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Kalman Filtering in Triplet Markov Chains
Boujemaa Ait-El-Fquih and François Desbouvries, Member, IEEE

Abstract—Let x = x
IN

be a hidden process, y =
y

IN
an observed process, and r = r

IN
some ad-

ditional process. We assume that t = (x r y) is a (so-called
“Triplet”) vector Markov chain (TMC). We first show that the
linear TMC model encompasses and generalizes, among other
models, the classical state-space systems with colored process
and/or measurement noise(s). We next propose restoration
Kalman-like filters for arbitrary linear Gaussian (LG) TMC.

Index Terms—Bayesian signal restoration, hidden Markov
chains, Kalman filtering, Markovian models, triplet Markov
chains.

I. INTRODUCTION

LET us consider the classical linear dynamical stochastic
system

(1)

in which is the state, is the observation,
is the input noise and is the measurement

noise. The processes and are as-
sumed to be independent,1 jointly independent and independent
of .

Let and . Let also ,
and , say, denote the probability density

function (pdf) (with regard to Lebesgue measure) of , the pdf
of , and the pdf of , conditional on , respectively;
the other pdf’s are defined similarly. A fundamental problem
associated with model (1) (the so-called filtering problem)
consists in computing the posterior pdf . From (1),
we get

(2)

(3)

for all (4)

Now from (2) to (4) we get

(5)
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1 i.e., u (and similarly v) contains independent variables.

(6)

and consequently can be computed recursively as

(7)

If furthermore and are Gaussian, then
is also Gaussian and is thus described by its mean

and covariance matrix. Propagating amounts to
propagating its parameters, and (7) reduces to the celebrated
Kalman filter (KF) [1] (see also [2]–[4]).

A. Extensions of the KF

Since this pioneering work, the KF has been generalized in
many directions. To name just a few examples, robust (i.e.,
square-root type) or fast (i.e., Chandrasekhar type) algorithms
have been proposed; smoothing and prediction algorithms have
been developed; the independence assumptions on and
have been dropped; and the extension of (1) to nonlinear and/or
non-Gaussian systems has been addressed, leading to approxi-
mate solutions such as the extended KF or particle filters. The
literature on these extensions is vast, and the interested reader
may wish to consult, for instance, [3], [5]–[8], as well as the
references therein.

On the other hand, yet another direction in which one can
extend the KF consists in releasing some conditional indepen-
dence assumptions on and . As we have seen, if (1) holds
then (2) to (4) hold. In other words, is a Markov chain (MC),
and since it is known only through the observed process , (1)
is a hidden Markov chain (HMC). Now if (2)–(4) hold, then

(8)

i.e. the pair is a (vector) MC, so any HMC is also a
so-called “pairwise” Markov chain (PMC). The converse is not
true, because if is a vector MC then the marginal
process is not necessarily an MC, nor does (3) or (4) hold
[9]. However, it is still possible to derive restoration algorithms
for PMC; from (8), (5) and (6) generalize to

(9)

(10)

so (7) becomes (11), shown at the bottom of the next page. In
the linear-Gaussian (LG) case, (11) reduces to an algorithm that
extends the KF [9]; a particle filtering solution for computing
(11) has also been proposed for the general case [10].
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The PMC model can be further generalized to the TMC model
[11]–[13], which we now recall. Let be an addi-
tional (possibly artificial) process, and let .
We say that is a TMC if is a (vector) MC. The
interest of TMC is twofold.

1) As far as restoration is concerned, the TMC can
be viewed as the PMC ; so can
be restored from by a PMC algorithm, and finally is
obtained by marginalization;

2) As far as modelling is concerned, TMC generalize some
classical models (including PMC) in the sense that none
of the chains , , , , or needs to be
an MC. On the other hand, in an HMC is given
by (3) and (4), which is too simple in some applications,
like e.g., speech recognition [14], [15]; whereas in a TMC,

is the marginal pdf of the MC , and, as
such, can be rather complex. In practice, computer experi-
ments have demonstrated the superiority of PMC [16] (re-
spectively, TMC [17]) over HMC in the context of image
segmentation.

B. Contributions

Let us turn to the contents of this note. In Section II, we first
show that the classical LG models with colored process and/or
measurement noise(s) [3], [6], [7], [18]–[22] are, among other
models, some important particular cases (mostly with unnoisy
measurements) of the linear TMC model; so the triplet model,
which initially was designed as an extension of (1), happens also
to encompass (and generalize) some of the early classical gen-
eralizations (those which deal with the nature of and ) of
model (1). Now, the restoration algorithm of [12] was designed
for regular LG-TMC. In the singular measurements case, it is
possible to reduce the dimension of the state vector to be esti-
mated. We thus propose in Section III a restoration algorithm
for LG-TMC with singular measurements, which encompasses
(and generalizes) some existing algorithms, and we perform
some simulations.

II. LINEAR TMC MODEL: DEFINITION AND APPLICATIONS

A. Linear TMC Model

Let be the hidden process, the ob-
servation, and an additional process. For ,
let , and let . We say that

is a TMC if is a (vector) MC, and that is a
linear TMC if furthermore satisfies the system, as follows:

(12)
where is deterministic, and is zero mean,
independent, and independent of .

B. Some Particular Linear TMC Models

Before proceeding to restoration algorithms, let us first illus-
trate the wide applicability of the linear TMC model by noticing
that it provides a common framework for some linear stochastic
systems (those of Sections II-B-1)to II-B-3) are classical, the
others are new). They all differ from one another by the matrices

(some submatrices of which are equal to zero); the physical
meaning of ; and/or independence assumptions
among subvectors of .

1) Autoregressive Process Noise: The case where in (1)
remains independent but becomes an MC has been introduced
in [6] (see also [3]). Let , in which

is zero mean, independent and independent of .
Then is no longer an MC, but is an MC. The
whole model can be rewritten as

(13)

in which and are
independent.

2) Autoregressive Measurement Noise: The case where in
(1) remains independent but becomes an MC has been ad-
dressed in [20] in case is the identity matrix
(see also [3, sec. 11.2], [5, pp. 212–215]), then generalized in
[6] (see also [3] and [7]). Let , with

zero mean, independent, and independent of
. Then, the model reads

(14)

in which and are
independent.

(11)
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3) Autoregressive Process and Measurement Noises: In the
two last examples, we have removed the independence assump-
tion either on or on . Sorenson [19] introduced a model in
which both and are MC but remain jointly independent (see
also [22, ch. 5]). Let

(15)

in which (respectively, ) is
zero mean, independent, and independent of (respectively, of

), and and are independent. Then, the whole
model reads

(16)

with and .
4) Autoregressive Model Noise: In (15), the independence

assumption between and can be relaxed by only assuming
that is independent and independent of . A
further step in generalizing (15) consists in assuming that

(17)

with independent and independent of . Notice
that neither nor needs to be an MC any longer. The model
can be rewritten as (16) (but with given by (17)).

5) Correlation Between Measurement Noise and System
State: In (14), and are both MC but remain independent.
Another natural generalization consists in assuming that

(18)

with independent and independent of
. Neither nor needs to be an MC any longer. How-

ever as a whole remains a linear TMC,
since

(19)

6) Linear PMC Models: The linear PMC model introduced
in [9] reads

(20)

with zero mean, independent, and independent
of . Let us relax this independence hypothesis on by
assuming that (17) holds. Then, (20) becomes

(21)
with and .

III. LG-TMC: RESTORATION ALGORITHMS

The aim of this section is to derive an algorithm for com-
puting recursively, in the Gaussian case, in an arbi-
trary linear TMC (12). Let us first gather the unobserved vari-
ables and into a common vector . Then,
(12) can be rewritten more compactly as

(22)

Let us moreover assume that

(23)
Since are independent and independent of , is Gaussian,
and model (22), (23) actually defines a partially observed
Gauss-Markov vector process, in which we observe some com-
ponents and we want to restore (part of) the remaining
ones . So our restoration algorithm recursively computes

(or, in the singular measurements case, ,
where is a subvector of ), and next is obtained
by marginalization.

A. Regular LG-TMC

Let us first address the case where is positive definite.
In this case a Kalman-like filtering algorithm has been proposed
in [9] and [12]; it is recalled here for convenience of the reader.

Proposition 1 (KF for Regular LG-TMC): Let (22)
and (23) hold. Let and

. Then,
and can be computed from and via the
following equations:

(24)

(25)

(26)
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(27)

(28)

(29)

and and are given by (28) and (29), with
and .

Remark 1: Let us briefly comment on model (22), and asso-
ciated algorithm (24)–(29). First, the introduction of PMC in the
context of Kalman filtering is not entirely new. A closely related
model was introduced independently [23] (see also [24, Corol-
lary 1, p. 72]) in the context of conditionally Gaussian models.
In this model, the pair satisfies a linear equation
similar to (20) and thus is an MC. Optimal filtering equations
for this model have also been derived. On the other hand, as far
as (22)–(29) are concerned, they can be derived from [22, eq.
(4.24), p. 64] (by setting ). An alternate (prediction)
recursive solution can also be obtained from [25, sec. 3.2.4, p.
113].

B. Singular LG-TMC

We now address the restoration problem in the singular mea-
surements case, i.e. the case where is positive semi-defi-
nite. Let now rank . One can
still use (24) to (29) by replacing (if necessary) inverses by gen-
eralized inverses. Following [3], [6], and [7], we shall however
see that it is possible (under mild sufficient conditions) to ex-
ploit the singularity of in order to reduce (via a state-space
transform) by the order of ; we shall then pro-
pose a restoration algorithm for this equivalent, reduced-order
system.

1) State-Space Transform: has zero eigenvalues. So
there exists invertible such that

in which denotes the null matrix. Let
and ; then from (22) we get

(30)

and we see that is divided into a perfect part (the
unnoisy part) and a regular one . Since linear func-
tionals of are known once and are known, there is
no need to estimate them, and this is why one can reduce by
the order of the system, as we now see. Let , and let us
first consider the following alternate partition of :

(31)

(for the moment we say nothing about the position of with
regard to ). Let us assume that in (30)

rank (32)

Then, one can chose a matrix in such a
way that the transform

(33)

is reversible, and finally and enable to transform (22)
into the equivalent system

(34)

The first equations of (34) can be rewritten as

(35)

(36)

(37)

On the other hand, the last equations of (34) are given by
(30). The first equations of (30) coincide with the last
equations of (35) and are thus redundant. Gathering (35) with
the last equations of (30) (written at time thanks to (22)),
we get the reduced-order system

(38)
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with , and

(39)

(40)

2) Restoration Algorithm: Let us next address the restoration
of from in (38), and, finally, the restoration of
from in (22), which is our ultimate goal. Let and

be independent, and let

(41)

Then can be computed recursively via the following
algorithm.

Proposition 2 (KF for Singular LG-TMC): Let (22), (23),
and (32) hold, let , and let moreover and

be independent. Let and
. Then and

can be computed from and via2

(42)

(43)

(44)

(45)

(46)

(47)

(48)

As for the initialization, and are given by (47) and
(48) with , in which , , , and

are given respectively by ,
, , and

. Finally, condi-
tionally on , , where and
can be computed as

(49)

(50)

2Inverses in (47) and (48) should be replaced by a generalized inverse in case
L is not invertible.

Proof: Model (38) is a particular case of [24, eqs.
(13.46)–(13.47)] or [25, model (3.1.1), (3.1.3), and (3.2.20)], so
(42) to (48) can be obtained from [24, eqs. (13.56)–(13.57)] or
[25, sec. 3.2.4, p. 112]. Let us next consider the initialization.
From (30) and (33), we get

so

with , , , and computed thanks to
(23). On the other hand, is given
by (47) and (48) with . Finally, let us partition as

, . From (33),
. So conditionally on ,

. Marginal-
izing with regard to the first components (remember that

), we eventually get (49) and (50).
3) Comments and Remarks:

1) Simplifications occur in some cases. For instance,
let us partition defined in (30) as

, and let be invertible.
In this case, can be chosen as , and

(51)

Next two cases occur. If , then in (31)
, and from (49) and (50) is simply a subvector of

and a submatrix of (an example where this
happens is given in item 3 below). If , we see from
(50) that is a singular matrix of rank at most

. The reason why is that in (31), is a subvector of ,
so, up to an invertible matrix, only components of
need to be estimated from .

2) In most models of Section II-B , so the perfect
measurement case is an important particular case of our
algorithm. Let . Then, , and one can
chose . The last equations of (34) are given
by (30), and they coincide with the last equations of
(35). So (35) is sufficient, and (38) reduces to (35) (with

), (39) to (36) and (40) to (37) (an example where
this happens is given in item 3 below).

3) As we have seen in Section II-B, the linear TMC model
encompasses some classical models. It happens that the al-
gorithm of Section III-B also generalizes some classical al-
gorithms. Let us e.g. consider the model of Section II-B-2)
(which is widely used, in particular in speech enhancement
and coding (see, e.g., [21])). If (12) reduces to (14), then

and vanish, so in (42) to (48) the dependency on
vanishes, and (43), (45), (46) and (47) reduce re-

spectively to [21, eq. 51, p. 1736], [21, eq. 57, p. 1737]
and [21, eq. 56, p. 1736]; while (42) (respectively, (48))
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Fig. 1. MSE, regular and singular cases.

reduces to an equation that can be obtained as part of [21,
eq. 54, p. 1736] (respectively, [21, eq. 52, p. 1736]).

C. Numerical Example

Let us finally perform some simulations. We consider a reg-
ular and a singular model, which differ by the covariance matrix

(respectively, ) in the reg-
ular (respectively, singular) model. So let ,

, , and let

(52)

(53)

All simulations results are averaged over 200 independent
realizations.

Fig. 1 illustrates the interest of the singular algorithm over
the regular one by displaying the empirical and theoretical mean
square errors (MSE) of for both cases. As expected,
the results are consistent with the dimension of the state ( or

) which needs to be estimated: in the regular case, ,
while in the singular case .

Fig. 2 compares the performances of the TMC KF and of
a standard KF. The data are generated by the singular TMC
model, and is restored either by the singular TMC KF or by
a classical (singular case) KF. Fig. 2 displays the true value of
the state, its two estimates, and the associated empirical MSE;
as expected, the TMC KF outperforms the KF.

Fig. 2. State and MSE, singular TMC KF, and classical KF.
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