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Abstract

Jump-Markov state-space systems (JMSS) are widely used in statistical signal processing. However

as is well known Bayesian restoration in JMSS is an NP-hard problem, so in practice all inference

algorithms need to resort to some approximations. In this paper we focus on the computation of the

conditional expectation of the hidden variable of interestgiven the available observations, which is

optimal from the Bayesian quadratic risk viewpoint. We showthat in some stochastic systems, namely

the Partially Pairwise Markov-switching Chains (PPMSC) and Trees (PPMST), no approximation scheme

is actually needed since the conditional expectation of interest (be it either in a filtering or prediction

problem) can be computed exactly and in a number of operations linear in the number of observations.

Index Terms

Bayesian restoration, Jump-Markov state-space systems, Partially Pairwise Markov switching mod-

els, NP-hard problems.

I. I NTRODUCTION

Let X0:n = (X0, ..., Xn) be a hidden random sequence with values inR
q, Y1:n = (Y1, ..., Yn)

an observed random sequence with values inR
m, and R1:n = (R1, ..., Rn) a discrete random
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sequence with values in a finite setΩ = {ω1, · · · , ωK} which usually models the random changes

of regime, or switches of the distribution of(X1:n, Y1:n). The three chains are linked via some

probability distributionp(x0:n, y1:n, r1:n). We assume a perfect knowledge ofp(x0:n, y1:n, r1:n)

and we address the restoration of the hidden random sequenceX. From a Bayesian point of

view, the best we can do is to compute a posterior probabilitydensity function (pdf) of interest,

sayp(xk|y1:n), for some value ofk andn. On the other hand, in many applications only a point

estimate ofxk is of interest, and a commonly used estimator isE(Xk|y1:n), i.e. the solution of

the Bayesian restoration problem with quadratic loss.

However, in many stochastic models neitherp(xk|y1:n) nor E(Xk|y1:n) can be computed

exactly, because closed-form formulas are either unavailable, or involve a computational load

exponential in the number of observations, and thus cannot be implemented exactly. In such

cases one needs to resort to some kind of approximations.

Let us consider for instance the classical conditionally linear Gaussian model, also called

JMSS, described by the following equations :

Rn is a Markov Chain (MC), (1)

Xn+1 = Fn+1(Rn+1)Xn + Wn+1, (2)

Yn = Hn(Rn)Xn + Zn, (3)

where X0,W1,...Wn are Gaussian vectors inRq, and Z1,...Zn are Gaussian vectors inRm,

which are independent and independent ofR1,...,Rn. So model (1)-(3) is nothing but a classical

linear and Gaussian state-space system, except that its dynamics (given by matricesFn(Rn) and

Hn(Rn)) depend on the realization of an MCR.

For fixed R1 = r1,...,Rn = rn, p(xk|y1:n) is Gaussian with parameters which can be

computed (whateverk and n) by standard Kalman-like techniques. However, it has been well

known since [1] that exact computation ofp(xk|y1:n) (or even of the conditional expectation

E(Xk|y1:n) =
∑

r1:n
E(Xk|r1:n, y1:n)p(r1:n|y1:n) ) is no longer possible with random MarkovR,

because such a computation would involve a number of operations proportional toKn, where

K is the number of states of the Markov chainR. The Bayesian restoration problem in (1)-
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(3) is thus NP-hard and different approximation schemes have been proposed, such as limiting

in some way the number of components in the Gaussian mixture [1], [2], [3], [4], or using

particle filtering methods [5], [6], [7]. Finally the point estimator ofxk is an approximation of

E(Xk|y1:n).

It is thus of interest to propose stochastic modelsp(x0:N , y1:N , r1:N) for which the exact

computation ofE(Xk|y1:n) is computable in practice, i.e. with a number of operations linear (or

at least polynomial) in the numbern of observations.

Let us now turn to the contents of this paper. The Bayesian prediction problem which we

address consists in computing efficiently the conditional expectationE[Xn+p|y1:n] and associated

conditional covariance matrixCov(Xn+p|y1:n) in a particular class of stochastic dynamical

models with Markov regime. More precisely, in section II we show that E[Xn+p|y1:n] and

Cov(Xn+p|y1:n) can be computed exactly, with complexity linear in time, in arecent switching-

Markov system proposed in [8]. The extension of this algorithm to switching-Markov trees is

considered in section III.

II. EXACT FILTERING AND PREDICTION IN PPMSC

In this paper we thus consider the following PPMSC model :

Rn is an MC, (4)

Xn+1 = Fn+1(Rn+1)Xn + Wn+1, (5)

(Rn, Yn) is a Partially Pairwise Markov Chain, (6)

where X0,W1,...,Wn are independent zero-mean random vectors, which are independent and

independent of(R1:n, Y1:n). We suppose that(Rn, Yn) is a Partially Pairwise MC (PPMC) [9],

i.e. that

p(rn+1, yn+1|r1:n, y1:n) = p(rn+1, yn+1|rn, y1:n). (7)

Note that in (5) (as compared to (2)) vectorsWn are not necessarily Gaussian. Also, by contrast

with eq. (3), there is no longer any direct stochastic relation betweenYn andXn; but of course

X1:n andY1:n remain dependent, and are linked via the MCR1:n.
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In this section we extend the restoration algorithm presented in [10] to the case where

(Rn, Yn) is a PPMC. Let us first introduce some notations. For any integers k andn, let us set

Mk(rk, y1:n) =

∫
Rq

xkp(xk, rk|y1:n)dxk. (8)

We will assume either thatk = n (for filtering) or k > n (if prediction is assumed). If the

covariance matrixΣn of Wn exists for all n, let us set

Vk(rk, y1:n) =

∫
Rq

xkx
T
k p(xk, rk|y1:n)dxk. (9)

Of course,E[Xk|y1:n] andCov(Xk|y1:n) can be computed fromMk(rk, y1:n) andVk(rk, y1:n) as:

E[Xk|y1:n] =
∑
rk

Mk(rk, y1:n), (10)

Cov[Xk|y1:n] =
∑
rk

Vk(rk, y1:n) − (
∑
rk

Mk(rk, y1:n))(
∑
rk

Mk(rk, y1:n))T . (11)

In the following we thus focus on the (recursive) computation of Mk(rk, y1:n) andVk(rk, y1:n).

A. The filtering problem in PPMSC

For convenience of the reader we recall here a (slightly modified) version of the filtering

algorithm presented in [8] because it will be needed in§II-B. Let (X1:n, R1:n, Y1:n) satisfy (4)-

(6), with given transitionsp(rn+1|rn) and p(rn+1, yn+1|r1:n, y1:n) = p(rn+1, yn+1|rn, y1:n). Then

we have:

Mn+1(rn+1, y1:n+1) =
1

p(yn+1|y1:n)
Fn+1(rn+1)

∑
rn

Mn(rn, y1:n)p(rn+1, yn+1|rn, y1:n) (12)

with

p(yn+1|y1:n) =
p(y1:n+1)

p(y1:n)
=

∑
rn+1

p(rn+1, y1:n+1)∑
rn

p(rn, y1:n)
, (13)

in which

p(rn+1, y1:n+1) =
∑
rn

p(rn, y1:n)p(rn+1, yn+1|rn, y1:n). (14)
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(Note that (14) is nothing but the extension to PPMC of the classical forward formula of the

Forward-Backward or BCJR algorithm, originally designed for hidden Markov chains, see e.g.

[11], [12].) Furthermore, if the covariance matrixΣn of Wn exists for alln we have :

Vn+1(rn+1, y1:n+1) =
1

p(yn+1|y1:n)

∑
rn

p(rn+1, yn+1|rn, y1:n)

× [Fn+1(rn+1)Vn(rn, y1:n)Fn+1(rn+1)
T + Σn+1]. (15)

B. The prediction problem in PPMSC

Proposition.

Let (X1:N , R1:N , Y1:N) satisfy (4)-(6), with given transitionsp(rn+1|rn) andp(rn+1, yn+1|rn, y1:n).

ThenMn+p(rn+p, y1:n) can be recursively computed with linear complexity in timen+ p by the

following scheme :

• computeMn(rn, y1:n) with the filtering algorithm recalled above;

• for each integerp ≥ 0, compute

Mn+p+1(rn+p+1, y1:n) =
∑
rn+p

Fn+p+1(rn+p+1)Mn+p(rn+p, y1:n)p(rn+p+1|rn+p). (16)

Furthermore, if the covariance matrixΣn of Wn exists for alln, thenVn+p(rn+p, y1:n) can

be computed as follows:

• computeVn(rn, y1:n) with the filtering algorithm recalled above;

• for each integerp ≥ 0, compute

Vn+p+1(rn+p+1, y1:n) =
∑
rn+p

p(rn+p+1|rn+p) (17)

× [Fn+p+1(rn+p+1)Vn+p(rn+p, y1:n)Fn+p+1(rn+p+1)
T + Σn+p+1].

Proof.

April 9, 2010 DRAFT



6

We have

p(xn+p+1, rn+p+1|y1:n) =

∫
Rq

∑
rn+p

p(xn+p+1, rn+p+1, xn+p, rn+p|y1:n)dxn+p

=

∫
Rq

∑
rn+p

p(xn+p, rn+p|y1:n)p(xn+p+1, rn+p+1|xn+p, rn+p, y1:n)dxn+p. (18)

On the other hand, using (4) and (5),

p(xn+p+1, rn+p+1|xn+p, rn+p, y1:n) = p(xn+p+1|rn+p+1, xn+p, rn+p, y1:n)p(rn+p+1|xn+p, rn+p, y1:n)

= p(xn+p+1|rn+p+1, xn+p)p(rn+p+1|rn+p).

We then multiply (18) byxn+p+1 and integrate with respect toxn+p+1 to get :

Mn+p+1(rn+p+1, y1:n) =

∫
Rq

xn+p+1p(xn+p+1, rn+p+1|y1:n)dxn+p+1

=

∫
Rq

∑
rn+p

p(xn+p, rn+p|y1:n)E[Xn+p+1|rn+p+1, xn+p]p(rn+p+1|rn+p)dxn+p.

Since the{Wn} are independent, zero-mean and independent from(R1:n, Y1:n), we have

E[Xn+p+1|rn+p+1, xn+p] = Fn+p+1(rn+p+1)xn+p,

and finally

Mn+p+1(rn+p+1, y1:n) =

∫
Rq

∑
rn+p

p(xn+p, rn+p|y1:n)Fn+p+1(rn+p+1)xn+pp(rn+p+1|rn+p)dxn+p

=
∑
rn+p

Fn+p+1(rn+p+1)Mn+p(rn+p, y1:n)p(rn+p+1|rn+p),

which completes the proof of (14). (15) is obtained similarly.

Remark.

In the proof only (4) and (5) have been used, which implies that our proposition also holds for

JMSS; the prediction problem in JMSS however remains NP-hard since, of course, in that case

Mn(rn, y1:n) cannot be computed exactly.
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III. E XTENSION TO PPMST

A. Introduction

Multiresolution signal and image analysis and multiscale algorithms are of interest in many

fields [13], [14]. In particular, efficient restoration algorithms in statistical models defined on

Hidden Markov trees (HMT) have been developed (see e.g. [15], [16]).

Let us first briefly recall the definition of a Markov Tree (MT).Let S be a finite set

of indices and let us consider a tree with nodes indexed byS. Let us consider a partition

S = {S1,S2, ...,SN}, whereSn are the generations of the tree :S1 is the root noder, S2 is the

set of its children, and so on. Each nodes except the root noder has exactly one parents−,

the set of the children ofs is denoted bys+, the set of all descendants ofs by s++ and the set

of all ancestors ofs by s−−. We also denote bya(s) the set of all ancestors ofs and s itself

(i.e. a(s) = {s−−, s}).Without loss of generality we consider here the case of dyadic trees: each

nodes /∈ SN has exactly two childrens1 ands2 (i.e. s+ = {s1, s2}) (see fig. 1). Each nodes is

associated with a random variableX(s). Also we introduce the notationXS = {X(s), s ∈ S}.

The tree is a Markov one if

p(xS) = p(xr)
∏

s∈S\S1

p(xs|xs−).

Let nowXS = {X(s), s ∈ S} andYS = {Y (s), s ∈ S} be two sets of variables defined on

the same setS. VariablesX(s) (resp.Y (s)) are hidden (resp. observed).(XS , YS) is an HMT

if their joint distribution satisfies:

p(xS , yS) = p(xr)
∏

s∈S\S1

p(xs|xs−)
∏
s∈S

p(ys|xS),

i.e. x is an MT andp(yS |xS) =
∏

s∈S p(ys|xS). As we can see HMT are a natural extension

of well-known Hidden Markov Chains to trees. HMT have been extended to Pairwise Markov

Trees (PMT) [17] [18] defined by :

p(zS) = p(zr)
∏

s∈S\S1

p(zs|zs−),
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Fig. 1. Example of dyadic tree

in which zs = (xs, ys) and zS = (xS , yS). Any HMT is a PMT, but the converse is not true,

since in a PMT,xS is not necessarily an MT. Finally PMT can be extended to Partially Pairwise

Markov Trees (PPMT), which we define by :

p(zS) = p(zr)
∏

s∈S\S1

p(zs|zs− , ys−−) = p(xr, yr)
∏

s∈S\S1

p(xs, ys|xs− , ya(s−)). (19)

Let us now introduce a third latent processRS taking its values in a finite setΩ =

{ω1, ..., ωK}. We will say that(XS , RS , YS) is a Triplet Markov Tree (TMT) if it is an MT.

SinceRS monitors the changes of characteristics of the model, we will call it the ”switching

process” and the TMT involving such a process will be called aMarkov-Switching Tree (MST).

The aim of this last section is to extend the previous Bayesianfiltering and prediction algorithms

to some particular MST.

B. Exact filtering on PPMST

Let X = {Xs}s∈S , Y = {Ys}s∈S and R = {Rs}s∈S be sets of random variables indexed

by S. EachXs (resp.Ys) takes its values inRq (resp.Rm) and Rs takes its values inΩ =
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Fig. 2. Markov-Switching Tree, withy∗ = (r, y)

{ω1, ..., ωK}. We consider the following particular PPMST (see Fig. 2) :

(RS , YS) is a PPMT, (20)

Xs = Fs(Rs, Ys)Xs− + Ws, (21)

where {Ws}s∈S are independent zero-mean random vectors, such that for each s ∈ S, Ws is

independent from(RS , YS) and fromXr. Again, note that in (21) vectorsWs are not necessarily

Gaussian.

In this section we aim at computingE[Xs|Ya(s) = ya(s)] andCov(Xs|Ya(s) = ya(s)) for any

s ∈ S. As above we focus on the computation ofMs(rs, ya(s)) andVs(rs, ya(s)) as defined in (8)

and (9).

Proposition.

Let (XS , RS , YS) satisfy (20)-(21), with given transitionp(rs, ys|rs− , ya(s−)). ThenMs(rs, ya(s))

can be recursively computed with linear complexity in number of nodes by the following way:
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Ms(rs, ya(s)) =
1

p(ys|ya(s−))

∑
r
s−

Fs(rs, ys)Ms−(rs− , ya(s−))p(rs, ys|rs− , ya(s−)), (22)

with

p(ys|ya(s−)) =
p(ya(s))

p(ya(s−))
=

∑
rs

p(rs, ya(s))∑
r
s−

p(rs− , ya(s−))

and

p(rs, ya(s)) =
∑
r
s−

p(rs− , ya(s−))p(rs, ys|rs− , ya(s−)).

Furthermore if the covariance matrixΣs of Ws exists for alls ∈ S thenVs(rs, ya(s)) can

be computed as :

Vs(rs, ya(s)) =
1

p(ys|ya(s−))

∑
r
s−

[Fs(rs, ys)Vs−(rs− , ya(s−))Fs(rs, ys)
T + Σs]p(rs, ys|rs− , ya(s−)).

(23)

C. Exact prediction in PPMST

As in the case of Markov chains we have to introduce some new constraints on model

(20)-(21) in order to solve the prediction problem. Let us thus consider the following particular

PPMST :

RS is an MT; (24)

(RS , YS) is an MT; (25)

Xs = Fs(Rs)Xs− + Ws, (26)

where {Ws}s∈S are independent zero-mean random vectors, such that for each s ∈ S, Us is

independent from(RS , YS) and fromXr. In (26) (as in (21)) vectorsWs are not necessarily

Gaussian.

In this section we aim at computingE[Xp|ya(s)] and Cov(Xp|ya(s)) for any s ∈ S and

p ∈ s++.
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Proposition.

Let (XS , RS , YS) satisfy (24)-(26), with given transitionp(rs, ys|rs− , ya(s−)) andp(rs|rs−).

ThenMp(rp, ya(s)) can be recursively computed with linear complexity in time by the following

scheme:

• ComputeMs(rs, ya(s)) with the algorithm presented in the last section;

• For eachp ∈ s++ compute

Mp(rp, ya(s)) =
∑
r
p−

p(rp|rp−)Fp(rp)Mp−(rp− , ya(s)). (27)

Furthermore if the covariance matrixΣs of Ws exists for alls ∈ S, thenVp(rp, ya(s)) can

be computed as follows:

• ComputeVs(rs, ya(s)) with the algorithm presented in the last section;

• For eachp ∈ s++ compute

Vp(rp, ya(s)) =
∑
r
p−

p(rp|rp−)[Fp(rp)Vp−(rp− , ya(s))Fp(rp)
T + Σp]. (28)

Remark.

Let us finally remark that if one defines a partially Markoviantree by generations (as was done

in [19]), then the tree can be considered as a generations-wise chain, in which the filtering and

prediction algorithms of section II can be applied. Howeverin that case the complexity, even if it

remains linear in the number of nodes, becomes (at least in the case of a dyadic tree) exponential

in the number of generations.

IV. CONCLUSION

In this paper we have proposed a class a dynamic stochastic models, namely PPMSC and

PPMST, in which the optimal (from the quadratic loss viewpoint) filter and predictor can be

computedexactly (in particular, without resorting to any Monte-Carlo procedure) and with a

computational costlinear in the number of observations.
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