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Abstract

Jump-Markov state-space systems (JMSS) are widely usddtistieal signal processing. However
as is well known Bayesian restoration in JMSS is an NP-haablpm, so in practice all inference
algorithms need to resort to some approximations. In thigepave focus on the computation of the
conditional expectation of the hidden variable of intergsten the available observations, which is
optimal from the Bayesian quadratic risk viewpoint. We shbat in some stochastic systems, namely
the Partially Pairwise Markov-switching Chains (PPMSC) dnees (PPMST), no approximation scheme
is actually needed since the conditional expectation aredt (be it either in a filtering or prediction

problem) can be computed exactly and in a number of opematioaar in the number of observations.

Index Terms

Bayesian restoration, Jump-Markov state-space systeansaly Pairwise Markov switching mod-

els, NP-hard problems.

I. INTRODUCTION

Let Xo., = (X, ..., X,,) be a hidden random sequence with valueRinY;., = (Y1, ..., Y;)

an observed random sequence with value®th and Ry., = (Rs, ..., R,) a discrete random
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sequence with values in a finite $et= {w1, - - - ,wx } which usually models the random changes
of regime, or switches of the distribution ¢X.,,Y7.,). The three chains are linked via some
probability distributionp(xo.,., y1.n,71.,). We assume a perfect knowledge @fco.., yi.n, 71.1)
and we address the restoration of the hidden random sequénégom a Bayesian point of
view, the best we can do is to compute a posterior probalaltysity function (pdf) of interest,
sayp(zk|y1.n), for some value of andn. On the other hand, in many applications only a point
estimate ofz,, is of interest, and a commonly used estimatoE{s{x|y1.,), i.e. the solution of

the Bayesian restoration problem with quadratic loss.

However, in many stochastic models neithge|y,.,,) nor E(Xx|y,.,) can be computed
exactly, because closed-form formulas are either unduailar involve a computational load
exponential in the number of observations, and thus caneadtmplemented exactly. In such

cases one needs to resort to some kind of approximations.

Let us consider for instance the classical conditionatigdir Gaussian model, also called

JMSS, described by the following equations :

R, is a Markov Chain (MC) (2)
Xov1 = Frop1(Ryg1) Xy + Wiy, (2)

where X,,W,,..W,, are Gaussian vectors iR?, and 7,,...7Z,, are Gaussian vectors iR™,
which are independent and independent?gf...,R,,. S0 model (1)-(3) is nothing but a classical
linear and Gaussian state-space system, except that ignilys (given by matrices;, (R,,) and

H,(R,)) depend on the realization of an M&.

For fixed R, = r,...R, = r,, p(zk|y1.,) IS Gaussian with parameters which can be
computed (whatevek andn) by standard Kalman-like techniques. However, it has beet w
known since [1] that exact computation pfz,|y:.,) (or even of the conditional expectation
E(Xk|y1n) = ZM E(Xk|r1m, Y1:0)P(r1n|y1m) ) 1S N0 longer possible with random Markay,
because such a computation would involve a number of opesagroportional tok™, where

K is the number of states of the Markov chaih The Bayesian restoration problem in (1)-
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(3) is thus NP-hard and different approximation schemeg leaen proposed, such as limiting
in some way the number of components in the Gaussian mixtire[4], [3], [4], or using
particle filtering methods [5], [6], [7]. Finally the poinsgmator ofz; is an approximation of
E(Xk|yin)-

It is thus of interest to propose stochastic models,. x, y1.n,71.v) for which the exact
computation ofti( Xy |y:.,) is computable in practice, i.e. with a number of operatidnedr (or

at least polynomial) in the number of observations.

Let us now turn to the contents of this paper. The Bayesianigired problem which we
address consists in computing efficiently the conditioxpeetationE[X,,,|y:.,] and associated
conditional covariance matrixCov(X,.,|y1.,) in a particular class of stochastic dynamical
models with Markov regime. More precisely, in section |l weow that E[X,,|y:.,] and
Cov(X,+p|y1:n) Can be computed exactly, with complexity linear in time, ireaent switching-
Markov system proposed in [8]. The extension of this al¢ponitto switching-Markov trees is

considered in section IlI.

II. EXACT FILTERING AND PREDICTION INPPMSC

In this paper we thus consider the following PPMSC model :

R, is an MC (4)
X1 = Fop1(Rog1) X + Wo, (5)
(R,,Y,) is a Partially Pairwise Markov Chain (6)

where X,,W1,...W,, are independent zero-mean random vectors, which are indepe and
independent of R;.,, Y1.,). We suppose thatR,,Y,) is a Partially Pairwise MC (PPMC) [9],
i.e. that

P(Tnﬂ, Yn+1 ’rlzna yl:n) - p(rn+1a Yn+1 ’Tna yl:n)- (7)

Note that in (5) (as compared to (2)) vectdr are not necessarily Gaussian. Also, by contrast
with eq. (3), there is no longer any direct stochastic refathetweeny,, and X,,; but of course

X1., andYi., remain dependent, and are linked via the NRC,,.
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In this section we extend the restoration algorithm presgemh [10] to the case where

(R,,Y,) is a PPMC. Let us first introduce some notations. For any ingefg@ndn, let us set

Mk(Tk,y1:n)=/ p(Tk, T | Y10 ) . (8)

R4
We will assume either that = n (for filtering) or £ > n (if prediction is assumed). If the

covariance matrix:, of W, exists for all n, let us set

Vie(rk, Y1) :/ T p(Th, T |Y1n ) A 9)

Ra

Of course E[ X} |y1.,] and Cov(X|y1.,) can be computed fromy (ry, y1.,) and Vi (rg, y1.n,) @s:

E[Xk|y1n] = ZMk(T/myl:n); (10)

COV[Xk|y1:n] = Z Vk(rka yl:n) - (Z Mk(rkn yl:n))(z Mk(Tkv yl:n))T' (11)

In the following we thus focus on the (recursive) computatdd M, (ry, y1.,) and Vi(re, y1..)-

A. The filtering problem in PPMSC

For convenience of the reader we recall here a (slightly fremt)i version of the filtering
algorithm presented in [8] because it will be neededlifB. Let (X;.,,, Ri.,, Y1.,) Satisfy (4)-

(6), with given transition®(r,,1|r,) and p(r,11, Yni1 710, Yin) = P(Tnsts Yni1|Tns Y1n). Then

we have:
1
M1 (Trg1s Ying1) = an+l(rn+l) ; My (T, Yy1:0)P(Trgts Ynt [T tim) — (12)
with > ( )
p(ymﬂ) g1 P\Tn+1 Ylint1
P\Yn+1\Y1:n) = = (13)
( +l| ) p<y1:n> ETn p(rna yl:n)
in which
p(rnJrla y1:n+1) - ZP(%, yl:n)p(rnJrl; Yn+1 ‘Tna yl:n)- (14)

Tn
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(Note that (14) is nothing but the extension to PPMC of thessitaal forward formula of the
Forward-Backward or BCJR algorithm, originally designed fatden Markov chains, see e.g.

[11], [12].) Furthermore, if the covariance matrik, of W, exists for alln we have :

1
2 p<rn 1, Yn 1|Tn7 yl:n)
p(yn-l—l’yl:n) Z * *

X [Fn—l—l(rn—s—l)vn(rna yl:n)Fn+1(Tn+1)T + En—‘rl]' (15)

Vn+1 (Tn+1, y1;n+1)
Tn

B. The prediction problem in PPMSC

Proposition.

Let (X;.n, Ri.n, Yi.v) satisfy (4)-(6), with given transitions(r,,.1|7,) andp(r,1, Yni1|7n, Y1:n)-
Then M, (rnip, y1.n) CaN be recursively computed with linear complexity in time p by the

following scheme :

. computeM,,(r,, y1.,) With the filtering algorithm recalled above;

. for each integep > 0, compute

Mn+p+l (Tn-i-p-i-la yl:n) - Z Fn+p+l (Tn—i-p-i-l)Mn—i-p(rn-&-pa yl:n)p<rn+p+l |Tn+p>~ (16)

Tn+p
Furthermore, if the covariance matrix, of IV, exists for alln, thenV,,.,(7,4p, ¥1..) Can

be computed as follows:

. computeV,,(r,, y1.,) With the filtering algorithm recalled above;

. for each integep > 0, compute

Vn+p+1 (Tn+p+17 yl:n) - Z p(rn—&-p—i-l |Tn+p> (17)
Tn+p

X [Fn+p+1(Tn+p+1)vn+p(7"n+p, yl:n)Fn+p+1(7°n+p+1)T + En+p+1]-

Pr oof.
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We have

p(xn-&-p-i-hrn-i-p-&-l‘yl:n) :/ Zp($n+p+17Tn+p+17xn-ﬁ-pvrn-‘rplyl:n)dxn-i-p
R4

Tn+p

= / Z p(anrpa rn+p|y1:n)p(xn+p+17 Tn+p+1 |xn+p7 Tn4p, yl:n)danrp' (18)
Ra

Tn+p

On the other hand, using (4) and (5),

p(xn+p+1a T‘n+p+1 |xn+pu 'rnJr;m yl:n) = p($n+p+1 |rn+p+17 anrpa 'rnJr;m yl:n)p(rn+p+1 ‘anrp» rnera yl:n)
= p($n+p+1|r7l+p+lvIn+p)p(rn+p+1|7’n+p)-

We then multiply (18) byz,,+1 and integrate with respect to,,,.; to get :

M sp1(Tntpt1,Y1m) = /xn+p+1p(xn+p+17Tn+p+1|y1:n)dxn+p+1
R

q
/ Z p(anrpa 7”n+p|yl:n)]'-_')[)(nﬂDJrl|7dn+p+17 xn+p]p(rn+p+1‘Tner)d'Tner‘
Ra Tn+p

Since the{1V,,} are independent, zero-mean and independent frBm,, Y.,), we have

E[Xnipr1lTnipr1: Tnapl = Frips1(Tnap+1)Tnap,

and finally

M ipia (TH+P+17 yl:n) = / Z p($n+p, Tn—l—plyl:n)Fn—i—p—i-l(Tn—s-p—I-l)In—i-pp(Tn—l-p—&-l ’Tn—s-p)dxn—&-p
R4

Tn+4p

= Z Etpt1 (Pnsp+1) Mup(Taps Y1:0)P(Tpt1 [Tt

Tn+p

which completes the proof of (14). (15) is obtained simylarl

Remark.

In the proof only (4) and (5) have been used, which implies$ tha proposition also holds for
JMSS; the prediction problem in JMSS however remains Nié-Barce, of course, in that case

M, (rn, y1.,) cannot be computed exactly.
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[1l. EXTENSION TOPPMST
A. Introduction

Multiresolution signal and image analysis and multiscéd@i@athms are of interest in many
fields [13], [14]. In particular, efficient restoration alifbms in statistical models defined on

Hidden Markov trees (HMT) have been developed (see e.g, [16]).

Let us first briefly recall the definition of a Markov Tree (MT)et S be a finite set
of indices and let us consider a tree with nodes indexedSby.et us consider a partition
S =1{8,8,,...,Sv}, whereS, are the generations of the tre&; is the root noder, S, is the
set of its children, and so on. Each nogdexcept the root node has exactly one parent,
the set of the children of is denoted bys™, the set of all descendants ety s** and the set
of all ancestors ok by s~—. We also denote byi(s) the set of all ancestors of and s itself
(i.e.a(s) = {s~—, s}).Without loss of generality we consider here the case otlitytiees: each
nodes ¢ Sy has exactly two childrer; ands, (i.e. s™ = {s1, s2}) (see fig. 1). Each nodeis
associated with a random variahl(s). Also we introduce the notatioAs = {X(s),s € S}.
The tree is a Markov one if

p(rs) =ple) [ plaze).
5€8\S

Let now Xs = {X(s),s € S} andYs = {Y (s), s € S} be two sets of variables defined on
the same sef. VariablesX (s) (resp.Y (s)) are hidden (resp. observed)Xs, Ys) is an HMT
if their joint distribution satisfies:

plrs,ys) =plx,) [ pladee) []p(vles),
s€S\S1 s€S
i.e. z is an MT andp(ys|rs) = [[,csP(ys|zs). As we can see HMT are a natural extension
of well-known Hidden Markov Chains to trees. HMT have beereeded to Pairwise Markov
Trees (PMT) [17] [18] defined by :
p(zs) =p(z) [ plzlz),

s€S\S1
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Fig. 1. Example of dyadic tree

in which z; = (z4,y5) and zs = (zs,ys). Any HMT is a PMT, but the converse is not true,
since in a PMTrs is not necessarily an MT. Finally PMT can be extended to &rtPairwise
Markov Trees (PPMT), which we define by :
p(zs) =p(z) [ pGslzesve) =pl@ry) [ ps vslwe yae). (19)
s€S\S1 s€S\S1

Let us now introduce a third latent process taking its values in a finite seR =
{wi, ...,wr }. We will say that(Xs, Rs,Ys) is a Triplet Markov Tree (TMT) if it is an MT.
Since Rs monitors the changes of characteristics of the model, wecall it the "switching
process” and the TMT involving such a process will be callédaakov-Switching Tree (MST).
The aim of this last section is to extend the previous Bayefdt@ning and prediction algorithms

to some particular MST.

B. Exact filtering on PPMST

Let X = {X;}ses, Y = {Ys}ses and R = {R;}scs be sets of random variables indexed
by S. Each X, (resp.Y,) takes its values ilR? (resp.R™) and R, takes its values if) =
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Fig. 2. Markov-Switching Tree, witly* = (r,y)

{wi, ...,wx }. We consider the following particular PPMST (see Fig. 2) :
(Rs,Ys) is a PPMT (20)
X = Fo(Rs, Yo) X~ + W, (21)
where {W,},cs are independent zero-mean random vectors, such that for eacS, W is

independent fromiRs, Ys) and from.X,.. Again, note that in (21) vectord’; are not necessarily

Gaussian.

In this section we aim at computing X,|Yos) = Ya(s)] @nd Cov(X,|Y,(s) = ya(s)) for any
s € S. As above we focus on the computation/at (7, y.s)) andV;(rs, y.(s)) as defined in (8)
and (9).

Proposition.
Let (Xs, Rs, Ys) satisfy (20)-(21), with given transition(r, ys|7s-, Ya(s-))- ThENM (7, Ya(s))

can be recursively computed with linear complexity in numbienodes by the following way:
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Ms<rsu ya(s)) - Z F 7’57 ys 7”5 )y Ya(s— )) (TS7 yS|T87 ) ya(s,))’ (22)

yslya () 1
with
p(ya(s)) o er p<7n87 ya(s))

p<ya(5_)) a ZTS, p<r8_ ) ya(s—))

p(ysyya(s—)) =
and

Tsaya( Zp Ts—s Ya(s™) (Tsays‘rs—aya(s—)>~

Furthermore if the covariance matrkx, of W, exists for alls € S then V(r,, ya(s)) can

be computed as :

1
Z[FS(TS7 ys)v;* (7’3* ) ya(s*))Fs(rsa ys)T + Zs]p<7"5, ys"'ﬂs*?ya(s*))'

Vs(rsvya s ) S N
) p(ys’ya(s*)) o
(23)

C. Exact prediction in PPMST

As in the case of Markov chains we have to introduce some newtnts on model
(20)-(21) in order to solve the prediction problem. Let usstltonsider the following particular
PPMST :

Rs is an MT, (24)
(Rs,Ys) is an MT; (25)
Xs = FS(R5>XS* + WSa (26)

where {W,},cs are independent zero-mean random vectors, such that for €acS, U; is
independent from Rs, Ys) and from X,.. In (26) (as in (21)) vector$V, are not necessarily

Gaussian.

In this section we aim at computing[.X,|y,s)] and Cov(X,|y.) ) for any s € S and

pestt,
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Proposition.

Let (Xs, Rs,Ys) satisfy (24)-(26), with given transition(r., ys|7s—, Ya(s—)) andp(rs|rs-).
Then M, (rp, ya(s)) Can be recursively computed with linear complexity in timetbe following

scheme:

« Computel,(rs, ya(s)) With the algorithm presented in the last section;

. For eachp € s compute
o(Tps Ya(s) Zp Tplrp=) (1) My (1=, Ya(s))- (27)

Furthermore if the covariance matrIXs of W, exists for alls € S, thenV,,(r;,, ya(s)) €an

be computed as follows:

« ComputeV;(r,,y.(s)) With the algorithm presented in the last section;

« For eachp € s** compute

Vo(rp: Ya(s)) ZP rplrp=) [Fp(rp) Vo (rp-, ya(s))Fp<rp)T + Xp]. (28)

Remark.

Let us finally remark that if one defines a partially Markoviage by generations (as was done
in [19]), then the tree can be considered as a generatioses-etiain, in which the filtering and
prediction algorithms of section Il can be applied. Howewethat case the complexity, even if it
remains linear in the number of nodes, becomes (at leaseinabke of a dyadic tree) exponential

in the number of generations.

IV. CONCLUSION

In this paper we have proposed a class a dynamic stochastielspmamely PPMSC and
PPMST, in which the optimal (from the quadratic loss viewppffilter and predictor can be
computedexactly (in particular, without resorting to any Monte-Carlo proues) and with a

computational costinearin the number of observations.
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