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Blind Equalization in the Presence of Jammers
and Unknown Noise: Solutions Based on
Second-Order Cyclostationary Statistics

A. Chevreuil, F. Desbouvries, A. Gorokhov,
Ph. Loubaton, and C. Vignat

Abstract—This correspondence addresses the blind identification of a
linear time-invariant channel using some second-order cyclostationnary
statistics. In contrast to other contributions, the case where the second-
order statistics of the noise and of the jammers are totally unknown is
considered. It is shown that the channel can be identified consistently
by adapting the so-called subspace method of Moulineset al. This
adaptation is valid for fractionally spaced systems and, more interestingly,
for the general systems exhibiting transmitter induced cyclostationnarity
introduced by Tsatsanis and Giannakis. The new subspace method is
based in both cases on a common tool, i.e., a general spectral factorization
algorithm. The identifiability conditions are specified and some simulation
examples are given.

I. INTRODUCTION

Under standard hypotheses (linear modulation, time-invariant chan-
nel), the complex envelope of the (noise-free) received signal in a
digital communication context is1 xa(t) =

k2
s(k)ha(t � kT ),

where

fs(n)g sequence of symbols;
T symbol period;
ha(�) composite time-limited causal mapping;

the support of which is[0;MaT ], say, accounting for shaping, the
multipath effects, and the reception filter. It is easily checked that
xa(t) can be rewritten as

xa(t) =
k2

~s(k)ha t� k
T

q
(1.1)

whereq � 1 is any integer, andf~s(n)g is the so-called zero-padding
sequence at the rateq

T
, given by~s(qn) = s(n) and ~s(nq + k) = 0

for k = 1 � � � q � 1. Hence, the expression of the sampled version
of xa(t) at the rate q

T
is

x(n) = [h(z)] � ~s(n) (1.2)

where h(z) = qM

k=0
hkz

�k, and hk = ha(k
T

q
) (without any

restriction, we have imposedqMa to be an integer). Thus, the
sampled observation is the output of an unknown finite impulse
response filterh(z) of degreeqMa driven by the sequencef~s(n)g,
leading to inter-symbol-interference (ISI). It is of interest to identify
the unknown channelh(z) from the second-order statistics of the
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observation to remove the ISI. Concerning this point, the model (1.2)
calls for the following observations.

• If q = 1 (standard systems),~s(n) = s(n), and in general, the
second-order statistics offx(n)g do not allow the identification
of h(z).

• A contrario, the caseq > 1, which corresponds to a fractional
sampling (FS) system, deserves consideration. Noticing that
f~s(n)g is cyclostationary at the cyclic frequencies0; :::; q�1

q
,

it was proved indeed that ifh(z) does not possessq zeros
on a circle separated by2�

q
radian angles, theentire second-

order statistics offx(n)g enable the identification ofh(z).
Various time-domain estimation algorithms ofh(z) based on the
second-order statistics of the observation have been proposed in
[7], [15], and [14]. These approaches can be extended to the
case where the useful signalxa(t) is corrupted by an additive
noise or/and interferences with known (up to a scalar factor)
second-order statistics.

The purpose of this correspondence is to develop a simple blind
identification scheme, relying oncertain second-order statistics,
which remain consistent whenxa(t) is corrupted by an additive
noise or/and interference processia(t), uncorrelated withxa(t), the
second-order statistics of which areunknown.

In the case of an FS system withq > 2, it was briefly remarked
by Giannakis in [8] that it is possible to identifyh(z) from the
cyclostatistics of the noisy observed signal2 x(n)+i(n) at the nonnull
cycles1=q; . . . ; (q � 1)=q, provided that these cycles are not cycles
of fi(n)g.

This principle of separating the contributions of the different cycles
and then removing the corrupted statistics is clever as far as the
struggle against jammers is concerned. One should nevertheless note
that this theoretical approach may prove useless in certain FS contexts
since the bandlimited character of a communication channel makes
most of the cyclo-statistics of interest numerically negligible, and the
aforementioned method is often prone to degeneracies (see [1]–[3]).
In order to deal with numerically significant cycles, one idea is to
imposesome second-order cyclic properties at the emitter: the so-
called concept of transmitter induced cyclostationarity (TIC) was
introduced in [11] and has met with various extensions since (see,
e.g., [10], [12], and [13]).

The principle of TIC is to transmit a sequence of pseudo-symbols
fv(n)g at a larger rate( 1

T
) than that of the original symbol

sequence3. The transmission is such that the noise-free analog signal
so received can be written as

xa(t) =
k2

v(k)ha(t� kT
0): (1.3)

The sampled version at the rate1
T

is then

x(n) = [h(z)] � v(n): (1.4)

This time, h(z) =
M

k=0 hkz
�k, andhk = ha(kT

0) where, as
usual, T

T
Ma is assumed to be an integer. This formulation shows

that (1.4) is a direct generalization of (1.2) in whichv(n) = ~s(n) and
T 0 = T=q. The reader may wish to consult the various contributions
to appreciate the communication-oriented problems inherent to TIC
systems.

2
i(n) is the sampled version ofia(t) at the rateq

T
.

3The one-to-one correspondence betweenfv(n)g andfs(n)g is obviously
assumed.
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Dealing with the model (1.4), we propose here to show that the
subspace method of [5] can be adapted to identifyh(z) from some
reliable statistics, namely, those free of any corruption. In Section II,
a general spectral factorization algorithm is presented. Section III
applies this algorithm to blind identification; rather than developing a
general method, we focus on three particular cases: the FS case, the
repetition coding case [11], and the modulation case [13]. Extensions
to other contexts are possible. In each scenario, we thoroughly
depict the spectral factorization and make some remarks on the
identifiability conditions. Simulation examples are subsequently given
and analyzed. Section IV summarizes the main points previously
studied for various TIC systems.

II. A FACTORIZATION ALGORITHM

Let S(z) be aq � 1 rational function4 of the form

S(z) = H(z)l
�

(z
�1

) (2.5)

whereH(z) =
M

k=0
Hkz

�k is a q � 1 degreeM polynomial of
the variablez�1, l(z) is a scalar-valued5 causal rational transfer
function, andl�(z) is obtained by conjugating the coefficients of
l(z). Of course,S(z) has a Laurent expansionS(z) =

k2
Skz

�k

converging around the unit circle. We focus on the problem of
retrieving H(z) from S(z). As H(z) is a polynomial, it is clear
thatSk = 0 as soon ask > M , and we consequently consider

Problem 2.1: GivenN �M , under which conditions is it possible
to recoverH(z) from the Laurent coefficientsfSkgk=�N;...;N of
S(z)? Exhibit a means of extractingH(z).

We assume the following hypotheses:

• H1 H(z) 6= 0 for eachz, including1.
• H2 l0 = l(1) is nonzero.

Problem (2.1) could be solved by developing a linear prediction-like
method. However, for simplicity, we shall rather generalize the noise
subspace approach of [7].

We first need to recall an important result presented in [5]. Let
BN be the set of allq(N + 1)-dimensional row vectorsG =

[G0; . . . ; GN ] satisfying the linear relationG(z)H(z) = 0, where
G(z) =

N

k=0
Gkz

�k. BN is, of course, a linear subspace of
q(N+1). Let �N be the orthogonal projector ontoBN . For every

q� 1 polynomialA(z) = M

k=0
Akz

�k of degreeM , we denote by
TN (A) the q(N + 1)� (N +M + 1) Sylvester matrix defined as

TN (A) =

A0 A1 . . . AM 0 . . . 0

0 A0 A1 . . . AM

.. .
...

...
. ..

.. .
.. . 0

0 . . . 0 A0 A1 . . . AM

: (2.6)

Then, we have the following result:
Theorem 2.1:Let F (z) be aq � 1 polynomial of degreeM . If

H1 is true, then, forN � M , the linear equation

�NTN (F ) = 0 (2.7)

holds if and only ifF (z) coincides withH(z) up to a scalar factor.
In other words,H(z) can be identified from the subspaceBN

by solving a linear system. This follows from properties of minimal
polynomial bases of a rational subspace; see [4] for details. It now
remains to be shown thatBN , and hence�N , can, underH2, be
extracted from the Laurent coefficientsfSkg�N;...;N of S(z). It
is clear thatG(z) =

N

k=0
Gkz

�k, of dimension1 � q, satisfies

4In the sequel, capital letters stand for matrices or vectors.
5the case whenl(z) is vector-valued can also be treated this way.

TABLE I
FS: REALIZATION OF THE PATHS

TABLE II
FS: POLYPHASE COMPONENTS OF THECHANNEL

G(z)H(z) = 0 if and only if G(z)S(z) = 0. Denoting bySN the
q(N + 1) � (2N + 1) matrix defined as

SN =

S0 . . . SN 0

...
.. .

...
. ..

S�N . . . S0 . . . SN

G(z)S(z) = 0 implies in particular thatGSN = 0, which is
equivalent to the condition[G(z)S(z)]� = 0, where the notation[�]�
stands for the causal truncation of the function inside the brackets.
Conversely,[G(z)S(z)]� = 0 also means that[k(z)l�(z�1)]� = 0,
where k(z) is the scalar-valued polynomialG(z)H(z). Assuming
now thatH2 holds, we deduce immediately thatk(z) = 0. Hence,
the spaceBN coincides with the left kernel of matrixSN associated
with S(z).

Problem (2.1) is solved. We have found a method for recovering
H(z), which is valid as long asH1 andH2 hold. We now recast
some blind second-order problems into this framework.

III. A PPLICATION TO BLIND IDENTIFICATION

Generally speaking, the correlation coefficient at lag� and at cycle
� of a second-order processfy(n)g is defined as (see [16] and the
references therein)

R
(�)
y (�) = lim

N!1

1

N

N�1

n=0

E[y(n+ �)y(n)
�

]e
�i2��n (3.8)

and the corresponding cyclo-spectrum is defined asS
(�)
y (ei!) =

�
R
(�)
y (�)e�i!� .

According to model (1.4), it is easy to prove that the expression
of the cyclo-spectrum offx(n)g at cycle� is

S
(�)
x (e

i!
) = h(e

i!
)h(e

i(!�2��)
)
�

S
(�)
v (e

i!
): (3.9)

The expression (3.9) remains valid in a noisy context, as soon as the
noise and the jammers are decorrelated from the signal of interest
and do not admit� as a cycle.

Although it is possible to develop further the general framework
depicted thus far, such would result in cumbersome relations. We
shall thus concentrate henceforth on the three cases raised in the
introduction.

A. The FS Case

It is assumed here thatq > 2 so that at least two nonnull cycles can
be exploited. The contribution of the jammersfi(n)g is assumed not
to exhibit cyclostationarity at the shifts1

q
; . . . ; q�1

q
, and we recall

that fv(n) = ~s(n)g, and T 0 = T=q. We propose to develop a
scheme in the case where the input symbols are white; the method
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TABLE III
MODULATION: TEN CHANNEL REALIZATIONS

can be extended directly when the symbols are colored. Under this
assumption,S(�)

v (ei!) = 1

q
for all � = 1

q
; . . . ; q�1

q
. Consider now

the following vector:

S(ei!) = q S
(1=q)
x (ei!)�; . . . ; S((q�1)=q)

x (ei!)�
T
:

Recalling (3.9) and defining

H(z) = h ze ; . . . ; h ze

T

and l(z) = h(z), the factorization (2.5) holds. The results of the
previous section then apply. Providedh(z) does not possessq � 1
zeros on a circle, equally separated by2�

q
radians, one can identify

h(z) from the cyclo-statistics of the observation at the nonnull cycles.
In practice, the Laurent coefficients ofS(z) are unknown, but they
can be replaced by consistent estimates in the procedure sketched in
Section II [(2.7) should be solved in the least squares sense]. The
proposed estimate of the channel is, of course, consistent.

Let us now consider the practical aspects of the above-mentioned
approach. In order to enlighten the identifiability condition, one may
consider increasing the oversampling rate; indeed, the more cycles,
the less stringent the identifiability condition. However, the orderM

increases withq, and since the analog filterha(t) is bandlimited, a
largerq reduces the bandwidth ofh(z); in other words, according to
(3.9), there are only two nonnull numerically relevant cycles:1

q
; q�1

q
.

A good practical choice isq = 3. The question is: What is the
relevance of removing the zero cycle? When the problem is well-
conditioned (this occurs for a large excess bandwidth and for short
impulse responses), the color of the noise does not significantly
impact the performance of the full method (all cycles considered; see
[7]), even if consistency is lost. By contrast, consistency is crucial
in ill-conditionned problems. In this case, the full method is very
sensitive to the perturbations brought by the color of the noise and
fails to provide a good estimate. Excluding the zero cycle is then
recommended; of course, the bad conditioning compels one to use a
large analysis window.

Simulation Results:q = 3. We consider a GSM channel: the
shaping is a raised-cosine with 85% excess bandwidth; the symbol
period isT = 3:7�s, and the carrier frequency isf0 = 1:087654
GHz. A three-path realization is studied. The characteristics of the
channel are given in Tables I and II. The digital channelh(z) is
consequently a degreeM = 8 polynomial. The symbols are BPSK.
The colored noise is the output ofr(z) = 1p

3
(1 + z�2 + z�4)

driven by a white Gaussian noise independent of the symbols. The
averaged square Euclidean distance between the estimate and the
true channel (MSE) is estimated from 200 Monte Carlo trials. In
Fig. 1,N = 1000, and the SNR goes from 4 to 16 dB. As expected,
removing the zero cycle is all the less pertinent as the SNR increases.

Fig. 1. FS system. Line 1: standard method. Line 2: 0 cycle excluded;
N = 1000.

B. The Repetition Coding and Interleaving Scheme [11]

One now transmits the sequencefv(n)g at the rate 1

T
= 2

T
,

which may be read as consecutive blocks of the type[s(nL); s(nL +
1); . . . ; s(nL + L � 1)ks(nL); s(nL + 1); . . . ; s(nL + L � 1)]. It
is easy to prove thatfv(n)g admits ( 2k+1

2L
)k= 0;...;L�1 as nonzero

cyclic frequencies.
Let us, moreover, assume thatfs(n)g is white. Setting�k =

1=(L(1� e�i2�(2k+1)=2L)), a simple computation gives

S
(2k+1=2L)
v (z) = �k(z + z

�1); �k(z
L + z

�L):

Consider now the following vector

~S(ei!)

=
1

��k
S
((2k +1)=2L)
x (ei!)�; . . . ;

1

��k
S
(2k �1=2L)
x (ei!)�

T

for any collection ofN distinct ki 2 f1; . . . ; Lg. This yields
~S(z) = z�LH(z)l�(z�1), where

H(z) = h(zei2�(2k +1)=2L); . . . ; h(zei2�(2k +1)=2L)
T

andl(z) = (1+z�2L)h(z). The results of Section II still hold if one
considersS(z) = z ~S(z). Noticing thatL is a design parameter and
can then be chosen arbitrarily big, two crucial remarks follow:

• Many Cycles in the Factorization:Let us exploit all the nonnull
cycles so that there areL � 1 entries inH(z). On the one



262 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 1, JANUARY 1998

TABLE IV
TIC AND BLIND SECOND-ORDER IDENTIFICATION

hand, the identifiability condition is thath(z) does not possess
L � 1 zeros on a circle equally separated by2�

L
. On the other

hand,h(z) hasM zeros. If one imposesL > M , the previous
points are contradictory, hence showing that the identifiability
condition is automatically fulfilled (see [11]).

• Two Well-Chosen Cycles:Take any two cycles2k +1

2L
and 2k +1

2L

so thatk2�k1 andL are coprime (this is always possible sinceL

can be chosen arbitrarily large). According to a structural result
of [13] (see also [10]), the identification ofh(z) is possible,
without any restriction onh(z), as soon asL > M .

Therefore, the identification in a repetition context is robust as regards
the unknown channel.

C. The Modulation Case

In this model,T 0 = T , and the sequencefv(n) = f(n)s(n)g is
transmitted, wheref(n) is a deterministic (almost) periodic sequence.
This scheme has been proposed independently in [10] and [13].
For sake of simplicity, we restrict the study to i.i.d. sequences of
symbols6. Under this condition, it is easy to prove thatS

(�)
v (z) = ��

for some� and ��, depending on the development off(n) as a
Fourier series. Suppose�1 and�2 are nonnull cycles. Consider the
function7

S(ei!) =
1

���
S
(� )
x (ei!)�;

1

���
S
(� )
x (ei!)�

T

:

If H(z) = [h(zei2�� ); h(zei2�� )]T and l(z) = h(z), we have
S(z) = H(z)l�(z�1).

As in the previous section, the identifiability condition vanishes in
the following two cases (see [10] and [13]):

• �2 � �1 is irrational, or
• �2 � �1 = k

p
; k andp coprime, is such thatp > M , M being

as usual the degree ofh(z).

As compared with the repetition scheme, the modulation of the
symbols also brings a robust way of identifying the channel. The
advantage of modulation over repetition is that the channel order is
halved, thus yielding faster algorithms, with a lower computational
burden.

Simulation Results:The pulse is a raised-cosine with 20% excess
bandwidth;T = 3:7 �s, andf0 = 1:087 654 GHz. We averaged
over ten realizations of channels resulting from five multipaths. The
maximum delay is set to2T so that the degree isM = 4. The
impulse responses are in Table III. The deterministic sequence is
f(n) = 1p

1+

(1 + 
ei2��n), with 
 = 0:5 and � = 51

360
. The

symbols are white BPSK sequences. In the factorization algorithm,
we chose the two cyclo-frequencies� and��. In Fig. 2, the MSE
is given as the number of observed samples increases. The SNR is

6For a generalization to any distribution, see [13].
7More cycles may be taken into account.

Fig. 2. Modulation. Line 1: white noise. Line 2: colored noise;SNR = 10

dB.

Fig. 3. Modulation. Line 1: white noise. Line 2: colored noise;N = 600

samples.

set to 10 dB; the noise is either white Gaussian or is the output of
r(z) = 1p

3
(1+z�2+z�4) driven by a white Gaussian noise. Notice
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the consistency of the estimate when the noise has an unknown color.
In Fig. 3, the observation lasts 600 symbol periods. The SNR varies
from 0 to 18 dB.

The results thus obtained are satisfactory; however, the “best”
choice of a sequencef(n) is currently under investigation.

IV. CONCLUSION

When cyclostationarity is induced at the transmitter, we have
shown that some second-order cyclo-spectra provide a way of identi-
fying the unknown channel. In contrast to the conventional approches,
the consistency of the proposed method is achieved when the obser-
vation is corrupted by interference, the second-order structures of
which are unknown. We propose in Table IV a summary of the main
points developed in the paper.
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Memory Efficient Programmable Processor
Chip for Inverse Haar Transform

G. A. Ruiz and J. A. Michell

Abstract—In this correspondence, a processor chip programmable
betweenN = 8 and N = 1024 for the unidimensional inverse Haar
transform (1-D-IFHT) is presented. The processor uses a low latency
data-flow with an architecture that minimizes the internal memory and
an adder/subtracter as the only computing element. The control logic
has a single and modular structure and can be easily extended to longer
transforms. A prototype of the 1-D-IFHT processor has been implemented
using a standard-cell design methodology and a 1.0-�m CMOS process
on a 11.7 mm2 die. The maximum data rate is close to 60 MHz.

Index Terms—Digital signal processors, Haar transforms, image pro-
cessing, transform coding, very-large-scale integration.

I. INTRODUCTION

Modern digital communications systems require efficient data
coding in order to reduce transmission and/or storage costs [1], [2].
These coding systems use algorithms of one of the following types:
waveform coders, transform coders, and model coders [2]. Although
transform coding systems generally use the cosine transform [3],
[4], the use of the Haar transform offers certain advantages over
the former due to the wavelet characteristics of Haar functions [5].

Three generic VLSI architectures have been proposed in [6] for the
hardware implementation of the Haar transform. Each of these has
different characteristics in terms of computation time, complexity,
input/output format, and pipelinability. Some other important char-
acteristics not considered in [6] are the size of the required memory,
the input ordering, and the complexity of control. The selection of
one architecture or another depends on the application and the design
framework available so that in some cases, the resulting architecture
has a structure that is a hybrid of other more general structures. This
is the case of the direct Haar transform processor described in [7],
whose architecture consists of three stages in pipeline, the last of
these having sequential queue architecture.

The on-line computing of the bidimensional Haar transform can be
carried out directly by implementing the two-dimensional (2-D) fast
transform [8], [9] or indirectly by applying the property of separability
[2] using the unidimensional (1-D) transform. The three processor
parallel-pipeline architecture described in [8] has been designed for
a raster ordering of input, minimizing the internal memory. The
simplicity of the architecture proposed by Albanesi and Ferreti [9] is
due to the fact that the input data ordering is not a raster ordering
and that they use a less general bidimensional Haar-like transform.

This correspondence presents an inverse Haar transform processor
(1-D-IFHT) programmable for transform lengths of betweenN = 8
andN = 1024. Its architecture, which is a variant of the sequential
queue architecture proposed in [6], reduces the internal memory
requirement fromN to log2N . Moreover, the control logic has a
modular structure whose complexity increases linearly with log2N .
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