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Non-Euclidean Geometrical Aspects of the Schur and
Levinson—Szego Algorithms
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Abstract—in this paper, we address non-Euclidean geometrical less than one (the Schur parameters) which are computed recur-
aspects of the Schur and Levinson—Szeg0 algorithms. We first show sively from the power series coefficients by an elegant al-

that the Lobachevski geometry is, by construction, one natural ge- gorithm. On the other hand, Carathéodory and Toeplitz showed
ometrical environment of these algorithms, since they necessarily that ’

make use of automorphisms of the unit disk. We next consider the
algorithms in the particular context of their application to linear o
prediction. Then the Schur (resp., Levinson—-Szegd) algorithm re- _ k
ceives a direct (resp., polar) spherical trigopnometry (ST) interpre- c(z) = co+2 Z Ckz
tation, which is a new feature of the classical duality of both algo- k=1

ithms.
rnms is analytic and has positive real part fef < 1 if and only if the

Index Terms—interpolation theory, linear regression, Loba- Toeplitz formszn a;bie; ;, with c_,, = ¢*, are positive
i,j=0 %iY;C5—0 —n = Cns

chevski geometry, partial correlation coefficients, Schur and f I i
Levinson—Szego algorithms, spherical trigonometry (ST). oralln.t Let

1+ s(2)

1-s(2)
INEAR prediction and interpolation is a major tool in timeg;, o ) < 1 if and only if ¢(z) has a positive real part, the
series analysis and in signal processing. In this conte

. X chur algorithm implicitly enables a test of whether a Toeplitz
the Schur and Levinson—Szegd algorithms compute the par%]m is pgositive prcty P

autocorrelation function of a wide-sense stationary process. A_sOn the other hand, Toeplitz forms were studied independently
such, they have become very popular and are now descnbe%l Szegs, who introduced a set of orthogonal polynomials

standard signal processing textbooks (see, e.g., [35], [48]). Th tth respect to an (absolutely continuous) positive measure on

have found a large \_/ariety_ of electrical engine(_aring appli_catipﬂ,?e unit circle. These polynomials obey a two-terms recursion
[5]. [30], [39], [40], including spectral estimation [18], circuit 54], [55] involving a set of parameters of modulus bounded by

and network synthesis [24], geophysics [6], and speech magke, '\ hich Jater on were recognized to be equal to the Schur

eling and chmg (the Schur algorithm is used in the GSM EB’arameters [31], [32]. In the 1940s, Toeplitz forms received
ropean mobile telephon_e system [53]_)' . ) revived interest in view of their natural occurrence in the
Althoqgh these algorlthm§ are mainly known n _the SlgnEliolmogorov—Wiener prediction and interpolation theory of
processing community as linear regression algorithms, thgt%\tionary processes (see, e.g., [34, Ch. 10], as well as the
originally §tem from different mathematical disciplines, a§urvey paper [38] and thé refe,renc,es therei;w). Working on
we now briefly recall. At the beginning of the century, SChu'Wiener’s solution of the continuous-time prediction problem,

Carathéodory, and Toeplitz were active in such fields as anas inson [45] proposed a fast algorithm for solving Toeplitz

lytic function theory, Toeplitz forms_, and mqment problem.ss stems; later on, the Levinson recursions were recognized as
In 1917, Schur developed a recursive algorithm for checknbaéing the recurrence relations of Szego

whether a given function Finally, there was an intense activity in these fields begin-

s(z) = “lz) = co = c(z) = ¢

c(z) + co (1)

. INTRODUCTION

oo ning in the late 1970s, mainly toward the development of fast
5(z) = Z spzk algorithms for numerical linear algebra, on the one hand, and in
k=0 the domain of interpolation theory, on the other. Through these

is analytic and bounded by one in the unit disk [52]. Such funBEW developments and extensions, new connections with other

tions are characterized by a sequence of parameters of modifigghematical topics and disciplines were developed, including,
among others, displacement rank theafylossless transfer

" o ed Aoril 12. 2000: revised Aoril 3. 2003, Th eri I,functions, reproducing kernel Hilbert spaces, the commutant
anuscript received April 12, ; revised April 3, . The material ifis.. . .

this paper was presented in part at the International Symposium on the M ﬁ—mg problem, modern analytic funCtlon. theory, and ope.rator.

ematical Theory of Networks and Systems (MTNS), Perpignan, France, JiRe€ory. The literature on these connections and extensions is
2000. vast; the reader may refer for instance to the papers [17], [18],

The author is with GET, Institut National des Télécommunications, dpt. CIT,
and with CNRS UMR 5157, 91011 Evry, France (e-mail: Francois.Desbotgl]_[z?’]’ [33], [42] and books [3], [3], [13], [25], [27], [28]

vries@int-evry.fr). (this list is not at all exhaustive).
Communicated by J. A. O’Sullivan, Associate Editor for Detection and Esti-

mation. IThroughout this papef, )* denotes complex conjugation and” Hermi-
Digital Object Identifier 10.1109/TIT.2003.814478 tian transposition.

0018-9448/03$17.00 © 2003 IEEE



DESBOUVRIES: NON-EUCLIDEAN GEOMETRICAL ASPECTS OF THE SCHUR AND LEVINSON-SZEGO ALGORITHMS 1993

The mathematical environment of these algorithms is thus
very rich, and these various interactions have already been thor-
oughly investigated in many outstanding contributions. In this
wealthy context, our contribution in this paper consists in ex-
hibiting new unnoticed connections with spherical trigonometry
(ST).

As far as geometry is concerned, the Lobachevski geometry
was already known to be the natural geometrical environment
of the Schur and Levinson—-Szeg6 algorithms, since the core
of these algorithms mainly consists in a linear fractional trans-
formation (LFT) leaving the unit circle invariant. However, a
new point of view is obtained when considering the algorithms
(via positive-definite Toeplitz forms) in the particular context of
their application to linear prediction. Then, up to an appropria,t_@g. 1
normalization, the Schur and Levinson-Szeg6 algorithms be-

come trigonometric identities in a spherical triangle. Since “?ﬁx, as we briefly recall from the following two simple exam-
real projective2-spaceP? is the quotient space obtained fron@I
It

the sphere by identifying antipodal points, we see that the alter o s first consider a (Schur complement) recursive proce-

nate non-Euclidean geometry with constant curvature (i.e., t&ﬁre for testing the positivity of a covariance matrix. Let
elliptic one) is indeed another natural geometrical environment

of the Schur and Levinson—-Szeg6 algorithms as well. 1 ro1 rop2

_Let us_briefly out_line the underlying mechanisms Ieading to Roa= |1o1 1 7119
this new interpretation. LeitXi} be real, zero-mean, square-in-
tegrable random variables’,}’" the best linear mean-square es-
timate of X in terms of{ X;}7_,, andf(}:" =X, - len the be the covariance matrix ¢fX;}?_,. Ro.» is positive definite if
corresponding estimation error. The partial correlation coeffind only if the Schur complement
cient (or parcor) ofXy and X, 11, given{X;}"_,, is defined as

o def [ 1 712 To,1
Ry = - [r0,1 70,2]
T

2 1 0,2

The spherical triangliBC.

o2 T12 1

E (X(%anlLfl)

pl:n _
0,n+1 Y e : [ 1—7r§ 7"1_,2—7“0,17“0,2}
mn n =
E (XO ) E (X"+1) T1,2 —T0,170,2 1- 7"(%,2
It is bounded byt in magnitude and is classically interpreted ats positive definite. Due to the normalizatiofy; = 1, r »,

the correlation coefficient ok, and X,, 1, once the influence 7o, 1, andrg, » are lower thari in absolute value, and can thus be
of {X;}7_, has been removed. In 1907, G. U. Yule [58] showeconsidered as the cosine of some anglesgsayandc. Rf ,, in

that the parcors could be computed recursively turn, is positive definite if and only if —r§ ; > 0,1—7r§ 5 > 0,
lin—1 lin—1 1:in—1 and
1:n _ Pon+1 ~ Pon  Pnn+l 9
Po,nt1 = Tn—1\2 Tm—1\9 (2) 1o — 10 1T
\/1 - (pO,n ) \/1 - (pn.,n+1) 1-— 1,2 0,170,2 >0
. , \/1—7%1\/1—7“82
It happens that this well-known formula is formally equal to the ’ ’
fundamental ST cosine law and this last constraint means that there exists some ahgle
cosa — cosbcosc such that
cos A = - - (1.3)
sinb sin ¢ (4) = 71,2 — 70,170, 2 __cosa—cosb cosc
COSs = = - B

which gives an angle of a spherical triangle in terms of its three \/1 — r%} 1 \/1 — T(%’ 9 sin b sin ¢

sides (see Fig. 1). This observation establishes a link between ) o
statistics and time-series analysis, on the one hand, and ST, of" the other hand, trigonometry also stems from dilation the-

the other. oretic results, and more precisely from the multiplicative struc-

In earlier papers [19], [20], ST was shown also to admit re of the Kolmogorov decomposition of a positive-definite
close connection with the topic of recursive least-squares ad4gtnel [11], [12], [41], [13, Ch. 1]. For illustrative purposes let
tive filtering. Now, the Schur and Levinson—Szegé algorithm4S consider the following example. Let = [100]", and for
can be written as algebraic recursions within a covariance mal < 1. [o’| <1, letH(p, p’) be the orthogonal lower Hessen-
trix or its inverse; due to the identification (1.2} (1.3), they berg matrix

admit a connection with ST as well. 0 =2 071 0 0
The existence of such an algebraic link with ST is not to- , , >
tally unexpected: in fact, trigonometric relations naturally ap7(P:#) = |\/1=p2  —p 0 [|0 p I=p

pear when one deals with the structure of a positive-definite ma- 0 0 1110 /1-p2 —p
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Then the identity [I. NON-EUCLIDEAN (HYPERBOLIG GEOMETRICAL ASPECTS

OF THE SCHUR AND LEVINSON-SZEGO ALGORITHMS

T 1 2
ro,2 = €3 H (po,1, H (p1,2, e1 . . . . .
’ ! (p ' p0’2) (p pl’g) ’ In this section, we first briefly recall the mechanisms under-

say, reads lying the Schur algorithm. We next show that the choice by
Schur of a recursive solution to the Carathéodory problem natu-
T0,2 = p0,1P1,2 + \/1 = (po,1)?p0, 2\/1 —(p1,2)? rally sets the algorithm in a non-Euclidean hyperbolic environ-
ment.

which is a particular case of (1.2} (1.3).
In the two previous connections, positivity plays a major rolé\. The Schur Algorithm

Now, the spherical nature of these trigonometric relations fmdsThe Carathéodory analytic interpolation problem consists in

its source in recursive projection identities. In linear regreﬁhging all functionss such that 1)s(z) = 7 apzk +
2) = Yoo OkZ
Z

sion, one recognizes that the mean-square error to be minimize 1 dof L
is a distance, so the projection theorem can be applied in ﬁj ), and 2)s € §'= {f(z) analytic in|z| < 1, “and
Hilbert space generated by the random variables. Introducing/ )| < 1 for 2| < 1}. In 1917, Schur proposed a “layer-
new variable in the regression problem amounts to updatin@8/iNg” type algorithm [52] (i.e., inwhich the interpolation data
projection operator, and the problem can indeed be descrit§ Processed recursively) which we briefly recall.

in terms of projections in a space generated by three vecto,rs'.-et“Sf"St consider the case where there is only one interpola-

But three unit-length vectors form a tetrahedron in three—dimef2n PO'”WO- Duetothe maximum pnngple, the problem has no
siona (3-D) space, and deriving projective identities in a norméﬁQIUtlon if|ao| > 1, and admits the unique solutiag) = a
ized tetrahedron results in deriving trigonometric relations in tielol = 1. If |ao| < 1, let
spherical triangle determined by this tetrahedron (see Fig. 1, and 1 s(z) —ag
[20] for details). S1\z) =
This paper is organized as follows. Non-Euclidean hyperbolic
aspects of the Schur algorithm are implicit in [10] but do nothen the key property of this transformation is that S <=
seem otherwise to be well known. Yet the Lobachevski geom: € S, so that
etry is, by construction, an essential feature of the algorithm, S 251()+ao
which deserves to be better appreciated. So we feel useful, in {8 < — s(2) = T+agzs1(2) (11.2)
the context of the present paper, to begin with a brief section on 5(0) = ag s1 €S.
this topic (which is partially of tutorial nature). More precisely,
we show in Section Il that Schur’s layer-peeling type solution o i :
to the Carathéodory problem necessarily makes use of automaoparametnzatlon.of all solutions tq the Carath_eodory p_roblem
phisms of the unit disk which, on the other hand, happen to B‘ét'erms of an arbltrary Schur function. A new mtt_erpolathn
the direct isometries of the Lobachevski plane. pomtallcan be tqken into account by further restricting this set
The next three sections are devoted to the new geometriegposs'ble functions, . From (I1.2), we see thas[€ S and

interpretations in terms of ST. So in Section I1I, we begin Witﬂaz i;:terpolatiorll constrain(8o -- '1%)] if f‘”d only ifr[]‘.slher‘]g
briefly recalling the general projection identities, as well as the‘ﬁ{'d as |Sterp?] at(ljon colnstralr.('rﬁol Cf"—l)l]; Inw '_C t.fe
ST counterparts, which will be used in the rest of this papdt. 9€Pend on the dai. In particu ar,(s'(z)/1)],_p = a1 i

; ; _ 1. .
Next, in Section IV, we relate recursive regressions within a s%?d onlyifs1(0) = ag: we are thus led back to the same metric

of (n+1) random variables, algebraic manipulationsin a covaft® ns_t(rjalnet_d mtelrpc()jlabtlo_n gro?lemt, btuht ngwhof Or?eﬂﬁg hese
ance matrix or in its inverse, and ST. We show that adding (resfﬁns' erations lead by induction fo the schur algorthm

5(2) = z81(2) + ag
T 1+ apzsi(z)

(I1.1)

21— ajs(z)

In the case of a single interpolation point, (11.2) provides

removing) a new variable in the regression problem which, in ] 1 s,(2) — 5,(0)
terms of Schur complements on the covariance matrix (resp*.(,l(z) =5(2); I [sp(0)] <1, spya(2) = > m
on its inverse), amounts to using the quotient property [46, p. P p(||_3)
279], corresponds in terms of ST to applying the law of cosines

(resp., the polar law of cosines). B. The Schur Mechanism and Automorphisms of the Unit

Finally, in Section V, we further assume that the random vaiGircle
ables are taken out of a discrete time, wide-sense stationary timﬁ1 this section, we analyze the design of the Schur algorithm

series, and we use the results of Sections Il and IV t0 it terms of automorphisms of the unit disk. Automorphisms of
pret in parallel the Schur and Levinson-Szegd algorithms i omainc are bi-holomorphic mappings ¢
terms of ST. The Schur (resp., Levinson—Szegd) relations con-

sist in two Schur complement recursions (in the forward angdy () d:°f{fe7-[(G, G) st f! exists, andf~ € H(G, G)}
backward sense) on the original covariance matrix (resp., on its
inverse), and can indeed be interpreted in dual spherical triavhere (G, G5) denotes the set of holomorphic functions of
gles. Up to an appropriate normalization, the Schur (resp., ordey ontoG,. The Schur clas§ coincides withH (D, D), where
decreasing Levinson—Szegd) recursions coincide with two cdbiis the open unit disk and its closure.
pled occurrences of the law of cosines (resp., of the polar law of Secti _ , , _

ection 1I-C, we will deal with geometrical aspects of recursion (l1.3).

. . .. . . n
cosines), and the LeV'nSO.n_Szego recursions with two COUpLﬁ“ﬁL is why the regular case only is considered in this brief review; all details
occurrences of the polar five-elements formula. of the general case can be found in [52].
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The mapping (I.1) can be decomposed into two steps  whence (I.2). Equivalence (11.5% (11.6) is due to the max-
imum principle and (1.7)= (11.8) to the Schwarz lemma. As

§1(2) = 5(%) — N s 5(2) = m (1.4) for (I1.6) « (I1.7), it holds becausé; = ¢x o s, where the
1 —ags(z) 1+ agsi(2) mapping
ands;(z) = 1 5,(2). Since the transform — 3y in (11.4) is an bdar: 2 our(2) = (2 —ag) /(1 — ah2)
LFT, we begin with recalling elementary (Euclidean) properties 5
of these mappings [26], [8], [1]. Lé¥Icb denote the Mdbius - (2 = a0)/\/1 — |ao|
gI’OUpM('jbd:6f {z — (az +b)/(cz + d), with ad — bc # 0}. (1 —agz)/y/1— |aol?

Then the mapping belongs taV' C Aut (D). In fact, it is interesting to notice that

(11.4) was the only possible choice, because, as is well known
[51], [2], the automorphisms 0P indeed coincide with the
az+b group of LFTs which leave the unit-disk invariant

-+ d
. N = Aut (D).

¢: GL(2,C) — Mob

M = [Z Z} = dr, with ¢ar(2) =

is a group homomorphism. Singg; = ¢y, for all A e C\{0},
there is no loss of generality in supposing that (M) = 1.

From now on we shall thus restrict&7.(2, C). Then the kernel C. Hyperbolic Geometry of the Schur and Levinson-Szego

of ¢ reduces td and—1, andMob is isomorphic to the associ- Algorithms

ated quotient group We now turn from analytical to geometrical considerations.
These are obtained naturally in the framework of the theory de-

Méb = (SL(2,C)/+1). veloped in [37], which aims at describing the holomorphic struc-

ture of a domairz of C™ in terms of geometric properties of the

On the other hand, spacg G, dg). If the distancel; is chosen such that any holo-
morphic mapping ofz onto itself is a contraction, then auto-

(az+b)/(cz + d) = a/c+ [(be — ad)/?]/(z + d/c) morphisms of are isometries with respect tl; and can thus

) i be interpreted (in the spirit of F. Klein) as rigid motions with
(resp.,= az/d + b/d) if ¢ # 0 (resp.,c = 0), so any LFT is a respect to the geometry specified dy.
succession of translations, inversions, rotations, and/or homothTha schwarz—Pick lemma [37], [2], [8], [7] provides a nice
eties. Since all these geometrical transformations preserve fi[isration of this general methodology to the present situation:
cles, an LFT maps any circle in the complex plane (possibly g§ eypected, we shall meet non-Euclidean hyperbolic geometry,
infinite radius) into another circle (possibly of infinite radius)gincect reduces to the unit disR. which is a Euclidean model

_In particular,¢y, maps the unit circld onto itself if ano! o_nly of the Lobachevski plane (see, e.g., [49]). e (., .) denote
if M belongs to the subgrouf/ (1, 1) of SL(2, C) consisting e Mébius distance irC: for all 2,2 € C du(z 2) =

of X-unitary matrices, with = diag(+1, —1) |(z— 2')/(1 — 2’*z)|. The Schwarz—Pick lemma states that any
1 0 1 0 function f belonging toH(D, D) is a contraction with respect
sSuU(1, 1):{M€SL(27 C), s.t.M [0 _J M = {0 _1]} to the Mobius distance
f(z) - f(z) z—2
. € H(D, D) = ,
{5 | win a1} A T pe] B )
for all z, 2’ € D;

Ic_)?;\/[/\'(/)"bbz:lje set of such M6bius transforrig; is a subgroup equality holds if and only iff belongs taAut (D).

Let us now turn back to the discussion at the end of Sec-
s {Z ez +b with |a|2 3 |b|2 _ 1} tion lI-B. Schur had t_o <_:hose the functional- 5, (or_, in gen-
b 2z + a*’ eral, s, — zspy1) Within Aut (D), and automorphisms @
N preserve the Mobius distanel,, and thus the Poincaré dis-
= (SUQ, /£, tancedp(., .), with

Finally, observe that any,, € N also maps the interidd of dp(z, 2') = log([1 + das(z, 2)]/[1 — dar(z, 2)]).
the unit circle onto itself (and similarly for its exterior).
Let us turn back to the Schur algorithm. Sirjag| < 1, we More precisely, they are well known to coincide with the direct

have isometries of the Lobachevski plat®?, dp) [8], [26]3
(s(2) € H(D, D) ands(0)= ag) < (11.5) N = Aut (D) = {direct isometries of 4>, dp)}.
(s(z) € H(D, D) ands(0) = ag) & (1.6)  This geometry is thus, by construction, the natural geometrical
~ _ environment of the Schur algorithm.
(51(2) € H(D, D)ands;(0) =0) (1.7)

_ SThe full isometry group of 2, d ) is obtained by including the map—
s1(z) € H (D, D) (I1.8)  z* as a generator.
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Finally, let us briefly consider the Levinson—Szeg6 algorithm. Using (l11.3), it is easy to see that (Ill.2) leads to the two
It is not a solution to an analytic interpolation problem, but cafollowing relations among (unit-length) normalized projection
nevertheless be rephrased (via the Schur—Cohn stability test)esiduals:
the framework of Section II-A [30], and thus shares the same—— =1 T M Moy —1/2
geometrical environment. For letz) = Y7, a2, b(z) = D77 = (B -4 PB,A) (1= lp5 al”) (Ih.4)
2"(a(1/2%))*, and f(z) = b(z)/a(z). Then f(z) is rational - S 1/2
and has modulus on T. So, by the maximum modulus the- = AMB (—pp'4) + BM (1= |p5'4?) . (111.5)
orem, [f(z) is analytic inD and|f(z)| = 1 on T] if and only
it[f(=)] < 1in D and|f(2)| = 10nT], ie. if and only it oXb from (1l-1) and (111.3), we get
f is arational bounded function of the lossless type (a Blashke (AM,B. [}M,A) = —pM, (111.6)
product). But this can be checked via the Schur algorithm, be- ' ’

causef = fy is a Blashke product of order if and only if which. inthe s SAVIEET-YV) .
o _ , pace spanned By andBM, can be interpreted
|fp(0)] < 1for0 < p <n—1and|f,(0)] = 1; the recursions ascos(r — 6) = — cos(8) [20, p. 306].

coincide with the order-decreasing Levinson—Szego algorlthm.In order to get ST relations, we need to consider three projec-

tion residuals. From (111.2) we have
Ill. RECURSIVEPROJECTIONS INHILBERT SPACES ANDST

From now on, we shall deal with ST aspects of the SchL(@M’Aa BM’A) = (éMv BM)
and Levinson—Szegd algorithms. In this intermediate section, N N N 2 TV Y
we first recall some elementary projective identities. We then - (C , 4 ) (A ;A ) (A , B ) - (7
give an ST interpretation to Yule’s parcor identity (an elemen-, = M M “ M BM _
tary linear regression recursion), and bring back from ST sorkd¥iding by (G, € )M/2(BM, BM)'/2, and using (111.3),
relations among parcors which we will refer to in Sections W€ 9€t
and V.

P =
A. Partial Correlation Coefficients, Recursive Projections, and \/1 - |pé{‘A|2 \/1 - |p%3|2

Yule's Parcor Identity

M MM
PeB — Peial
é/.le _ Cc,B ~ PC,APAB (IIL.8)

Our geometrical results are based on the properties of é‘gﬁgfg: \r/r;r?;gl:gual to (1.3), up to a straightforward identi-

thogonal projectors and can thus be formalized in any Hilbert

spaceH. However, the natural framework in this paper is thg. New Relations Among Parcors Induced by ST
spaceH = L%(9, A, P) of complex, zero-mean, square-inte-

grable random variables defined 61, .A, ), endowed with the duality principle), and derive some ST-like relations among

the scalar produdtX, V) = E(XY™). . : ) .
' . . arcors, which will be useful in Sections IV and V.
Let Py, denote the orthogonal projector on the Hilbert spacpe Three pointsh, B, andC on the spheréo, 1) determine the

1 _ AM . .
H(M) generated bM., Py = I~ P, A™ the projection of spherical triangl&BC, which by definition consists of the three

T M T i
Aonto}(M), andA™ = A — A™. ForanyX € 1\ {0}, X arcs of great circlesB, AC, andBC obtained by intersecting the

denotes normalization to unit norX: = X (X, X)~%/2. Let . :
’ _ sphere and the planesB, 0AC, and0BC (see Fig. 1). A spherical
A andB belong 07 \ {0} (resp., 107 \ {M}). The (some triangle has six elements: the three side$, and ¢, and the

tclg]r?:l;%fi;g;?gecnogﬁla;lz? floae;fécg %(13 f (riig'agggal three Eﬂgles& B, andC. The sidea, say, is defined as the
4, B P ' angleB0OC and is equal to the length of the aB¢. The angle

w_|th_respect o a*common/vslubspa%wiﬂejmed az"‘”i T4 say, is defined as the dihedral angle between the plaites
(4, B) = (pp,4)” (resp.,py'p = (AM, BM) = (p5]4) ). andoac, and is also equal to the angle made by the tangents to
Let us now consider recursive projections. It is well knowg,e spherical triangl@BC at pointA.
that There are three degrees of freedom in a spherical triangle,
there cannot be more than three distinct relations among the
Pu, 4 = Pa+ Pyu, P 4 = P — Py .y 32 . )

M, A= EMt ane Faa = i (1) six elements. All the ST relations can thus be derived from the
where P 4, say, is the orthogonal projector onto the closedirée cosine laws obtained by permuting variables into (1.3),
subspace generated Byt andA. These identities are of utmostand, similarly, the relations among parcors below can all be de-
importance in recursive least squares (RLS) adaptive filtering@ed from (111.8). Some of them (such as the cosine law in the
well as in Kalman filtering. From (l11.1), we get

We now briefly recall some ST principles (and, in particular,

4This is a slight abuse of language: since sines and cosines are real valued,
1 identification indeed holds only in the case of scalar and real parcors. However,
BM.A — pM _ (BM AM) (AM AM) AM (|||_2) as we will see in the next section, this trigonometric interpretation enables to
’ ’ hint at the existence of “ST-like” relations among parcors which, though purely
algebraic, are not necessarily intuitive. These relations naturally hold in the real

which gives the useful relation as well as in the complex case, and can also be extended from the scalar to the
matrix case. We chose in this paper to stick to the scalar case; but since, on the
(BM., A pM, A) other hand, the Schur and Levinson—-Szegé algorithms are naturally complex
’ —1_ | M 2 1.3 data algorithms, we had to deal with complex-valued parcors and algorithms,
- |/’A7 B | : (111.3) whence this slight discrepancy (we should say that (111.8) is the complex-valued

(BM7 BM) extension of a real-valued formula which is formally equal to (1.3)).
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polar triangle) are already known, and in this case we only bring  Proof: Using (111.3) recursively, we have
a geometrical interpretation, but some others (such as the sine

law) seem to be new. CMAB, C”«M.,A,B)
We first need to briefly evoke the duality principle of ST. Let ) . .
A be t_he _po_le (with respect tq the equator passing thchu_agid = <1 - ’pg/f,cA’ ) (CM,A7 CM,A)
C) which is in the same hemisphere g8’ andC’ are defined
1 1 1 1 Ao Uall 1
S|m|IarIy./'I',h<la spherical trlar)gle B C, is the polar triangle of (1| Mma 2 (1 B | ™ |2) (OM OM)
ABC. In A’B'C/, the elements’ and A’, say, are equal, respec- PB,c Pc, A ’

tively, tor — A andw —a (see, e.g., [43], [44], [47]). So, for any R ~
ST formula there exists a dual relation, obtained by replacing (OM“‘?B, CMA’B)
(a, b, ¢, A, B, CYby(r—A, 7—B, 7—C, m—a, 7—b, 7—c),

respectively. = (1 — it P 2) (C‘MB, C‘MB)
Among any four elements there exists one and only one rela-
tion. These 15 relations are the three cosine laws, the three co-  _ M, B|? MR (M Gam
; ; ; ; =\1—|rca 1_|pB,C| ) .
sine laws in the polar triangle, the three self-dual sine formulas, ’

and the six self-dual cotangent formulas. They all have a parcor.

equivalent. However, there are many different relations amongis 1€2ds the first equation of (111.12), in which it remains to
any five elements (or between the six), and it always seems pBEMute variables. _
sible to find new ones. Thus, we shall give only one of them, the 3) The Cotangent FormulasThese are the six self-dual for-
five-elements formula. mulas obtained by permuting variables into the equation

1) The Cosine Law in the Polar Triangldn the polar tri-

angle, the cosine law reads cot bsina = cos C cos a + sin C cot B. (1.13)

Similarly, the following relation among parcors holds:

cosa — cosA.—f— cos.BcosC' (I11.9)
sin B sin C p4 e
1— 2
Similarly, (111.8) admits the polar version 1 X2 V1-loglol =
M,B_M,C
_ /JCB tPca PaB (11.10) + |p [pA Vo) / 1-— |/) ] . (111.14)
1- ’B’ \/1 - ‘ ’ . .
\/ pC*A Pap Proof: Using (lI1.8) twice, we get

which was already known to Yule [58, eq. (19), p. 93].

2
Proof: Using (111.5), we have |

pilc = [pffcpéfBJr 1= |t 2oty 1 = o 512

'PJJ;/,IC + /1= |pX ]2 PA < V1 —lp5tcl?.

1/2
CM,A,B — jM,B,C OM, B MB‘
( pc )+ < Pe.a It remains to move the first term of the right-hand side to the
172 left-hand side, to divide by

V= Xl /1 - 0P

and to use the sine law (111.12). O

—_— 2
= 1 M\, T M, C
BM.C,A — AM,B,C (_PB,A )+BM,C <1_‘pB,A ‘ >

Taking the inner product and using (I11.6), we get (111.10), be-
cause from (l1.4) we have
4) The Five-Elements FormulaThese are the six formulas

(AM.B,C (M, B) = (AM,B,C BM.C) =, O obtained by permuting variables into
cosbsin ¢ = sinbcos A cos ¢ + sin a cos B. (111.15)
2) The Sine Law:The spherical triangle self-dual sine law
is the following formula: The dual equations are
sin A _sinB _ sinC. (I11.11) cos BsinC = —sin BeosacosC + sin Acosb.  (111.16)
sina  sinb sin ¢ '

. . . Similarly, the following relations among parcors hold:
Similarly, the following relation holds among parcors: y g gp

2 2
M M M M, A M
M, A M,B M,C Zeh \/1—‘p ’ —\/1—‘/) ’p p
L—|pgc 1—|pcx |2 L—|py 5 I? @A B4 e.A] Fe. BB A

1- |P/1§Ac|2 B 1- |PéAA|2 B 1- |P£AB|2 . 2
> , > M, B
(111.12) +4/1- ’péﬁ; pera (1.17)
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Mm,cl? _ 1 MBI?P M M, C Schur complements in the covariance matrix and in its inverse.
B, A ‘ IV ‘pc A | Pc.BPB, A Finally, these recursions receive an ST interpretation. We begin
with the following elementary results.

M,
PC,AB 1- ‘P
M, A
TVl el (1118) Lemma 4.1: Let

Proof: Using (111.8) twice, we get Rowm = (15 ) o
m 2,9 )4, j=

M M M
pPC,BPB, AT PC A and . .
Pon = Ry, = (pi,j)i,j:O'

[ 2 [ 2
M M M, A M oo
Pc, APA, BT 1—‘/’3/,’,4‘ Pc, B 1- ‘pAM,B‘ ] PB,A Then, foralli, j € [0 - n]

Xi, Xj) (IV.1)

ri,j =
MM M PomB M
+ |pc,BPB, A+ \/1— ‘pC7B‘ Pc, A 1- ‘pB,A‘ . gloml\i x0ml\d
) J
Di,; = oo N . P -
| N . | ] (Xi[o'n]\17 X}On]\z) (XJ[On]\] XJ[On]\])
It remains to divide by, /1 — |png|2. Equation (111.18) is ob- V.2
tained similarly from (111.10). O (V:2)
Proof: Equation (IV.1) holds by definition. As for (IV.2),
IV. SCHUR COMPLEMENTS IN Ry, /Ry.L AND ST Whittaker noticed thap; ; = (X "IV, X[omI\iy-1 (56, p.

In view of Section V, we now consider Schur complement43], but indeed (IV.2) holds for all, j, as we now see. Let
tation in a covariance matrix or in its inverse, because Schir?i.;}j»: denote the coefficients of the optimal (in the mean-
complements provide the connection between the Schur atfyare sense) linear interpolatordfin terms of{ X} 2;, and
Levinson—Szegd algorithms and ST. The reason why is that &t X" denote the associated estimation error
gebraically the elementary recursion with pivgt;: 4 n
Xi[om]\z =X; + Z bij X; = [bio - bin]Xoin

i
reduces to a cosine law when normalized 8 ;\/7;, ;. where we sel; ; = 1. The coefficient$; ; minimize the mean-

Let {X;}", be ;calar random variables. For < ¢, let square erro'()/”(i[ﬂzn]\i7 Xz[o;n]\i) and can thus be found from
Xpiq = (X, - X, 2.In all of this section, we Wlllas_sume thaty, o orthogonality principle(f(}om]\l, X;) = Oforallj e
{ X}l belong tol.*(Q2, A, P), and that the covariance ma—[ n], j # 4. Taking successively the inner product of
trix Ro., = E(Xo.,X2,) of Xo., is invertible. We shall focus X’[o};]'\’i w;th X[om']\j and with X2 we see that
on the Hilbert spacé{(Xy, ..., X,,) generated by{ X,}" , i i Oin?

i i 2 ~ 10+ i ~T10- : ~10- S~ 10 ;
which is a subspace &f*(£2, A, P)'.~H(X11,...,Xlk) (Xi[oAn]\z X][o.n]\J) _ bm(Xj[oAn]\]? X]['Om,]\])

In the sequel, the general notatidf of Sec- ) .
tion I11-A is simplified to j(fllk Letp < r, s < ¢. Since we and (a; is yvell known) that thith row of R(;}z contains, up to
will essentially use contiguous sets of indexes (without loss Bprmalization, the terms
generality), we also replace {bi Vg bij = (XL-[O:"N. Xi[o:n]\i)pi .

ti g =t = ti g = ti kb it

- H({Xm,}m¢7" 711#5)

~"H({Xm}p§m§q) 'H({‘\Vm}m#r p<m<gq

X; , X; p<m<a) andX; Equation (1V.2) follows immediately. O
el I - . Lemma 4.2:Let
respectively, by¢?¢, X4\" andX 9\ * similar notations

are adopted for the colrelation coefficients, so that the parcor (of Ro.n = (73,5)7 j=o0
HUX, P _ _ o
orderq — p) pr_{Xj JoZn<d) | say, is denoted simply by 4\, and
In our conventions, the order of the secondary (upper) indexes Py, = RyL = (pi, ;)7 j=o-

p andq is meaningful: X7, p; 4 (and later oy, 1%, PP, o
andp? %) reduce, respectively, t&, pi j, Ri,j, i j, P; j, and Then, for alli, j € [0 --- n]

by

pi, ; it p > g. In this way, the notation changes continuously T3, j -

from the total to the partial situation. For instance, there isno /r 75 ; (Xi, Xj) = i (V3)
conceptual need to distinguish between total and partial corre- o - o
lation coefficients since a total correlation coefficient is simply LY B (Xi[om]\z, XJ[.O:”]\J) = _pg?:j"]\w_ (IV.4)

a partial correlation coefficient of order VPi.iPj.i
In this section, we shall first recall (and slightly extend) some  Proof: Equation (IV.3) holds by definition. Equa-
results giving the covariance matrix &%, (resp., itsinverse)in tion (IV.4) is a well-known determinantal formula [57, p. 94],
terms of covariances of the random variallés }7_ (resp., of | _
To the best of our knowledge, out of the six formulas (IV.1) to (IV.6), only

. o [0:n]\i
the random variableX;™" " }7_). We thus get Lemmas 4.1 y2) and (1v.6) are original. However, (IV.4) and (IV.5) need to be recalled
and 4.2, which are generalized to Theorem 4.1 by considerisigee they will be used in Section V.
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[16, p. 306], [56, p. 143]. In the context of this paper, it is also by PE’;Jrlin]\i’pHP[p+1.:'n]\p+17j

: p+2m\isi . Pij p+1,j
a direct consequence of (IV.2) and of (111.6). O Pij - - 2 —
\/1_ p[P'i'lm]\%P-i'l’ \/1_ PP Ln\P L]
We are now ready to extend Lemma 4.2. We refer to the annex iptl ptlj
for the definition and elementary properties of Schur comple- (IV.9)
ments. LetR)” (resp.,Py”) be the (p + 1)th-order) Schur _ o .
complement ofRy,,, in Ro.,, (of the (p + 1) x (p + 1) top left Proof: We begin with (1V.8). As we now see, it happens

: D 0: 0:
comer(Z,+10]Pon [1+10]7 Of Py in Po.). The reader should that the Schur complementation St@g’% — (Ro/rp¥1, pt1)
notice thatP%? # (R92)~'. In the same way that a total correProvides the loop of a mathematical induction proof of (IV.5),
lation coefficient is a partial correlation coefficient of order zerdhich we get as a by-product; since, on the other hand, this
the original covariance matrix and its inverse are Schur coiffOP IS indeed one of the recursive projective identities of Sec-

plements of order zero. From this point of view, the foIIowingﬁ'(?_n IlI-A, the link with ST is immediate. So, let us assume that

: v 0: v 0:
theorem encompasses and generalizes Lemma 4.2 (which o — (X7, X;7) (for p =—1,r; = (Xi, X;) holds by
responds to the particular case= —1). definition). Due to the quotient property (A.3)
Theorem 4.1:Let (RO /rpfy pn) = Ron ™
Ro.n = (14,5)1 j=o This equality reads componentwise
—1 n
Poin = R = (i, )7, j=0- AR (X?:P, XJOP)

Let moreover ~ ~ ~ ~ 1, R
_ (Xi():p, XO:p ) (XO:p XO:p ) (XO:]) XOp)

0: 0:p\n +1 +1> +1 +1»
Ro:ﬁ = (’ri,?)i,j:p+1 P ? ? P !
o 0 and thus
(resp..Po? = (p;®)7 ;_, ) be the Schur complement &.,
in Ro., (ofthe(p+1) x (p+ 1) top left corner ofPy.,, in Py.,,). 7«?_:?“ = ()2??1’“7 f(](?fl’“)
Forp = —1, we SetRy” = R, Pot = P, 138 = 14 ;4 ’
p??? =Dij andp?;];. = pi ;. Then,forallp € [-1, 0, ..., n— dueto(lll.7). Normalizing as in Section IlI-A we get both (IV.5)
1],and foralli, j € [p+1 - - n] and (IV.8). . . _
We next consider (IV.9). Similarly, due to the quotient prop-
_ ?;; (IV.5) erty (A.3),
(P(?::s/pg:}r)l,p+1) = P(??f+1
— _ plpim\ig (Iv.6) Butthis equality reads componentwise
0:p 0O:p “a
\/P; iP; 0: 0: 0: —1, 0: _ . 0:p+1
g P = Py (Pt i) TR =i

Proof: A proof of (IV.5) is given a few lines below. Note
that (IV.5) is actually given in [4, p. 37] as the definition ofDividing this equation bwp?:f,/pgjf; and using (1V.6), we get
the parcorp,?_”;, under the assumption that the probability law

of Xo., is Gaussian. Of course, it is a standard result thﬁffl’”]\i’j +p[p+1’"]\i’p+1p}f’fﬁ}"“”“’j

i,p+1

the theory of conditioning in the Gaussian case algebraically

leads to the same results as the theory of linear regression in =
2 - thic i i ; i

L (Q, A, P); this is bgcause |n.the Gau_ssmn.case, th(_e Congiemarking from (IV.2) and (IV.7) that

tional law of X, 1., given Xy, is Gaussian with covariance

0:p [p+2n]\1j

0:p+1 0:p+1
D /pi,i Pi.; i

0:p
P Ipjj-

matrix (Rom/Ro:p). p(i):zi) _ (Xvi[p—l—lzn]\i7 f(i[P-l-l!n]\i)—l
On the other hand, (IV.6) is a direct application of (1V.4), after _ ’
it has been observed, with the help of (A2), that and using (I11.3), we get
Op : - n]\i
Pow = Pptim- (IV.7) \/P?,‘?H/P?,"Z _ \/1 _ |P£1,D;i'1 N+ 2

and thus (1V.9), which indeed is the polar cosine law (111.£0)

(111.9). O
Corollary 4.1: Up to normalization, an elementary (i.e., rank

1) Schur complement step d@tj”, (resp., onP.?) performs the v, NON-EUCLIDEAN (SPHERICAL) GEOMETRICAL ASPECTS OF

law of cosines (1.3) (resp., the polar law of cosines (l11.9)): For THE SCHUR AND LEVINSON-SZEGO ALGORITHMS
alpe[-1,0,...,n—2]andforalli, j e [p+2--- n]

We now turn to the connection with the ST cosine laws.

Notations are as in Section IV. From now on, we shall fur-
therassume thd& o X, --- X,,] = [X¢X:—1 --- X¢—n], where

0: 0: 0:p
PO+l Pij ~ Pips1Ppit (IV.8) {X:, t € Z} is a zero-mean, discrete-time, wide-sense sta-
“J op |2 op |2 ' tionary time series. As a consequeng®,, is a Toeplitz ma-
1- /’i,p+1’ L=1ppt; trix. For simplicity, let us denotéy.,, by R,, andr; ; by r;_;.
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The parcors satisfy a shift-invariance property: forall, k, p, [ up(0) 0 7
qEL p<q.i,j¢ip ..., qb Pl = plEr9TE. Among all uy(1)  wy(1)
correlation coefficients (total or partial), the functiép(p) =
ot penn oy (With p(1) = po,1, as in Theorem 4.1) is the = : (V.1)
partial autocorrelation function of the process. It is well known up(k) v, (k)
to be in one-to-one relation with the autocorrelation function P P
[50] and is of particular interest in signal processing.

Letus turn back to the Schur and Levinson-Szeg0 algorithms.th initializati 0) — dun(i) = ve(d) = 7 f
In this final section, we shall use the results of Sections 11l af§t" Nitialization ug(0) = ro, anduo(i) = wvo(i) = r; for

. . . . y 0.
IV to propose a new interpretation of the algorithm in terms df> . . L .
ST prop P 9 From the point of view of analytic interpolation theory

I(_Which was that of Section II-A), thigth step of the algorithm

More precisely, we shall write the common (lattice) recuI orvorates the new date. in the covariance extension
sions of both algorithms as two Schur complement recursiong o P . A8, : . S
roblem. This problem is recursive and “hierarchical” by

(in the forward and backward directions), but acting on the cB-t e given such that R s positive
variance matrix (in the Schur case) or on its inverse, i.e., on t fililit. g'VO 1(;0’ 07]?712](1 unl i bprln : tp 'é\: «
covariance matrix of the normalized interpolation process ( gfinite (>)0, R, > anc only Lf_f’l eongs 1o a dis

; ; p—1 _ 2
the Levinson—Szego case). From Section 1V, the link with f.decreasmg radius, [T;~; (1 Po,i ), the center of
which depends offro, ..., r,_1). So for allk > 0, the row

will follow immediately: up to normalization, the Schur (resp., berk of (V.1) int tos th Hributi fh lati
inverse Levinson—Szegd) algorithm performs the law of cosinggMmoer o (V.1) integrates the contribution of the correlation

(resp., the polar law of cosines). This is a new feature of t AT in the subsequent (_possible) compatibilityrg , with
classical duality of the Schur and Levinson-Szegé algorithm&?: ==~ rp+i—1). In particular, the row number zero tells

As for the Levinson—Szegd algorithm, it is an implementatio)o{heth_errp IS compat|_ble with the dater, ..., .Tp—l) via the
of the polar five-elements formula. ollowing test: assuming that,_; > 0, R, > 0 if and only if

|5p(0) = vp—1(1) /up—1(0) < 1.
A. Spherical Geometry of the Schur Algorithm This progressive incorporation of the constraints. ..,

The new (spherical) geometrical interpretation of the algée- --- N the analytic interpolation problem corresponds
rithm stems from the connection between the Schur algorithh the Progressive incorporation of the random variables
and linear regression (recall from Section | that the algorithl%qtfl7 o Xeprt, - N the Imear prediction problem, {;\nd.
can be used to check whether a given sequéngg s the co- thus to the progressive updating of the associated projection

variance function of a wide-sense stationary process). Let erator (this, of course, is nothing but the classical lattice
thus initialize (11.3), via (1.1), with or Gram-Schmidt interpretation of the Schur algorithm [29]).

To see this, let us rewrite the Schur algorithm in terms of
projective identities. It is easily seen (by induction) that for
k > 0, the two recursions of the row numbeof (V.1) are two
coupled occurrences of the same identity (111.7): see (V.2) at the
bottom of the page. Since all these quantities are covariances
of estimation errors, they reduce to parcors when appropriately
normalized; so a connection of the recursive equations (V.2)
with ST is expected.

s0(2) = (rz+ 22 +--)/(ro +riz+ 22 +--2).

In this case, for alp > 1, the Schur parametey,(0) is equal to
the (partial) correlation coeﬁiciemﬁéi’;’l. Itis convenient [39],
[40] to write the algorithm in vector form: fgr > 1,

[ up-1(0) vp-1(1) ] Infact, both equations are easily seen to be Schur complement
up—1(1) vp—1(2) recursions in
: . boomsl0) Ry (R X,
Uy 1 (k) vp_1(k+1) —5;5(0) ! These two Schur complementation steps correspond to aug-
menting the set of variablqut_i}f;l1 in the projective space
i ] in its two (contiguous) opposite directions: the forwakq

(i—t—p+1:i—1 t—ptlit—1
¢ [

— P
Tt prlii—1 i prlii—1
(thp "\tfp )

1

Xt:p+1:t71.Xt7p+1:t71 Xt7p+1:t71!Xt7p+1:t71 > i i
t—p 1 t—p—k t P t—p—k (Xt—p+1:t—1 t—ptli=1
t—p )

- (X:—p{»l:t—l Vi»:.—p{»l:t—l)

_ [(Xt—p+1:t Xt:;z;-l—i:t) (X:—p:t—17 Xf:fffil)} . (V.2)

t—p ’ t

1
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and the backward,;_,. Because of stationarity, the resulting Let us introduce the forwargth-order linear prediction coef-
quantities still are covariances of estimation residuals wifftients {—a!}!_, by
respect to the same subspace, because the right-hand side of

(V.2) also reads Xtt—j:t—l _ zj: X,
ot—pit— ot—pit— ot—pit— ot—pit— =0
(X P2 Xy i) (X X

with aﬁ = 1. From the Wiener—Hopf equations and Theorem

and the two coefficients in the transformation matrix reduce 11, we get
l:p—1 1:p—1 H : H :
—pop and—(py’, . From the discussion in section Sec- . e itNe—i e lb it Nes 1 et N ot det]\E i
af = (XN XN (gl g lEEe,

tion Ill, the link with ST is immediate

Propostion 5.1: Up to normalization, an elementary step oP© the order-decreasing Levinson-Szegd recursions read as

the Schur algorithm performs two coupled occurrences of tABOWN in (V.4) at the bottom of the page(the first equation

law of cosines: for alp > 1, and for allk > 0 is valid for1 < k < p, with p > 2, and the second for

0<k<p-—1withp > 2).

1 -0y These equations are Schur complement recursioﬁaﬂg
(il L) Vsl a2 e they correspond to reducing the set of varialflas_;}7_, in
Pp.p+k> Poptk _ptir-t L the projective space in its two (extremum) opposite directions:
D, .
\/1_|p1:p_1 2 \/1_|p1:p_1 2 the forward oneX, and the backward on&,_,. From the dis-
p,0 0,p

cussion in Section 1V, we thus expect that appropriate normal-

I S ‘ 1ip—1 ‘2 1p 1 1ip—1 ‘2 ization of the covariances of the estimation errors will reduce
= | Pepk [ 5T Poprk| 0 Poprk ST P ptk| | (V.4) to some ST polar law.

This hint is enforced when looking at the random variables in

(V:3) the left-hand side of (V.2) and (V.4). Let
Proof: Divide (V.2) by Z = ({X_iYocicps Xiem)
OO D RO S r e A (4, B, €) = (Xt Xe—p, Xi-m)
and
which is equal to M =HE\{Xs, X, Xeom})-
(XL XY R XSO so
and use (111.3). O M =H{Xi—i}1<i<p—1)s if m>p
and

B. Spherical Geometry of the Levinson—-Szeg6 Algorithm itm .
P y 9o Al M Z’H({Xt_i}éigp_l), fl<m<p-1

We now turn to the spherical geometry of the Levinson—Sze%o ) ] o N o
algorithm. Recall from Theorem 4.1 that successive Schiifén (V.2) can be visualized as projective identities within the
complements irfy.,, (resp., inRy,) correspond to an increasetetrahedron( A, BM, C*M), and (V.4) as projective identi-
(resp., a reduction) in the number of variables in the regressities within the tetrahedrogAM. 5.¢ BM.C. A OM, A, B,
problem. So, as was already the case at the end of Section I, . _ _ _ , _

h . ith the Schur algorithm indeed proves easi in this subsectlon‘ (as V\_/eII asin Secthn y-A), we are only interested in the
the comparison wi g p SI&d core of the algorithm, i.e., in (V.4). This is the reason why we do not talk of

when dealing with order-decreasing recursions. the wayp,;? ' is computed.
1 1:p—1
Slt—p:t]\t—k ~t—pit—1 Slt—p:it]\t—k t—p+1:t : . 9r
(i K TR e
X

Flt—pit\t—k ~r[t—p:t]\t—k\ = [ [t—p:t]\t—k ~r[t—p:t]\t—k plip—l
(Xt—k  Xi_ Xk X 20— 11%1 5
~ - 1_|p10-0 | 1_|p0-p |

~~ ~~
ai <a§7k)*

(Xt[i—kp-‘rl:t]\t—k?Xtt—p+l:t—l) (Xt[t_—lg;:t—l]\t—k?Xtt:g-q-lzt—l) v
= Slt—p+1:t)\t—k [t—p+L:t]\t—k\ [ olt—pt—1]\t—k <[t—p:t—1]\t—Fk ’ '
(Xt[_kp 1A\ 7Xt[_kp N\ ) (Xt[_kp A\ 7Xt[_kp I\ )

~ ~

~
aP~1 (ap—l)*
k p—k
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which can be shown [20] to be the polar tetrahedron of VI. CONCLUSION

(AM, BM, CM). In this paper, we addressed non-Euclidean geometrical as-
Proposition 5.2: Up to normalization, an elementary step oPects of the Schur and Levinson—Szegd algorithms. We showed
the order-decreasing Levinson-Szego algorithm (resp., of #h@t the Lobachevski geometry is, by construction, the natural
Levinson—Szegd algorithm) performs two coupled occurrencggometrical environment of these algorithms, since they call
of the polar law of cosines (resp., of the polar five-element8 automorphisms of the unit disk. By considering the algo-

formula): forallp > 2andforalll <k <p-1
1 Po.p
Al
PLO.OP 1
Vel el

[0:p1\0.
V-
:p]\p,0
0:p]\k, 0, 0:p\k,p|2  [0:p]\k, p, 0 0:p]\k, 0
:[PL,S]\ p/l_‘pw\ o plor\er. /1—|p£,§]\ 2

0:p]\k,0 0:p]\k,
[ e

2

(V.5)
and
2 2
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Proof: Using (111.6), (V.4) can be rewritten as

Slt—pit]\t o [t—pit]\t) /2
(Xt ) Xt ) (_pg‘?:p]\k70>
~ . .~ . 1/2 0 ’
(Xt[tifkp.t]\tfk, X[tf?).t]\tfk)

t—k
(Xrt[t_—pp:t]\t—p7 Xrt[t_—pp:t]\t_p) 1/2

Slt—pt]\t—k < [t—pt]\t—k) /2
(ximremt, Xl

:p]\k,
(_/’E:-);]\ p)

1 pEQ;P]\O-p
[0:p]\p,0 |2 [0:p]\0,p |2
17|pp,60 P | 17|p0§pp P
X
PE;O_}JP]\EO 1
[0:p]\p,0 |2 [0:p]\0,p |2
e A A

(X-t[t—p—i—l:t]\t’ Xrt[t—p-l-l:t]\t> 1/2

(—p%]\k’o”’) ,

) t—k

(X£11?+1:t]\t_k
()zt[t_—pp:t—1]\t—p7 Xt[t_—pp:t—l]\t_p) 1/2

lt—p:it—1]\t—k lt—p:t—1]\t—k 1/2
(Xl_kp I\ 7Xt[_kp I\ )
Next divide by
ot—p t— t— t— o [t—p: —k [t—p: —k
(Xf p+1:t 17th p+1:t 1)1/2/(Xt[ikyt]\t 7X75[ikpt]\t )1/2

which is equal to

X[t—p-l—l:t]\t—k) 1/2

(_pggf]\kmﬁ)

(X::Iz)y-l—lzt—l,Xt—p—i—l:t—l)1/2/(Xt[t_—kp:t]\t—k7Xt[t_—kp:t]\t—k)l/z.

t—p

Using (111.3), we get (V.5)= (V.6). O

rithms in the particular context of their application to linear
prediction, we next gave them a new interpretation in terms
of ST. The role of Schur complementation in linear regression
analysis was emphasized, because of the natural link between
this basic algebraic mechanism and the ST cosine laws. Finally,
the Schur (resp., Levinson—-Szeg6) algorithm received a direct
(resp., polar) ST interpretation, which is a new feature of the
classical duality of both algorithms.

Finally, let us briefly mention that these interpretations pro-
vide the algorithms with structural constraints of a geometrical
nature. The Lobachevski invariants are the Poincaré distance
and the cross ratio (because of the use of LFT), and those of
ST are expressed by the relations among parcors which were
derived in Section IlI-B. These constraints could prove useful
in the design of practical algorithms.

APPENDIX
SOME RESULTS ONSCHUR COMPLEMENTS

In this appendix, we briefly recall some well-known results
[9], [14], [46] on Schur complements. Let the matfik be par-
titioned as
Ap+1)xp+1)

C D
Then the Schur complementd//A) of A in M and(M/D)
of D in M, if they exist, are defined, respectively,@d/A) =
D —CA-'Band(M/D) = A — BD~'C (these definitions
can obviously be generalized to any pivot or block pivot). Schur
complements appear in particular when computing the inverse
of a partitioned matrix
M=

[ (M/D)~!
-D'C(M/D)™ !

Mg 1)x(ns1) = (A1)

—(M/D)~"'BD~!
D14+ D1C(M/D) *BD!
(A2)

It is well known [15] that Schur complements can be obtained
recursively: ifA in (Al) is itself partitioned as

E F
+-[é ]
then the “quotient formula” holds

(M/A) = (M/E)/(A/E)). (A3)
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