RSS messages– In a
third stage we analyzed the latency of the aggregation and
delivery of RSS messages. This process is responsible of
parsing, analysis, and delivery of local alerts derived from
the local events stored on the PostgreSQL database man-
agement system. The results plotted in Figure 8 show that
this latency is proportional to the number of alerts to aggre-
gate. We see that once more than 1, 000 alerts have been
processed, the time needed for parsing the XML message
generated by the RSS aggregator increases considerably.
Please note that this parsing process is similar to the pro-
cess performed by the publishers which has been discussed
above. Hence, a similar reasoning applies in this case. We
consider that once we will move our implementation to the
SAX-based interface for the parsing of XML messages the
consumption of resources will decrease considerably.

Figure 8. Latency of the delivery service of
RSS messages.

Latency of the complete process– On a final stage, we
evaluated the latency of the complete system, where we
combined the complete set of elements of our testbeds with
the set of alerts and traces generated by the sensors and an-
alyzers managed by prelude and persistently stored within
the database managed by PostgreSQL. The evaluation was
performed by taking into account the three different organi-
zation of messages already discussed above (i.e., (1) set of

alerts organized by xmlBlaster on a single principal node;
(2) set of alerts organized on three different categories; and
(3) set of alerts classified by using their alert identification).
Figure 9 shows the latency of the alert delivery for each
one of these three organizations. As expected, the results
keep pointing to a moderate organization of messages as
the best choice. Please note that during this final evalu-
ation the whole system remained stable without reaching
any saturation point. Only the RSS aggregator and the cur-
rent management of XML data supposed a limitation to the
proposed scheme. As we pointed out above, we are actually
working on this point in order to improve and reevaluate the
testbeds.

Figure 9. Latency of the complete process for
the delivery of messages and alerts.

5 Conclusions and Outlook

In this paper, we presented an infrastructure to share alerts
between the components of a security framework for the
prevention of coordinated attacks. The framework itself is
targeted at detecting as well as reacting to attack scenarios
by using the publish/subscribe communication paradigm.
In contrast to traditional client/server solutions, where cen-
tralized or hierarchical approaches quickly become a bottle-
neck due to saturation problems associated with the service
offered by centralized or master domain analyzers, the in-
formation exchange between peers in our design achieves
a more complete view of the system in whole. We be-
lieve that this is necessary to detect and react on the dif-
ferent actions of an attack. We have presented the use of
two complementary publish/subscribe technologies for the
deployment of our proposal. On the one hand, the use of
RSS channels to spread local alerts which are persistently
stored on each detection zone; on the other hand, the use
of a publish/subscribe message-oriented middleware. The
use of these two technologies have been evaluated. The set
of experiments we conducted allows us to confirm that the

7



proposed architecture performs well enough for the appli-
cation in real-world scenarios.

As future work we are considering to secure the communi-
cation partners by utilizing TLS/SSL, as well as to evaluate
how this extension affect its use to the performance of the
system. By adding TLS/SSL in our current infrastructure,
each collaborating node must receive and handle a private
and a public key. The public key of each node will be
signed by a certification authority (CA), that is responsible
for the protected network. Hence, the public key of the
CA has to be distributed to every node as well. The secure
TLS/SSL channel will allow the communicating peers to
communicate privately and to authenticate each other, thus
preventing malicious nodes from impersonating legal ones.
The implications coming up with this new feature, such as
compromised key management or certificate revocation,
will be part of this work. We are also planning a more
in-depth study about privacy mechanisms by exchanging
alerts in a pseudonymous manner. By doing this, we hope
that we can provide the destination and origin information
of alerts (Source and Target field of IDMEF messages)
without violating the privacy of publishers and subscribers
located on different domains. Our study will cover the
design of a pseudonymous identification scheme, trying to
find a balance between identification and privacy.

Acknowledgments The collaboration between J. Garcia-
Alfaro, F. Cuppens, F. Autrel, and T. Sans sharpened many
of the arguments presented in this paper. The work has been
supported by funding from the Spanish Ministry of Science
and Education, under the project CONSOLIDER CSD2007-
00004 “ARES”.

References

[1] F. Cuppens, F. Autrel, Y. Bouzida, J. Garcia-Alfaro, S.
Gombault, and T. Sans. Anti-correlation as a criterion
to select appropriate counter-measures in an intrusion
detection framework. Annals of Telecommunications,
61(1-2):192–217, 2006.

[2] H. Debar, D. Curry, and B. Feinstein. Intrusion detec-
tion message exchange format data model and exten-
sible markup language. Request for Comments 4765,
March 2007.

[3] J. Garcia-Alfaro, F. Autrel, J. Borrell, S. Castillo,
F. Cuppens, and G. Navarro. Decentralized pub-
lish/subscribe system to prevent coordinated attacks
via alert correlation. In 6th Int’l Conf. on Information
and Communications Security, volume 3269 of LNCS,
pages 223–235, October 2004. Springer-Verlag.

[4] J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-
Boulahia. Towards Filtering and Alerting Rule

Rewriting on Single-Component Policies. In Intl.
Conference on Computer Safety, Reliability, and
Security (Safecomp 2006), pp. 182–194, Gdansk,
Poland, 2006.

[5] J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-
Boulahia. Analysis of Policy Anomalies on Dis-
tributed Network Security Setups. In 11th European
Symposium On Research In Computer Security (Es-
orics 2006), pp. 496–511, Hamburg, Germany, 2006.

[6] J. Garcia-Alfaro, N. Cuppens-Boulahia, and F. Cup-
pens. Complete Analysis of Configuration Rules to
Guarantee Reliable Network Security Policies In In-
ternational Journal of Information Security, Springer,
7(2):103-122, April 2008.

[7] B. Hammersley. Content Syndication with RSS.
O’Reilly Ed., First Edition, March 2003, ISBN 0-596-
00383-8, 202 pages.

[8] J. Hochberg, K. Jackson, C. Stallins, J. F. McClary,
D. DuBois, and J. Ford. NADIR: An automated sys-
tem for detecting network intrusion and misuse. In
Computer and Security, volume 12(3), pages 235–
248. May 1993.

[9] C. Kruegel and T. Toth. Distributed pattern detection
for intrusion detection. In Network and Distributed
System Security Symposium Conference Proceedings:
2002, 1775 Wiehle Ave., Suite 102, Reston, Virginia
20190, U.S.A., 2002. Internet Society.

[10] A. C. Migus. IDMEF XML library.
http://sourceforge.net/projects/lib-
idmef/, March 2004.

[11] G. Mühl, L. Fiege, and P. R. Pietzuch Distributed
Event-Based Systems. Springer-Verlag, August 2006.

[12] M. Roesch. Snort: lightweight intrusion detection for
networks. In 13th USENIX Systems Administration
Conference, Seattle, WA, 1999.

[13] M. Ruff. XmlBlaster: open source message
oriented middleware. White paper [on-line].
http://xmlblaster.org/, 2000.

[14] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T.
Heberlein, C. Ho, K. N. Levitt, B. Mukherjee, S. E.
Smaha, T. Grance, D. M. Teal, and D. Mansur. DIDS
(distributed intrusion detection system) - motivation,
architecture and an early prototype. In 14th National
Security Conference, pages 167–176, October, 1991.

[15] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dil-
ger, J. Frank, J. Hoagland K. Levitt, C. Wee, R. Yip,
and D. Zerkle. GrIDS – a graph-based intrusion de-
tection system for large networks. In 19th National
Information Systems Security Conference, 1996.

8



[16] Y. Vandoorselaere and L. Oudot. Prelude-IDS,
un Système de Détection d’Intrusion hybride open-
source. MISC issue 3, July 2002.

[17] D. Veillard. The XML C library for Gnome (libxml).
http://www.xmlsoft.org, 2006.

[18] G. Vigna and R. A. Kemmerer. NetSTAT: A network-
based intrusion detection system. Journal of Com-
puter Security, 7(1):37–71, 1999.

[19] G. B. White, E. A. Fisch, and U. W. Pooch. Cooperat-
ing security managers: A peer-based intrusion detec-
tion system. IEEE Network, 7:20–23, February 1999.

9


	Introduction
	Related Work
	Publish/Subscribe Model
	Publish/Subscribe Systems
	Proposed Architecture
	Publication and Subscription of Local Alerts based on RSS Channels
	Dissemination of Global Alerts through a Content-based Middleware

	Evaluation of CIDEX
	Conclusions and Outlook

