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Abstract

In this paper, an old identity of G. U. Yule among partial cor-
relation coefficients is recognized as being equal to the cosine
law of spherical trigonometry. Exploiting this connection en-
ables us to derive some new (and potentially useful) relations
among partial correlation coefficients. Moreover, this obser-
vation provides new (dual) non-Euclidean geometrical inter-
pretations of the Schur and Levinson-Szegö algorithms.

1 Introduction

Linear prediction and interpolation is a major tool in time se-
ries analysis and in signal processing. In this context, the
Schur and Levinson-Szegö algorithms compute the partial
autocorrelation function of a wide-sense stationary process.
As such, they have found a large variety of electrical engi-
neering applications.

Let us briefly recall the history of these algorithms. At the
beginning of the century, Schur, Carathéodory and Toeplitz
were active in such fields as analytic function theory, Toeplitz
forms and moment problems. In 1917, Schur developped
a recursive algorithm for checking whether a given func-
tion ���������
	��
���� � 
 � 
 is analytic and bounded by one
in the unit disk [1]. Such functions are characterized by
a sequence of parameters of modulus less than one (the
Schur parameters) which are computed recursively from the
power series coefficients � 
 by an elegant algorithm. On the
other hand, Carathéodory and Toeplitz showed that � �������
� ����� 	 �
���� � 
 � 
 is analytic and has positive real part for� � �����

if and only if the Toeplitz forms 	�� "! # ����$  &%('# � #�)* ,
with � ) � � � '� , are positive for all + . Let

�������,� � �"���.- � �
� �"��� � � �0/21 � �����3� � �

� � ���"���� -4���"���65 (1)

since
� ������� �879� if and only if � �"��� has positive real part, the

Schur algorithm implicitely enables to test whether a Toeplitz
form is positive.

On the other hand, Toeplitz forms were studied indepen-
dently by Szegö, who introduced a set of orthogonal poly-
nomials with respect to an (absolutely continuous) positive
measure on the unit circle. These polynomials obey a two-
terms recursion [2] involving a set of parameters of modulus
bounded by one, which later on were recognized to be equal
to the Schur parameters [3]. In the 1940s, Toeplitz forms re-
ceived a revived interest in view of their natural occurrence
in the Kolmogorov-Wiener prediction and interpolation the-
ory of stationary processes (see e.g., [4, ch. 10], as well as
the survey paper [5] and the references therein). Working on
Wiener’s solution of the continuous time prediction problem,
Levinson proposed a fast algorithm for solving Toeplitz sys-
tems; later on, the Levinson recursions were recognized as
being the recurrence relations of Szegö.

Finally, there was an intense activity in these fields
beginning in the late 70s, mainly towards the development
of fast algorithms for numerical linear algebra, on the one
hand, and in the domain of analytic interpolation theory,
on the other hand. Through these new developments and
extensions, new connections with other mathematical topics
and disciplines were developed, including among others
displacement rank theory, : - lossless transfer functions,
modern analytic function theory and operator theory. The
literature on these connections and extensions is vast; the
reader may refer for instance to the papers [6] [7] [8] [9] and
books [10] [11].

The mathematical environment of these algorithms is thus
very rich, and these various interactions have already been
thoroughly investigated by many researchers. In this wealthy
context, our contribution in this paper consists in exhibiting
new unnoticed connections with spherical trigonometry.

As far as geometry is concerned, the Lobachevski geom-
etry was already known to be a natural environment of the
Schur and Levinson-Szegö algorithms, since the core of these
algorithms mainly consists in a linear fractional transforma-
tion leaving the unit circle invariant. However, a new point of
view is obtained when considering the algorithms (via posi-
tive definite Toeplitz forms) in the particular context of their
application to linear prediction. Then, up to an appropriate
normalization, the Schur and Levinson-Szegö algorithms be-
come trigonometric identities in a spherical triangle. Since



the real projective 2-space � � � is the quotient space obtained
from the sphere by identifying antipodal points, we see that
the alternate non-Euclidean geometry with constant curva-
ture (i.e., the elliptic one) is indeed another natural geometri-
cal environment of the Schur and Levinson-Szegö algorithms
as well.

Let us briefly outline the underlying mechanisms lead-
ing to this new interpretation. Let ���  �� be zero-mean
square-integrable random variables, �� �
	 �# the best lin-
ear mean-square estimate of � # in terms of ���  �� � ��� ,
and 
� �
	 �# � � # - �� �
	 �# the corresponding estima-
tion error. The partial correlation coefficient (or par-
cor) of � � and � ��� � , given ���  �� � ��� , is defined as� �
	 �� ! ��� � �����2� 
� �
	 �� � ��� ) ��� � �2� 
� �
	 �� 
� �
	 ���� � �����2� 
�

�
	 ���� � �
��� ) ��� �

.
It is bounded by

�
in magnitude and is classicaly interpreted

as the correlation coefficient of � � and � ��� � , once the in-
fluence of ���  �� � ��� has been removed. In 1907, G. U. Yule
[12] showed that the parcors could be computed recursively :

� �
	 �� ! ��� � �
� �
	 � ) �� ! ��� � -�� ��	 � ) �� ! � � �
	 � ) �� ! ��� �� � - ��� ��	 � ) �� ! � � � � � - ��� ��	 � ) �� ! ��� � �

��� (2)

It happens that this well known formula is formally equal to
the fundamental cosine law of spherical trigonometry :

 �!#"%$��  &!#" $ -� �!'" %  �!#" �"�(*) % "�(+) � , (3)

which gives an angle of a spherical triangle, in terms of its
three sides (see figure 1). This observation establishes an
unexpected link between statistics and time-series analysis,
on the one hand, and spherical trigonometry (a branch of
trigonometry), on the other hand.

In former papers [13] [14], spherical trigonometry was
shown also to admit a close connection with the electrical
engineering topic of recursive least-squares adaptive filtering
which, as linear regression analysis, is a mean square ap-
proximation problem. Now, the Schur and Levinson-Szegö
algorithms can be written as algebraic recursions within a co-
variance matrix or its inverse; due to the identification (2) =
(3), they admit a connection with spherical trigonometry as
well.

Indeed, the source of such analogies is that (time- or
order-) recursive least-squares algorithms can be devel-
oped from projection identities. In linear regression, one
recognizes that the mean-square error to be minimized
is a distance, so the projection theorem can be applied
in the Hilbert space generated by the random variables.
Introducing a new variable in the regression problem
amounts to updating a projection operator, and the problem
can indeed be described in terms of projections in a space
generated by three vectors. But three unit-length vectors
form a tetrahedron in 3D-space, and deriving projective
identities in a normalized tetrahedron results in deriving
trigonometric relations in the spherical triangle determined
by this tetrahedron (see figure 1, and [14] for details).
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Figure 1: The spherical triangle -�.0/ .

Let us now turn to the organization of this paper. Non-
Euclidean hyperbolic aspects of the Schur algorithm are im-
plicit in [15] but do not seem otherwise to be well known.
Yet the Lobachevski geometry is, by construction, an essen-
tial feature of the algorithm, which deserves to be better ap-
preciated. More precisely, we show in section 2 that Schur’s
layer-peeling type solution to the Carathéodory problem nec-
essarily makes use of automorphisms of the unit disk which,
on the other hand, happen to be the direct isometries of the
Lobachevski plane.

The last two sections are devoted to the new geometrical
interpretations in terms of spherical trigonometry. So in sec-
tion 3, we relate recursive regressions within a set of � + � � �
random variables, algebraic manipulations in a covariance
matrix or in its inverse, and spherical trigonometry. We show
that adding (resp. removing) a new variable in the regres-
sion problem which, in terms of Schur complements on the
covariance matrix (resp. on its inverse), amounts to using
the quotient property [16, p. 279], corresponds in terms of
spherical trigonometry to applying the law of cosines (resp.
the polar law of cosines).

Lastly in section 4, we further assume that the random
variables are taken out of a stationary time series, and we use
the results of section 3 to interpret in parallel the Schur and
Levinson-Szegö algorithms in terms of spherical trigonom-
etry. The Schur (resp. Levinson-Szegö) relations consist in
two Schur complement recursions (in the forward and back-
ward sense) in the original covariance matrix (resp. in its
inverse), and can indeed be interpreted in dual spherical tri-
angles. Up to an appropriate normalization, the Schur (resp.



order decreasing Levinson-Szegö) recursions coincide with
two coupled occurrences of the law of cosines (resp. of
the polar law of cosines), and the Levinson-Szegö recursions
with two coupled occurrences of the polar five elements for-
mula.

2 Non-Euclidean (hyperbolic) geometrical as-
pects of the Schur and Levinson-Szegö algo-
rithms

In this section, we first briefly recall the mechanisms under-
lying the Schur algorithm. We next show that the choice by
Schur of a recursive solution to the Carathéodory problem
naturally sets the algorithm in a non-Euclidean hyperbolic
environment.

2.1 The Schur algorithm

The Carathéodory analytic interpolation problem consists in
finding all functions � such that 1. ���"��� � 	��
���� $ 
 � 
 �� ��� ��� � � , and 2. ���������
	� ��� �"��� analytic in

� � � � �
, and� � �"��� ��7 �

for
� � � � � �

. In 1917, Schur proposed a ”layer-
peeling” type algorithm [1] (i.e., in which the interpolation
data are processed recursively) which we briefly recall.

Let us first consider the case where there is only one inter-
polation point $ � . Due to the maximum principle, the prob-
lem has no solution if

� $ � ��
6� , and admits the unique solu-
tion ���"���,� $ � if

� $ � � � � . If
� $ � � ��� , let

� � �����3�
�
�
���"���.- $ �� - $ '� ���"����� ������� � ��� � �"��� � $ �� � $ '� ��� � ����� � (4)

Then the key property of this transformation is that ���� � � � ��� , so that

������� and �������3� $ � � � ���������3� ��� � �"��� � $ �� � $ '� ��� � ����� and � � ���,� �
(5)

In the case of a single interpolation point $ � , equa-
tion (5) provides a parametrization of all solutions to the
Carathéodory problem in terms of an arbitrary Schur func-
tion � � . A new interpolation point $ � can be accomodated
by further restricting this set of possible functions � � . From
equation (5), we see that ( ����� and has interpolation con-
straints � $ ������� $ � � � if and only if ( � � ��� and has inter-
polation constraints � $ �� ����� $ �� ) � � ), in which the $ � depend

on the data $  . In particular, ���! #"%$��&(''' " ��� � $ � if and only if
� � ����� � $ �� : we are thus led back to the same metric con-
strained interpolationproblem, but now of order + - � . These
considerations lead by induction to the Schur algorithm 1 :

� � �����3� ������� 5 if
� �*)������ ��� �

,
�*) � � �����3� �

�
�*)�������- �*)*�+���� - � ') ����� �*)*�"��� �

(6)

1In , 2.3 we will deal with geometrical aspects of the recursion (6). This
is why the regular case only is considered here; all details of the general case
can be found in [1].

2.2 The Schur mechanism and automorphisms of the
unit circle

Let us now analyse the design of the Schur algorithm in terms
of automorphisms of the unit disk. Automorphisms of a do-

main - are bi-holomorphic mappings of - : $�.0/ � - �1�2�3	�
�4� �65 � - , - � , s.t. � ) � exists, and � ) � ��5 � - , - � � , where5 � - � , - � � is the set of holomorphic functions of - � onto- � . The Schur class � coincides with 5 � � 7 , � 7 � where � 7 is
the open unit disk.

The mapping (4) can be decomposed into two steps :

�%8 � �����3� ���"���.- $ �� - $ '� ���"��� /21 ���"���3� � 8 � �"��� � $ �� � $ '� � 8 � �"��� , (7)

and � � �"��� � �" � 8 � ����� . Since the transform �:9; � 8 � in (7)
is a linear fractional transformation (LFT), we begin with
recalling elementary (Euclidean) properties of LFTs [17]

[18]. Let <>=? % denote the Möbius group <@=? % �2�3	� � ��9;A " �CBD " � � , with $0E - % �GF��� � ( $0E - % � �>� corresponds to the
trivial situation where the mapping is either constant or un-
defined). Then the mappingH1I -KJ � � , L � ; <@=? %< �NM $ %

� EPO 9; HCQ
, with

HCQ �����3� A " �CBD " � �
is a group homomorphism. Since

H Q � HSR Q for all T � L�U ,
there is no loss of generality in supposing that E0V / � < ��� � .
From now on we shall thus restrict to WXJ � � , L � . Then the
kernel of

H
reduces to Y and - Y , and <@=? % is isomorphic to

the associated quotient group : <@=? %[Z� � W�J � � , L �*\^] Y � .
Now,

A " �CBD " � � � A D ��B D ) A �D�_ �" � � � D (resp. � A� � ��B� ) if �`F�a�
(resp. � �b� ), so any LFT is a succession of translations,
inversions, rotations, and/or homotheties. Since all these ge-
ometrical transformations preserve circles, a LFT maps any
circle in the complex plane (possibly of infinite radius) into
another circle (possibly of infinite radius). In particular,

H Q
maps the unit circle c c onto itself if and only if < belongs to
the subgroup Wed � � , � � of W�J � � , L � consisting of f - unitary
matrices, with f � Ehg"$ji � � � , - � � :

Wed � � , � ��� � M $ %
%(' $ ' O with

� $ � � - � % � � � � �

� �4< � W�J � � , L � , s.t. < M � �� - � O <ak � M � �� - � O � �
Let l be the set of such Möbius transforms; l is a subgroup
of <>=? % , and

l ���3	� � ��9; $ � � %% ' � � $ ' , s.t.
� $ � � - � % � � � � �Z� � Wed � � , � �*\^] Y � �

Finally, observe that any
H Q � l also maps the interior � 7

of the unit-circle onto itself (and similarly for its exterior).



We now turn back to the Schur algorithm. Since
� $ � � � � ,

we have

�"���"��� ��5 � � 7 , � 7 � and �������3� $ � � (8)

/21 �"���"��� ��5 � � 7 , � 7 � and �������3� $ � � (9)

/21 �"� 8 � ����� �65 � � 7 , � 7 � and � 8 � �+�����a��� (10)

/21 � � �"��� ��5 � � 7 , � 7 � , (11)

whence (5). Equivalence (8)/(9) is due to the maximum prin-
ciple and (10)/(11) to the Schwarz lemma. As for (9)/(10), it
holds because � 8 � � HCQ � � , where the mapping

H Q I �69;H Q ����� � " ) A��� ) A��� " �  #" ) A � $ ��� � )	� A � � _ � ) A��� "%$ � � � )	� A � � _ belongs to l 

$�.0/ � � 7 � . In fact, it is interesting to notice that (7) was the
only possible choice, because, as is well known [19] [20],
the automorphisms of � 7 indeed coincide with the group of
LFTs which leave the unit-disk invariant :l � $ . / � � 7 � �
2.3 Hyperbolic geometry of the Schur and Levinson-

Szegö algorithms

We now turn from analytical to geometrical considerations.
These are obtained naturally in the framework of the theory
developped in [21], which aims at describing the holomor-
phic structure of a domain - of

L � in terms of geometric
properties of the space � - , E�� � . If the distance E
� is cho-
sen such that any holomorphic mapping of - onto itself is
a contraction, then automorphisms of - are isometries with
respect to E�� and can thus be interpreted (in the spirit of F.
Klein) as rigid motions with respect to the geometry speci-
fied by E�� .

The Schwarz-Pick lemma [17] [20] [21] [22] provides a
nice illustration of this general methodology to the present
situation; as expected, we shall meet non-Euclidean hyper-
bolic geometry, since - reduces to the unit disk � 7 , which
is a Euclidean model of the Lobachevski plane (see e.g.
[23]). Let E Q � � , � � denote the Möbius distance in

L
: for all

�
,
� 8 � L

, E Q ��� , � 8 � � ''' " ) " �� ) " � � " ''' . The Schwarz-Pick lemma

states that any function � belonging to 5 � � 7 , � 7 � is a con-
traction with respect to the Möbius distance :� �65 � � 7 , � 7 � 1

for all � ,
��8S� � 7 , ''' 	  " $ ) 	  #" � $� )  	  #" � $ $ � 	  #"%$ ''' 7 ''' " ) "%�� ) " � � " ''' 5

equality holds if and only if � belongs to $�.0/ � � 7 � .
Let us now turn back to the discussion at the end of section

2.2. Schur had to chose the functional � 9; � 8 � (or, in general,�*) 9; ���*) � � ) within $ . / � � 7 � , and automorphisms of � 7 pre-
serve the Möbius distance E Q , and thus the Poincaré distanceE�� � � , � � , with E�� �"� , � 8 � ���*!�� � � ���  #" ! " � $� ) ���  #" ! " � $ . More precisely,
they are well known to coincide with the direct isometries of
the Lobachevski plane � 5 �

, E � � [17] [18] 2 :l � $�.0/ � � 7 � Z� � direct isometries of �!5 �
, E�� � � �

2The full isometry group of ����������� � is obtained by including the map!#"$%!�& as a generator.

This geometry is thus, by construction, the natural geometri-
cal environment of the Schur algorithm.

Finally, let us briefly consider the Levinson-Szegö algo-
rithm. It is not a solution to an analytic interpolation prob-
lem, but can nevertheless be rephrased (via the Schur-Cohn
stability test) in the framework of section 2.1 [24], and thus
shares the same geometrical environment. For let $ �"��� �	 � ��� $ � �  , % �"��� ��� � � $ � � \�� ' � � ' and � ����� � % �"����\ $ ����� .
Then � ����� is rational and has modulus 1 on c c . So, by
the maximum modulus theorem, ( � ����� is analytic in � 7 and� � �"��� � � �

on c c ) if and only if (
� � �"��� � 7 �

in � 7 and� � �"��� � � � on c c ), i.e., if and only if � is a rational bounded
function of the lossless type (a Blashke product). But this
can be checked via the Schur algorithm, because � � � � is
a Blashke product of order + if and only if

� � )������ ��� �
for� 7(' 7 + - � and

� � � ����� � � � ; the recursions coincide with
the order-decreasing Levinson-Szegö algorithm.

3 Schur Complements in )+*-, .0/ )2143*-, . and spher-
ical trigonometry

From now on we shall deal with spherical trigonometry as-
pects of the Schur and Levinson-Szegö algorithms. In this
intermediate section, we first recall some elementary projec-
tive identities. We next bring back from spherical trigonom-
etry some relations among parcors which we will refer to
in sections 3.3 and 4. In the view of section 4, we even-
tually consider Schur complementation in a covariance ma-
trix or in its inverse, because Schur complements provide
the connection between the Schur and Levinson-Szegö al-
gorithms and spherical trigonometry. The reason why is
that algebraically the elementary recursion with pivot / 
 ! 
 :/  "! # ; / 8 "! # � /  "! # - /  "! 
 / ) �
 ! 
 / 
 ! # , reduces to a cosine law when
normalized by � /  "!  � / #(! # .
3.1 Partial correlation coefficients, recursive projec-

tions and Yule’s parcor identitity

Our geometrical results are based on the properties of orthog-
onal projectors and can thus be formalized in any Hilbert
space. However, the natural framework in this paper is
the space � 5 � �76 ,98 ,�: � of complex, zero-mean, square-
integrable random variables defined on �76 ,98 ,;: � , endowed
with the inner product � � ,=< � ���2� � <

' � .
Let :?> denote the orthogonal projector on the Hilbert

space 5 �A@ � generated by @ , :
B
> � Y - :?> , �$ > the pro-

jection of $ onto @ , and 
$ > ��$�- �$ > . � denotes nor-
malization to unit norm : � � � � � , �

� ) ��� � . The (some-
times called total) correlation coefficient �DC ! E (resp. partial
correlation coefficient � >C ! E ) of $ and F (resp. of $ and F ,
with respect to a commun subspace @ ) is defined as ��C ! E �
� $

, F � �9� �
E3! C,� ' (resp. � >C ! E �9� G$ > ,

GF > �3�IH � >E3! C#J ' ).
Let us now consider recursive projections. It is well known

that

:?>
! C � :?> � :LKC	M ,+:

B
>
! C � :

B
> - :LKC	M (12)



where : >
! C , say, is the orthogonal projector onto the closed

subspace generated by @ and $ . These identities are of
utmost importance in RLS adaptive filtering as well as in
Kalman filtering. From (12), it is easy to show that


F >
! C � 
F > - � 
F > , 


$ > �(� 
$ > , 

$ > �

) � 
$ > , (13)

which gives the useful relations

� 
F >
! C
, 
F >

! C ��\ � 
F > , 
F > �3�
� - � � >C ! E � � (14)

and � 
$ >
! E
, 
F >

! C �3� - � >C ! E � (15)

In order to get spherical trigonometry relations, we need
consider three projection residuals. From (13) we have

� 
� > ! C , 
F > ! C �0� � 
� > , 
F > � (16)- � 
� > , 

$ > �(� 
$ > , 


$ > �
) � � 
$ > , 
F > �

Dividing by � 
� > , 

� > � ��� � � 
F > , 
F > �

��� �
, and using (14),

we get

� >
! C� ! E � � > � ! E - � > � ! C � >C ! E� � - � � > � ! C � � � � - � � >C ! E � � , (17)

which is formally equal to (3) (at least in the real case), up to
a straightforward identification of variables.

3.2 New relations among parcors induced by spherical
trigonometry

Let us first briefly recall some facts from spherical trigonom-
etry (and in particular the duality principle). Three points
- , . and / on the sphere ��� , � � determine the spherical tri-
angle -�.0/ , which consists of the 3 arcs of great circles -�. ,
-0/ and .0/ obtained by intersecting the sphere and the planes� -�. ,

� -0/ and
� .0/ (see figure 1). A spherical triangle has 6

elements : the 3 sides $ ,
%

and � , and the 3 angles $ , F and�
. The side $ , say, is defined as the angle

�. � / and is equal
to the length of the arc .0/ . The angle $ , say, is defined as
the dihedral angle between the planes

� -�. and
� - / , and is

also equal to the angle made by the tangents to the spherical
triangle -�. / at point - .

We now turn to the duality principle of spherical trigonom-
etry. Let - 8 be the pole (with respect to the equator passing
through . and / ) which is in the same hemisphere as - ; . 8
and / 8 are defined similarly. The spherical triangle - 8 . 8 / 8 is
the polar triangle of -�.0/ . In - 8 . 8 / 8 , the elements $ 8 and $ 8 ,
say, are equal respectively to � - $ and � - $ (see e.g., [25]
[26]). So, for any spherical trigonometry formula there ex-
ists a dual relation, obtained by replacing � $ ,

%
, � ,

$
, F ,

� �
by � � - $

, � - F , � - �
, � - $ , � - % , � - � � , respectively.

There are three degrees of freedom in a spherical triangle,
so there cannot be more than three distinct relations among
the six elements. All the spherical trigonometry relations can
thus be derived from the three cosine laws obtained by per-
muting variables into (3). Now, the identification (3) = (17)

enables us to hint that some spherical trigonometry relations
might hold as well when transposed to the parcors frame-
work, and indeed they do. Similarly, they can all be derived
from (17); however, though purely algebraic, these relations
are not necessarily intuitive.

Among any 4 elements there exists one and only one re-
lation. These 15 relations are the 3 cosine laws, the 3 co-
sine laws in the polar triangle, the 3 self-dual sine formu-
las and the 6 self-dual cotangent formulas. They all have a
parcor equivalent. However, there are many different rela-
tions among any 5 elements (or between the 6), and it always
seems possible to find new ones. Thus we give only one of
them, the five elements formula. For sake of brevity, proofs
are omitted.

3.2.1 The cosine law in the polar triangle

In the polar triangle, the cosine law reads :

 �!'" $ �  �!'" $ �  &!#" F  �!#" �
"�(+) F "�(+) � � (18)

Similarly, (17) admits the polar version :

� > � ! E � � >
! C� ! E � � >

! E� ! C � >
! �C ! E

� � - � � >
! E� ! C � � � � - � � >

! �C ! E � � , (19)

which was already known to Yule [12, (19) p. 93].

3.2.2 The sine law

The spherical triangle self-dual sine law is the following for-
mula : "�(+) $

"�(+) $ �
"�(+) F"�(*) % �

"�(+) �
"�(+) � � (20)

Similarly, the following relation holds among parcors :���� � - � � >
! CE3! � � �� - � � >E ! � � � �

���� � - � � >
! E� ! C � �

� - � � > � ! C � � �
���� � - � � >

! �C ! E � �
� - � � >C ! E � � �

(21)

3.2.3 The cotangent formulas

These are the 6 self-dual formulas obtained by permuting
variables into the equation

 &!	� % "�(*) $ �  �!'" �  �!'" $ � "�(+) �  �!
� F � (22)

Similarly, the following relation among parcors holds :� � >C ! � \ � � - � � >C ! � � �
� � � - � � >E3! � � � � � >
! �C ! E � >E3! �

� � � - � � >
! �C ! E � ��� � > ! EC ! � \ � � - � � > ! EC ! � � �
� (23)



3.2.4 The five elements formula

These are the 6 formulas obtained by permuting variables
into

 �!#" % "�(+) � � "�(+) %  �!'"0$  �!'" � � "�(+) $  �!'" F � (24)

The dual equations are

 &!#" F "�(+) � � - "�(+) F  �!'" $  �!#" � � "�(+) $  &!#" % � (25)

Similarly, the following relations among parcors hold :

� > � ! C � � - � � >E3! C � � � (26)
� � - � � > � ! C � � � > ! C� ! E � >E ! C � � � - � � > � ! E � � � > ! E� ! C

� >
! E� ! C � � - � � >

! �E ! C � � � (27)

- � � - � � >
! E� ! C � � � > � ! E � > ! �E ! C � � � - � � >

! C� ! E � � � > � ! C
3.3 Schur Complements in � �&	 � \ � ) ��&	 � and spherical

trigonometry

We now consider covariance matrices and their inverses.
Let ���  � � ��� be scalar random variables. For

' 7��
, let

� ) 	 � � � � ) ����� � � ��� . In all this section, we will assume
that : ���  �� � ��� belong to � 5 � � 6 , 8 ,�: � , and that the covari-
ance matrix � �&	 � � � � � ��	 � � k�&	 � � of � �&	 � is invertible.

In the sequel, the general notation
�
�  ��  	�

� !������ ! 	�
�� $ of sec-

tion 3.1 is simplified to 
� � � !������ ! � � . Let
' 7��

,
� 7��

. Since
we will essentially use contiguous sets of indices (with-

out loss of generality), we also replace 
�  �  � 	�������� � ��� $ ,

�  �  � 	���� �! "$#��� � �%� $ and 
�  �  � 	���� �! "&#(' �! "$)��� � �%� $ respectively by

�
) 	 � , 
�

* ) 	 �,+.-�/ and 
�
* ) 	 ��+0-�/ ! � . Similar notations are adopted

for the correlation coefficients, so that the partial correlation

coefficient (of order
� - '

) � �  � 	 � � �! "&#��� � �%� $	�1 ! 	32 , say, is denoted

simply by � * ) 	 �,+.-�/ "! # . In our conventions, the order of the sec-

ondary (upper) indices
'

and
�

is meaningful : 
�
) 	 � , �

) 	 � �! #
(and later on �

) 	 � "! # ,
� ) 	 � "! # , :

) 	 � "! # and
' ) 	 � �! # ) reduce respectively

to �  , �  "! # , �  "! # , �  "! # , :
 "! #

and
'  "! #

if
' 
4�

. In this way the
notation changes continuously from the total to the partial
situation. For instance, there is no conceptual need to distin-
guish between total and partial correlation coefficients since
a total correlation coefficient is simply a parcor of order � .

In this section, we shall first recall (and slightly extend)
some results [27] [28] [29] [30] giving the covariance ma-
trix of � ��	 � (resp. its inverse) in terms of covariances of
the random variables ���  � � ��� (resp. of the random vari-

ables � 
�
* �&	 � +.-   � � ��� ). We thus get lemmas 3.1 and 3.2, which

are generalized to theorem 3.1 by considering Schur comple-
ments in � �&	 � and in �

) ��&	 � . Lastly these recursions receive
a spherical trigonometry interpretation. We begin with the
following elementary results.

Lemma 3.1 Let � �&	 � ��� �  �! # � � "! # ��� and : �&	 � � �
) ��&	 � �� '  "! # � � "! # ��� . Then for all g , 5 � � � ����� + � ,

�  "! # � � �  , �
# �

, (28)

'  "! # � � 
�
* �&	 � +0-   

� 
� * ��	 � +0-   
, 
�
* �&	 � +0-   � ,


�
* �&	 � +0- ##

� 
� * �&	 � +.- ##
, 
�
* ��	 � +0- ## � � � (29)

Lemma 3.2 Let � �&	 � ��� �  �! # � � "! # ��� and : �&	 � � �
) ��&	 � �� '  "! # � � "! # ��� . Then for all g , 5 � � � ����� + � ,

�  "! #
� �  "!  � # ! # � � �  , �

# � � �  "! #
, (30)

'  "! #
� '  �!  ' # ! # � � 
� * �&	 � +0-   

, 
�
* �&	 � +0- ## �3� - � * �&	 � +.-  "! # "! # � (31)

We are now ready to extend lemma 3.2. Let < �M $ F� 6 O with $ invertible. Then the Schur complement

� < \&$ � of $ in < is defined as � < \�$ �2� 6 - � $ ) � F .
The following theorem encompasses and generalizes lemma
3.2 (which corresponds to the particular case

' � - � ) :

Theorem 3.1 Let � �&	 � � � �  "! # � � "! # ��� and : �&	 � � �
) ��&	 � �� '  �! # � � �! # ��� . Let moreover �

�&	 )�&	 � � � � �&	 ) �! # � � "! # � ) � � (resp.

:
�&	 )��	 � � � ' �&	 ) "! # � � "! # � ) � � ) be the Schur complement of � �&	 )

in � �&	 � (of the � ' � � �87 � ' � � � top left corner� Y ) � � � � : �&	 � � Y ) � � � �9� of : �&	 � in : �&	 � ). For
' � - � , we set

� ��	 )��	 � � � ��	 � , :
�&	 )��	 � � : �&	 � ,

� �&	 ) �! # � �  "! #
,
' ��	 ) �! # � '  �! #

, and
� �&	 ) "! # � �  �! # . Then for all

' � � - �
,
�
,
�����

, +
- � � , and for allg , 5 � � ' � � ����� + � ,

� �&	 ) �! # \ � � �&	 ) "!  � �&	 )# ! # � � ��	 ) �! #
, (32)

' �&	 ) "! # \ � ' �&	 ) "!  ' �&	 )#(! # � - � * ) � �
	 � +.-  "! # "! # � (33)

We now turn to the connection with the spherical trigonome-
try cosine laws :

Corollary 3.1 Up to normalization, an elementary (i.e. rank
1) Schur complement step on �

�&	 )�&	 � (resp. on :
�&	 )�&	 � ) performs

the law of cosines (3) (resp. the polar law of cosines (18)) :
For all

' � � - �
,
�
,
�����

, +
- � � , and for all g , 5 � � ' � � ����� + � ,

� �&	 ) � � "! # � � �&	 ) "! # - � �&	 ) "! ) � � � ��	 )) � � ! #� � - � � �&	 ) "! ) � � � � � � - � � �&	 )) � � ! # � � , (34)

� * ) � � 	 � +0-  "! # "! # � � * ) � �
	 � +0-  �! # "! # � � * ) � �
	 � +.-  "! ) � � "! ) � � � * ) � �
	 � +0- ) � � ! #) � � ! #� � - � � * ) � �
	 � +.-  "! ) � � �! ) � � � � � � - � � * ) � �
	 � +0- ) � � ! #) � � ! # � � �
(35)

Proof :
The Schur complementation step �

�&	 )�&	 � ;
� � �&	 )�&	 � \ � ��	 )) � � ! ) � � � � �

�&	 ) � ��&	 � reads componentwise :� �&	 ) � � "! # � � 
� �&	 ) , 
�
�&	 )# � - � 
� �&	 ) , 
�

�&	 )) � � � � 
� �&	 )) � � , 
� �&	 )) � � � ) �



� 
� ��	 )) � � , 
� �&	 )# � �6� 
� ��	 ) � � 
, 
�
�&	 ) � � � , due to (16). Normaliz-

ing as in section 3.1 we get (34).
We next consider (35). Similarly, from the quotient

property of Schur complements (see e.g. [16]), we have� :
�&	 )��	 � \ ' �&	 )) � � ! ) � � � � :

�&	 ) � ���	 � . But this equality reads com-
ponentwise' �&	 ) "! # - ' �&	 ) "! ) � � � ' �&	 )) � � ! ) � � � ) � ' �&	 )) � � ! # � ' ��	 ) � � �! # �
Dividing by

� ' �&	 ) "!  � ' �&	 )# ! # , and using (33), we get

� * ) � �
	 � +0-  "! # "! # � � * ) � �
	 � +0-  �! ) � � "! ) � � � * ) � �
	 � +.- ) � � ! #) � � ! # � � ' �&	 ) � � "!  \ ' �&	 ) "!  
� * ) � � 	 � +0-  "! # "! # � ' �&	 ) � �# ! # \ ' �&	 )# ! # . Remarking from (29) and

from the equality :
�&	 )��	 � � : ) � �
	 � that

' ��	 ) �!  �
� 
� * ) � �
	 � +.-   

, 
�
* ) � �
	 � +.-   � ) � , and using (14), we see that� ' �&	 ) � � "!  \ ' �&	 ) "!  � � � - � � * ) � �
	 � +.-  "! ) � � "! ) � � � �

. We thus get (35),
which is the polar cosine law (19) = (18).

4 Non-Euclidean (spherical) geometrical as-
pects of the Schur and Levinson-Szegö algo-
rithms

From now on, we shall further assume that � � � � � ����� � � � �� ��� ��� ) � ����� ��� ) � � , where ����� , / ��� � � is a zero-mean, dis-
crete time, wide sense stationary time series. As a conse-
quence, � ��	 � is a Toeplitz matrix. For simplicity, let us de-
note � �&	 � by � � and

�  "! #
by

� #�)* 
. The parcors satisfy a shift-

invariance property : for all g , 5 , � , ' , � ��� � , ' 7 �
, g , 5 F�� ' , ����� , � � , � ) 	 � "! # � � ) � 
#	 � � 
 � 
 ! # � 
 . Among all correlation coeffi-

cients (total or partial), the function � �*� ' ��� � �
	 ) ) �� ! ) � )��	� 
��
(with �*� � � � � � ! � , as in theorem 3.1) is the partial autocor-
relation function of the process.

Let us now turn back to the Schur and Levinson-Szegö al-
gorithms. In this final section, we shall write the commun
(lattice) recursions of both algorithms as two Schur comple-
ment recursions (in the forward and backward directions),
but acting on the covariance matrix (in the Schur case) or on
its inverse, i.e., on the covariance matrix of the normalized
interpolation process (in the Levinson-Szegö case). From
section 3.3, the link with spherical trigonometry will fol-
low immediately : up to normalization, the Schur (resp. in-
verse Levinson-Szegö) algorithm performs the law of cosines
(resp. the polar law of cosines). This is a new feature of
the classical duality of the Schur and Levinson-Szegö algo-
rithms. As for the Levinson-Szegö algorithm, it is an imple-
mentation of the polar five elements formula.

4.1 Spherical geometry of the Schur algorithm

The new (spherical) geometrical interpretation of the algo-
rithm stems from the connection between the Schur algo-
rithm and linear regression. Let us thus initialize (6), via
(1), with

� � �"���3�
� � � � � � � � �a������ ��� � � � � � � � � �a����� �

In this case, for all
'�
9�

the Schur parameter � ) ����� is equal
to the (partial) correlation coefficient � �
	 ) ) �� ! ) . It is convenient
to write the algorithm in vector form [31] [32] : for

'�
 �
,�������

�
. �) ) ��� �) ) �. �) ) ��� �) ) �

...
.... 
) ) ��� 
 � �) ) �

...
...

��������
� M

� - ��)��+���
- � ') �+��� � O �

�������
�
. �) �. �) � �)
...

.... 
) � 
)
...

...

��������
� , (36)

with initialization . �� � � � , and .  � � �  � � �  
for g 
 � .

From the point of view of analytic interpolation theory,
which was that of section 2.1, this

' ��� step of the algo-
rithm incorporates the new data

� ) in the covariance exten-
sion problem. This problem is recursive and “hierarchical”
by nature : given � � � , ����� , � ) ) � � such that � ) ) � is positive
definite (


 � ), � ) 
 � if and only if
� ) belongs to a disk

(of decreasing radius
� ��� ) ) � ��� � � - � � �
	  ") �� !  � � � ), the center of

which depends on � � � , ����� , � ) ) � � . So for all
� 
 � , the row

number
�

of (36) integrates the contributionof the correlation
lag

� ) in the subsequent (possible) compatibibility of
� ) � 


with � � � , ����� , � ) � 
 ) � � . In particular, the row number zero
tells whether

� ) is compatible with the data � � � , ����� , � ) ) � �via the following test : assuming that � ) ) � 
 � , � ) 
 � if
and only if

� �*)��+����� � �) ) � \ . �) ) � ��� � .
This progressive incorporation of the constraints� �
,
�����

,
� )
,
����� in the analytic interpolation problem

corresponds to the progressive incorporation of the random
variables � � ) � , ����� , � � ) ) � � , ����� in the linear prediction
problem, and thus to the progressive updating of the asso-
ciated projection operator (this, of course, is nothing but
the classical lattice or Gram-Schmidt interpretation of the
Schur algorithm [33]). To see this, let us rewrite the Schur
algorithm in terms of projective identities. It is easily seen
(by induction) that for

� 
 � , the two recursions of the row
number

�
of (36) are two coupled occurrences of the same

identity (16) :� � 
� � ) ) � ��	 � ) �� ) ) , 
�
� ) ) � �
	 � ) �� ) ) ) 
 � � 
� � ) ) � �
	 � ) �� , 
�

� ) ) � ��	 � ) �� ) ) ) 
 ���
7
��
� � -  K	 �"! �$# �&% �"! �� ! K	'�(! �$# ��% �"! ��"! � $ K	 �"! �$# �&% �"! ��(! � ! K	'�(! �$# ��% �"! ��"! � $-  K	 �(! �$# ��% �"! ��"! � ! K	 �"! �$# ��% �(! �� $ K	'�(! �$# ��% �"! �� ! K	'�"! �$# ��% �(! �� $ �

���
�

� � � 
� � ) ) � �
	 �� ) ) , 
�
� ) ) � �
	 �� ) ) ) 
 �(� 
� � ) ) 	 � ) �� , 
�

� ) ) 	 � ) �� ) ) ) 
 ��� � (37)

Since all these quantities are covariances of estimation er-
rors, they reduce to parcors when appropriately normalized;
so a connection of the recursive equations (37) with spherical
trigonometry is expected.

In fact, both equations are easily seen to

be Schur complement recursions in � �
	 ) ) ��&	 � �2�3	�
� � 
� � ) ) � �
	 � ) �� )  , 
�

� ) ) � �
	 � ) �� ) # � � � "! # ��� . These two Schur
complementation steps correspond to augmenting the set
of variables ��� � )* � ) ) � ��� in the projective space in its two
(contiguous) opposite directions : the forward one � �



and the backward one � � ) ) . Because of stationarity,
the resulting quantities still are covariances of estimation
residuals with respect to the same subspace, because the
right hand side of (37) also reads � � 
� � ) ) 	 � ) �� ) ) ) � , 
�

� ) ) 	 � ) �� ) ) ) 
 ) � �� 
� � ) ) 	 � ) �� , 
�
� ) ) 	 � ) �� ) ) ) 
 � � , and the two coefficients in the

transformation matrix reduce to - � �
	 ) ) �� ! ) and - ��� �
	 ) ) �� ! ) � ' .
From the discussion in section 3, the link with spherical
trigonometry is immediate :

Theorem 4.1
Up to normalization, an elementary step of the Schur al-

gorithm performs two coupled occurrences of the law of
cosines : for all

' 
 �
, and for all

� 
 � ,
� � �
	 ) ) �) ! ) � 
 ,

� �
	 ) ) �� ! ) � 
 �
���
�

�� � )	� � �&% � ! �� ' � � _ )�� ��% � ! �� ' �� � )?� � ��% � ! �� ' � � _)�� ��% � ! �� ' �� � )	� � �&% � ! �� ' � � _ �� � )?� � ��% � ! �� ' � � _
����
� �

� � �&	 ) ) �) ! ) � 
 � � - � � �
	 ) ) �� ! ) � 
 � � , � ��	 )� ! ) � 
 � � - � � �
	 ) ) �) ! ) � 
 � � � � (38)

Proof.
Divide (37) by � 
� � ) ) � �
	 � ) �� , 
�

� ) ) � �
	 � ) �� � ��� � � 
� � ) ) � ��	 � ) �� ) ) ) 
 ,
� � ) ) � ��	 � ) �� ) ) ) 
 � ��� � , which is equal to � 
� � ) ) � ��	 � ) �� ) ) ,
� � ) ) � ��	 � ) �� ) ) � ��� � � 
� � ) ) � �
	 � ) �� ) ) ) 
 , 
�
� ) ) � �
	 � ) �� ) ) ) 
 � ��� � , and use

(14).

4.2 Spherical geometry of the Levinson-Szegö algo-
rithm

We now turn to the spherical geometry of the Levinson-
Szegö algorithm. Remember from Theorem 3.1 that succes-
sive Schur complements in � �&	 � (resp. in �

) ��&	 � ) correspond
to an increase (resp. a reduction) in the number of variables
in the regression problem. So, as was already the case at the
end of section 2, the comparison with the Schur algorithm
indeed proves easier when dealing with order-decreasing re-
cursions.

Let us introduce the forward
5 �&� - order linear predic-

tion coefficients � - $
#  � #  ��� by 
� � ) # 	 � ) �� � 	 #  ��� $

#  � � )* 
with $ # � � �

� From the Wiener Hopf equations, and

Theorem 3.1, we get $
#  � � 
�

* � ) # 	 � +0- � )* � )* , 
�
* � )8# 	 � +.- �� �*\

� 
� * � )8# 	 � +0- � )* � )* , 
�
* � )8# 	 � +0- � )* � )* � . So the order-decreasing

Levinson-Szegö recursions read :��
� � 
� * � ) ) 	 � +.- � ) 
� ) 
 , 
�

� ) ) 	 � ) �� �
� 
� * � ) ) 	 � +.- � ) 
� ) 
 , 
�

* � ) ) 	 � +0- � ) 
� ) 
 �� ��� �
� 
� * � ) ) 	 � +.- � ) 
� ) 
 , 
�

� ) ) � �
	 �� ) ) �
� 
� * � ) ) 	 � +.- � ) 
� ) 
 , 
�

* � ) ) 	 � +0- � ) 
� ) 
 �� ��� �

���
�

$ ) 
 � $ )) ) 
 � '
7
��
� �� )	� � ��% � ! �� ' � � _ � ��% � ! �� ' �� )?� � �&% � ! �� ' � � _� �&% � ! �� ' �� )	� � ��% � ! �� ' � � _ �� )?� � �&% � ! �� ' � � _
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� �

��
� � 
� * � ) ) � �
	 � +.- � ) 
� ) 
 , 
�

� ) ) � �
	 � ) �� �
� 
� * � ) ) � �
	 � +.- � ) 
� ) 
 , 
�

* � ) ) � �
	 � +0- � ) 
� ) 
 �� ��� � ,
$ ) ) �

� 
� * � ) ) 	 � ) � +.- � ) 
� ) 
 , 
�

� ) ) � �
	 � ) �� ) ) �
� 
� * � ) ) 	 � ) � +.- � ) 
� ) 
 , 
�

* � ) ) 	 � ) � +0- � ) 
� ) 
 �� ��� �

���
�

� $ ) ) �) ) 
 � ' (39)

(the first equation is valid for
� 7 � 7('

, with
'�
 � , and the

second for � 7 � 7 ' - � with
'�
 � ).

These equations are Schur complement recursions in �
) ��&	 ) ;

they correspond to reducing the set of variables ��� � )* � )  ���
in the projective space in its two (extremum) opposite di-
rections : the forward one � � and the backward one � � ) ) .
From the discussion in section 3.3, we thus expect that, after
appropriate normalization of the covariances of the estima-
tion errors, (39) will reduce to some spherical trigonometry
polar law.

This hint is enforced when looking at the ran-
dom variables in the left hand side of (37) and
(39). Let 	 � � ����� )* � ��
  
 ) , � � )
� � , � $ , F ,

� ���
� ��� , ��� ) ) , � � )�� � , and @ � 5 � 	�� ����� , � � ) ) , ��� )�� � � .
So @ � 5 � ����� )  � ��
  
 ) ) � � if � 
 '

, and @ �5 � ��� � )  ��  ��� ���
  
 ) ) � � if
� 7 � 7 ' - �

. Then (37)
can be visualized as projective identities within the tetra-

hedron � 
$ > , 
F > , 

� > � , and (39) as projective identities

within the tetrahedron � 
$ >
! E3! �

, 
F >
! � ! C

, 

� > ! C ! E � , which

can easily be shown [14] to be the polar tetrahedron of� 
$ > , 
F > , 

� > � .

Theorem 4.2
Up to normalization, an elementary step of the order-

decreasing Levinson-Szegö algorithm (resp. of the Levinson-
Szegö algorithm) performs two coupled occurrences of the
polar law of cosines (resp. of the polar five elements for-
mula) :
For all

'�
 � , and for all
� 7 � 7 ' - � ,

� � * �&	 ) +0- 
 ! �
 ! � ,
� * �&	 ) +0- 
 ! )
 ! ) �

���
�

�� � )?� ��� � % ��� � � ' �� ' � � _ ��� � % ��� � � ' �� ' �� � )	� ��� � % ��� � � ' �� ' � � _��� � % ��� � � ' �� ' �� � )?� � � � % ��� � � ' �� ' � � _ �� � )	� � � � % ��� � � ' �� ' � � _
����
� �

M � * ��	 ) +.- 
 ! � ! )
 ! �
� � - � � * �&	 ) +0- 
 ! )
 ! ) � �

,
� * �&	 ) +0- 
 ! ) ! �
 ! ) � � - � � * �&	 ) +0- 
 ! �
 ! � � � O ,

(40)
andM � * ��	 ) +.- 
 ! � ! )
 ! �

� � - � � * �&	 ) +0- 
 ! )
 ! ) � �
,
� * �&	 ) +0- 
 ! ) ! �
 ! ) � � - � � * �&	 ) +0- 
 ! �
 ! � � � O���

�
�� � )	� ��� � % ��� � � ' �� ' � � _ )���� � % ��� � � ' �� ' �� � )	� ��� � % ��� � � ' �� ' � � _)���� � % ��� � � ' �� ' �� � )	� ��� � % ��� � � ' �� ' � � _ �� � )	� ��� � % ��� � � ' �� ' � � _

����
� � � � * ��	 ) +.- 
 ! �
 ! � ,

� * �&	 ) +0- 
 ! )
 ! ) � �
(41)



Proof :
Using (15), (39) can be rewritten as :� � 
� * � ) ) 	 � +0- �� , 
�

* � ) ) 	 � +0- �� � ��� �
� 
� * � ) ) 	 � +.- � ) 
� ) 
 , 
�

* � ) ) 	 � +0- � ) 
� ) 
 � ��� � �&- �
* �&	 ) +0- 
 ! �
 ! � �

,

� 
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�
* � ) ) 	 � +0- � ) )� ) ) � ��� �

� 
� * � ) ) 	 � +0- � ) 
� ) 
 , 
�
* � ) ) 	 � +0- � ) 
� ) 
 � ��� � �&- �

* �&	 ) +0- 
 ! )
 ! ) ���
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���
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� * � ) ) � �
	 � +.- � ) 
� ) 
 , 
�
* � ) ) � ��	 � +0- � ) 
� ) 
 � � � � �&- �

* �&	 ) +0- 
 ! � ! )
 ! � �
,

� 
� * � ) ) 	 � ) � +.- � ) )� ) ) , 
�
* � ) ) 	 � ) � +0- � ) )� ) ) � � � �

� 
� * � ) ) 	 � ) � +0- � ) 
� ) 
 , 
�
* � ) ) 	 � ) � +0- � ) 
� ) 
 � ��� � � - �

* �&	 ) +.- 
 ! ) ! �
 ! ) � � �

Next divide by � 
� � ) ) � �
	 � ) �� , 
�
� ) ) � �
	 � ) �� � ��� � \ � 
� * � ) ) 	 � +0- � ) 
� ) 
 ,
�

* � ) ) 	 � +0- � ) 
� ) 
 � ��� � , which is equal to � 
� � ) ) � ��	 � ) �� ) ) ,
� � ) ) � ��	 � ) �� ) ) � ��� � \ � 
� * � ) ) 	 � +0- � ) 
� ) 
 , 
�
* � ) ) 	 � +0- � ) 
� ) 
 � ��� � . Us-

ing (14), we get (40) = (41).

5 Conclusion

In this paper, we addressed non-Euclidean geometrical as-
pects of the Schur and Levinson-Szegö algorithms. We
showed that the Lobachevski geometry is, by construction,
the natural geometrical environment of these algorithms,
since they call for automorphisms of the unit disk. By con-
sidering the algorithms in the particular context of their ap-
plication to linear prediction, we next gave them a new in-
terpretation in terms of spherical trigonometry. The role of
Schur complementation in linear regression analysis was em-
phasized, because of the natural link between this basic alge-
braic mechanism and the spherical trigonometry cosine laws.
Lastly, the Schur (resp. Levinson-Szegö) algorithm received
a direct (resp. polar) spherical trigonometry interpretation,
which is a new feature of the classical duality of both algo-
rithms.

Finally, let us briefly mention that these interpretations
provide the algorithms with structural constraints of a
geometrical nature. The Lobachevski invariants are the
Poincaré distance and the cross ratio (because of the use
of linear fractional transformations), and those of spherical
trigonometry are expressed by the relations among parcors
given in section 3.2. These constraints could hopefully
be used in the design of practical algorithms; this point is
currently under investigation.
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