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Non-Euclidean Geometrical Aspects of the Schur and
Levinson–Szegö Algorithms
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Abstract—In this paper, we address non-Euclidean geometrical
aspects of the Schur and Levinson–Szegö algorithms. We first show
that the Lobachevski geometry is, by construction, one natural ge-
ometrical environment of these algorithms, since they necessarily
make use of automorphisms of the unit disk. We next consider the
algorithms in the particular context of their application to linear
prediction. Then the Schur (resp., Levinson–Szegö) algorithm re-
ceives a direct (resp., polar) spherical trigonometry (ST) interpre-
tation, which is a new feature of the classical duality of both algo-
rithms.

Index Terms—Interpolation theory, linear regression, Loba-
chevski geometry, partial correlation coefficients, Schur and
Levinson–Szegö algorithms, spherical trigonometry (ST).

I. INTRODUCTION

L INEAR prediction and interpolation is a major tool in time
series analysis and in signal processing. In this context,

the Schur and Levinson–Szegö algorithms compute the partial
autocorrelation function of a wide-sense stationary process. As
such, they have become very popular and are now described in
standard signal processing textbooks (see, e.g., [35], [48]). They
have found a large variety of electrical engineering applications
[5], [30], [39], [40], including spectral estimation [18], circuit
and network synthesis [24], geophysics [6], and speech mod-
eling and coding (the Schur algorithm is used in the GSM Eu-
ropean mobile telephone system [53]).

Although these algorithms are mainly known in the signal
processing community as linear regression algorithms, they
originally stem from different mathematical disciplines, as
we now briefly recall. At the beginning of the century, Schur,
Carathéodory, and Toeplitz were active in such fields as ana-
lytic function theory, Toeplitz forms, and moment problems.
In 1917, Schur developed a recursive algorithm for checking
whether a given function

is analytic and bounded by one in the unit disk [52]. Such func-
tions are characterized by a sequence of parameters of modulus
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less than one (the Schur parameters) which are computed recur-
sively from the power series coefficients by an elegant al-
gorithm. On the other hand, Carathéodory and Toeplitz showed
that

is analytic and has positive real part for if and only if the
Toeplitz forms , with , are positive
for all .1 Let

(I.1)

since if and only if has a positive real part, the
Schur algorithm implicitly enables a test of whether a Toeplitz
form is positive.

On the other hand, Toeplitz forms were studied independently
by Szegö, who introduced a set of orthogonal polynomials
with respect to an (absolutely continuous) positive measure on
the unit circle. These polynomials obey a two-terms recursion
[54], [55] involving a set of parameters of modulus bounded by
one, which later on were recognized to be equal to the Schur
parameters [31], [32]. In the 1940s, Toeplitz forms received
a revived interest in view of their natural occurrence in the
Kolmogorov–Wiener prediction and interpolation theory of
stationary processes (see, e.g., [34, Ch. 10], as well as the
survey paper [38] and the references therein). Working on
Wiener’s solution of the continuous-time prediction problem,
Levinson [45] proposed a fast algorithm for solving Toeplitz
systems; later on, the Levinson recursions were recognized as
being the recurrence relations of Szegö.

Finally, there was an intense activity in these fields begin-
ning in the late 1970s, mainly toward the development of fast
algorithms for numerical linear algebra, on the one hand, and in
the domain of interpolation theory, on the other. Through these
new developments and extensions, new connections with other
mathematical topics and disciplines were developed, including,
among others, displacement rank theory,-lossless transfer
functions, reproducing kernel Hilbert spaces, the commutant
lifting problem, modern analytic function theory, and operator
theory. The literature on these connections and extensions is
vast; the reader may refer for instance to the papers [17], [18],
[21]–[23], [33], [42] and books [3], [5], [13], [25], [27], [28]
(this list is not at all exhaustive).

1Throughout this paper,( ) denotes complex conjugation and( ) Hermi-
tian transposition.
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The mathematical environment of these algorithms is thus
very rich, and these various interactions have already been thor-
oughly investigated in many outstanding contributions. In this
wealthy context, our contribution in this paper consists in ex-
hibiting new unnoticed connections with spherical trigonometry
(ST).

As far as geometry is concerned, the Lobachevski geometry
was already known to be the natural geometrical environment
of the Schur and Levinson–Szegö algorithms, since the core
of these algorithms mainly consists in a linear fractional trans-
formation (LFT) leaving the unit circle invariant. However, a
new point of view is obtained when considering the algorithms
(via positive-definite Toeplitz forms) in the particular context of
their application to linear prediction. Then, up to an appropriate
normalization, the Schur and Levinson–Szegö algorithms be-
come trigonometric identities in a spherical triangle. Since the
real projective -space is the quotient space obtained from
the sphere by identifying antipodal points, we see that the alter-
nate non-Euclidean geometry with constant curvature (i.e., the
elliptic one) is indeed another natural geometrical environment
of the Schur and Levinson–Szegö algorithms as well.

Let us briefly outline the underlying mechanisms leading to
this new interpretation. Let be real, zero-mean, square-in-
tegrable random variables, the best linear mean-square es-
timate of in terms of , and the
corresponding estimation error. The partial correlation coeffi-
cient (or parcor) of and , given , is defined as

It is bounded by in magnitude and is classically interpreted as
the correlation coefficient of and , once the influence
of has been removed. In 1907, G. U. Yule [58] showed
that the parcors could be computed recursively

(I.2)

It happens that this well-known formula is formally equal to the
fundamental ST cosine law

(I.3)

which gives an angle of a spherical triangle in terms of its three
sides (see Fig. 1). This observation establishes a link between
statistics and time-series analysis, on the one hand, and ST, on
the other.

In earlier papers [19], [20], ST was shown also to admit a
close connection with the topic of recursive least-squares adap-
tive filtering. Now, the Schur and Levinson–Szegö algorithms
can be written as algebraic recursions within a covariance ma-
trix or its inverse; due to the identification (I.2) (I.3), they
admit a connection with ST as well.

The existence of such an algebraic link with ST is not to-
tally unexpected; in fact, trigonometric relations naturally ap-
pear when one deals with the structure of a positive-definite ma-

Fig. 1. The spherical triangleABC.

trix, as we briefly recall from the following two simple exam-
ples.

Let us first consider a (Schur complement) recursive proce-
dure for testing the positivity of a covariance matrix. Let

be the covariance matrix of . is positive definite if
and only if the Schur complement

is positive definite. Due to the normalization , ,
, and are lower than in absolute value, and can thus be

considered as the cosine of some angles, say, , and . , in
turn, is positive definite if and only if , ,
and

and this last constraint means that there exists some angle,
such that

On the other hand, trigonometry also stems from dilation the-
oretic results, and more precisely from the multiplicative struc-
ture of the Kolmogorov decomposition of a positive-definite
kernel [11], [12], [41], [13, Ch. 1]. For illustrative purposes let
us consider the following example. Let , and for

, , let be the orthogonal lower Hessen-
berg matrix
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Then the identity

say, reads

which is a particular case of (I.2) (I.3).
In the two previous connections, positivity plays a major role.

Now, the spherical nature of these trigonometric relations finds
its source in recursive projection identities. In linear regres-
sion, one recognizes that the mean-square error to be minimized
is a distance, so the projection theorem can be applied in the
Hilbert space generated by the random variables. Introducing a
new variable in the regression problem amounts to updating a
projection operator, and the problem can indeed be described
in terms of projections in a space generated by three vectors.
But three unit-length vectors form a tetrahedron in three–dimen-
siona (3-D) space, and deriving projective identities in a normal-
ized tetrahedron results in deriving trigonometric relations in the
spherical triangle determined by this tetrahedron (see Fig. 1, and
[20] for details).

This paper is organized as follows. Non-Euclidean hyperbolic
aspects of the Schur algorithm are implicit in [10] but do not
seem otherwise to be well known. Yet the Lobachevski geom-
etry is, by construction, an essential feature of the algorithm,
which deserves to be better appreciated. So we feel useful, in
the context of the present paper, to begin with a brief section on
this topic (which is partially of tutorial nature). More precisely,
we show in Section II that Schur’s layer-peeling type solution
to the Carathéodory problem necessarily makes use of automor-
phisms of the unit disk which, on the other hand, happen to be
the direct isometries of the Lobachevski plane.

The next three sections are devoted to the new geometrical
interpretations in terms of ST. So in Section III, we begin with
briefly recalling the general projection identities, as well as their
ST counterparts, which will be used in the rest of this paper.
Next, in Section IV, we relate recursive regressions within a set
of random variables, algebraic manipulations in a covari-
ance matrix or in its inverse, and ST. We show that adding (resp.,
removing) a new variable in the regression problem which, in
terms of Schur complements on the covariance matrix (resp.,
on its inverse), amounts to using the quotient property [46, p.
279], corresponds in terms of ST to applying the law of cosines
(resp., the polar law of cosines).

Finally, in Section V, we further assume that the random vari-
ables are taken out of a discrete time, wide-sense stationary time
series, and we use the results of Sections III and IV to inter-
pret in parallel the Schur and Levinson–Szegö algorithms in
terms of ST. The Schur (resp., Levinson–Szegö) relations con-
sist in two Schur complement recursions (in the forward and
backward sense) on the original covariance matrix (resp., on its
inverse), and can indeed be interpreted in dual spherical trian-
gles. Up to an appropriate normalization, the Schur (resp., order
decreasing Levinson–Szegö) recursions coincide with two cou-
pled occurrences of the law of cosines (resp., of the polar law of
cosines), and the Levinson–Szegö recursions with two coupled
occurrences of the polar five-elements formula.

II. NON-EUCLIDEAN (HYPERBOLIC) GEOMETRICAL ASPECTS

OF THE SCHUR AND LEVINSON–SZEGÖ ALGORITHMS

In this section, we first briefly recall the mechanisms under-
lying the Schur algorithm. We next show that the choice by
Schur of a recursive solution to the Carathéodory problem natu-
rally sets the algorithm in a non-Euclidean hyperbolic environ-
ment.

A. The Schur Algorithm

The Carathéodory analytic interpolation problem consists in
finding all functions such that 1)

, and 2) analytic in , and
for . In 1917, Schur proposed a “layer-

peeling” type algorithm [52] (i.e., in which the interpolation data
are processed recursively) which we briefly recall.

Let us first consider the case where there is only one interpola-
tion point . Due to the maximum principle, the problem has no
solution if , and admits the unique solution
if . If , let

(II.1)

Then the key property of this transformation is that
, so that

(II.2)

In the case of a single interpolation point, (II.2) provides
a parametrization of all solutions to the Carathéodory problem
in terms of an arbitrary Schur function. A new interpolation
point can be taken into account by further restricting this set
of possible functions . From (II.2), we see that [ and
has interpolation constraints ] if and only if [
and has interpolation constraints ], in which the

depend on the data . In particular, if
and only if : we are thus led back to the same metric-
constrained interpolation problem, but now of order . These
considerations lead by induction to the Schur algorithm2

if

(II.3)

B. The Schur Mechanism and Automorphisms of the Unit
Circle

In this section, we analyze the design of the Schur algorithm
in terms of automorphisms of the unit disk. Automorphisms of
a domain are bi-holomorphic mappings of

s.t. exists, and

where denotes the set of holomorphic functions of
onto . The Schur class coincides with , where

is the open unit disk and its closure.

2In Section II-C, we will deal with geometrical aspects of recursion (II.3).
This is why the regular case only is considered in this brief review; all details
of the general case can be found in [52].



DESBOUVRIES: NON-EUCLIDEAN GEOMETRICAL ASPECTS OF THE SCHUR AND LEVINSON–SZEGÖ ALGORITHMS 1995

The mapping (II.1) can be decomposed into two steps

(II.4)

and . Since the transform in (II.4) is an
LFT, we begin with recalling elementary (Euclidean) properties
of these mappings [26], [8], [1]. Let denote the Möbius
group , with .
Then the mapping

with

is a group homomorphism. Since for all
there is no loss of generality in supposing that .
From now on we shall thus restrict to . Then the kernel
of reduces to and , and is isomorphic to the associ-
ated quotient group

On the other hand,

(resp., ) if (resp., ), so any LFT is a
succession of translations, inversions, rotations, and/or homoth-
eties. Since all these geometrical transformations preserve cir-
cles, an LFT maps any circle in the complex plane (possibly of
infinite radius) into another circle (possibly of infinite radius).
In particular, maps the unit circle onto itself if and only
if belongs to the subgroup of consisting
of -unitary matrices, with

s.t.

with

Let be the set of such Möbius transforms; is a subgroup
of , and

with

Finally, observe that any also maps the interior of
the unit circle onto itself (and similarly for its exterior).

Let us turn back to the Schur algorithm. Since , we
have

and (II.5)

and (II.6)

and (II.7)

(II.8)

whence (II.2). Equivalence (II.5) (II.6) is due to the max-
imum principle and (II.7) (II.8) to the Schwarz lemma. As
for (II.6) (II.7), it holds because , where the
mapping

belongs to . In fact, it is interesting to notice that
(II.4) was the only possible choice, because, as is well known
[51], [2], the automorphisms of indeed coincide with the
group of LFTs which leave the unit-disk invariant

C. Hyperbolic Geometry of the Schur and Levinson–Szegö
Algorithms

We now turn from analytical to geometrical considerations.
These are obtained naturally in the framework of the theory de-
veloped in [37], which aims at describing the holomorphic struc-
ture of a domain of in terms of geometric properties of the
space . If the distance is chosen such that any holo-
morphic mapping of onto itself is a contraction, then auto-
morphisms of are isometries with respect to and can thus
be interpreted (in the spirit of F. Klein) as rigid motions with
respect to the geometry specified by.

The Schwarz–Pick lemma [37], [2], [8], [7] provides a nice
illustration of this general methodology to the present situation;
as expected, we shall meet non-Euclidean hyperbolic geometry,
since reduces to the unit disk, which is a Euclidean model
of the Lobachevski plane (see, e.g., [49]). Let denote
the Möbius distance in : for all

. The Schwarz–Pick lemma states that any
function belonging to is a contraction with respect
to the Möbius distance

for all

equality holds if and only if belongs to .
Let us now turn back to the discussion at the end of Sec-

tion II-B. Schur had to chose the functional (or, in gen-
eral, ) within , and automorphisms of
preserve the Möbius distance , and thus the Poincaré dis-
tance , with

More precisely, they are well known to coincide with the direct
isometries of the Lobachevski plane [8], [26]3

direct isometries of

This geometry is thus, by construction, the natural geometrical
environment of the Schur algorithm.

3The full isometry group of(H ; d ) is obtained by including the mapz 7!
z as a generator.
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Finally, let us briefly consider the Levinson–Szegö algorithm.
It is not a solution to an analytic interpolation problem, but can
nevertheless be rephrased (via the Schur–Cohn stability test) in
the framework of Section II-A [30], and thus shares the same
geometrical environment. For let ,

, and . Then is rational
and has modulus on . So, by the maximum modulus the-
orem, [ is analytic in and on ] if and only
if [ in and on ], i.e., if and only if

is a rational bounded function of the lossless type (a Blashke
product). But this can be checked via the Schur algorithm, be-
cause is a Blashke product of order if and only if

for and ; the recursions
coincide with the order-decreasing Levinson–Szegö algorithm.

III. RECURSIVEPROJECTIONS INHILBERT SPACES ANDST

From now on, we shall deal with ST aspects of the Schur
and Levinson–Szegö algorithms. In this intermediate section,
we first recall some elementary projective identities. We then
give an ST interpretation to Yule’s parcor identity (an elemen-
tary linear regression recursion), and bring back from ST some
relations among parcors which we will refer to in Sections IV
and V.

A. Partial Correlation Coefficients, Recursive Projections, and
Yule’s Parcor Identity

Our geometrical results are based on the properties of or-
thogonal projectors and can thus be formalized in any Hilbert
space . However, the natural framework in this paper is the
space of complex, zero-mean, square-inte-
grable random variables defined on , endowed with
the scalar product .

Let denote the orthogonal projector on the Hilbert space
generated by , , the projection of

onto , and . For any ,
denotes normalization to unit norm: . Let

and belong to (resp., to ). The (some-
times called total) correlation coefficient (resp., partial
correlation coefficient ) of and (resp., of and ,
with respect to a common subspace) is defined as

(resp., ).
Let us now consider recursive projections. It is well known

that

(III.1)

where , say, is the orthogonal projector onto the closed
subspace generated by and . These identities are of utmost
importance in recursive least squares (RLS) adaptive filtering as
well as in Kalman filtering. From (III.1), we get

(III.2)

which gives the useful relation

(III.3)

Using (III.3), it is easy to see that (III.2) leads to the two
following relations among (unit-length) normalized projection
residuals:

(III.4)

(III.5)

Next, from (III.1) and (III.3), we get

(III.6)

which, in the space spanned by and , can be interpreted
as [20, p. 306].

In order to get ST relations, we need to consider three projec-
tion residuals. From (III.2) we have

(III.7)

Dividing by , and using (III.3),
we get

(III.8)

which is formally equal to (I.3), up to a straightforward identi-
fication of variables.4

B. New Relations Among Parcors Induced by ST

We now briefly recall some ST principles (and, in particular,
the duality principle), and derive some ST-like relations among
parcors, which will be useful in Sections IV and V.

Three points and on the sphere determine the
spherical triangle , which by definition consists of the three
arcs of great circles , , and obtained by intersecting the
sphere and the planes , , and (see Fig. 1). A spherical
triangle has six elements: the three sides and , and the
three angles and . The side , say, is defined as the
angle and is equal to the length of the arc. The angle

, say, is defined as the dihedral angle between the planes
and , and is also equal to the angle made by the tangents to
the spherical triangle at point .

There are three degrees of freedom in a spherical triangle,
so there cannot be more than three distinct relations among the
six elements. All the ST relations can thus be derived from the
three cosine laws obtained by permuting variables into (I.3),
and, similarly, the relations among parcors below can all be de-
rived from (III.8). Some of them (such as the cosine law in the

4This is a slight abuse of language: since sines and cosines are real valued,
identification indeed holds only in the case of scalar and real parcors. However,
as we will see in the next section, this trigonometric interpretation enables to
hint at the existence of “ST-like” relations among parcors which, though purely
algebraic, are not necessarily intuitive. These relations naturally hold in the real
as well as in the complex case, and can also be extended from the scalar to the
matrix case. We chose in this paper to stick to the scalar case; but since, on the
other hand, the Schur and Levinson–Szegö algorithms are naturally complex
data algorithms, we had to deal with complex-valued parcors and algorithms,
whence this slight discrepancy (we should say that (III.8) is the complex-valued
extension of a real-valued formula which is formally equal to (I.3)).
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polar triangle) are already known, and in this case we only bring
a geometrical interpretation, but some others (such as the sine
law) seem to be new.

We first need to briefly evoke the duality principle of ST. Let
be the pole (with respect to the equator passing throughand

) which is in the same hemisphere as; and are defined
similarly. The spherical triangle is the polar triangle of

. In , the elements and , say, are equal, respec-
tively, to and (see, e.g., [43], [44], [47]). So, for any
ST formula there exists a dual relation, obtained by replacing

by ,
respectively.

Among any four elements there exists one and only one rela-
tion. These 15 relations are the three cosine laws, the three co-
sine laws in the polar triangle, the three self-dual sine formulas,
and the six self-dual cotangent formulas. They all have a parcor
equivalent. However, there are many different relations among
any five elements (or between the six), and it always seems pos-
sible to find new ones. Thus, we shall give only one of them, the
five-elements formula.

1) The Cosine Law in the Polar Triangle:In the polar tri-
angle, the cosine law reads

(III.9)

Similarly, (III.8) admits the polar version

(III.10)

which was already known to Yule [58, eq. (19), p. 93].
Proof: Using (III.5), we have

Taking the inner product and using (III.6), we get (III.10), be-
cause from (III.4) we have

2) The Sine Law:The spherical triangle self-dual sine law
is the following formula:

(III.11)

Similarly, the following relation holds among parcors:

(III.12)

Proof: Using (III.3) recursively, we have

This leads the first equation of (III.12), in which it remains to
permute variables.

3) The Cotangent Formulas:These are the six self-dual for-
mulas obtained by permuting variables into the equation

(III.13)

Similarly, the following relation among parcors holds:

(III.14)

Proof: Using (III.8) twice, we get

It remains to move the first term of the right-hand side to the
left-hand side, to divide by

and to use the sine law (III.12).

4) The Five-Elements Formula:These are the six formulas
obtained by permuting variables into

(III.15)

The dual equations are

(III.16)

Similarly, the following relations among parcors hold:

(III.17)
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(III.18)

Proof: Using (III.8) twice, we get

It remains to divide by . Equation (III.18) is ob-
tained similarly from (III.10).

IV. SCHUR COMPLEMENTS IN AND ST

In view of Section V, we now consider Schur complemen-
tation in a covariance matrix or in its inverse, because Schur
complements provide the connection between the Schur and
Levinson–Szegö algorithms and ST. The reason why is that al-
gebraically the elementary recursion with pivot :

reduces to a cosine law when normalized by .
Let be scalar random variables. For , let

. In all of this section, we will assume that
belong to , and that the covariance ma-

trix of is invertible. We shall focus
on the Hilbert space generated by ,
which is a subspace of .

In the sequel, the general notation of Sec-
tion III-A is simplified to . Let . Since we
will essentially use contiguous sets of indexes (without loss of
generality), we also replace

and

respectively, by , , and . Similar notations
are adopted for the correlation coefficients, so that the parcor (of

order ) , say, is denoted simply by .
In our conventions, the order of the secondary (upper) indexes

and is meaningful: , (and later on , , ,
and ) reduce, respectively, to , , , , , and

if . In this way, the notation changes continuously
from the total to the partial situation. For instance, there is no
conceptual need to distinguish between total and partial corre-
lation coefficients since a total correlation coefficient is simply
a partial correlation coefficient of order.

In this section, we shall first recall (and slightly extend) some
results giving the covariance matrix of (resp., its inverse) in
terms of covariances of the random variables (resp., of
the random variables ). We thus get Lemmas 4.1
and 4.2, which are generalized to Theorem 4.1 by considering

Schur complements in the covariance matrix and in its inverse.5

Finally, these recursions receive an ST interpretation. We begin
with the following elementary results.

Lemma 4.1:Let

and

Then, for all

(IV.1)

(IV.2)

Proof: Equation (IV.1) holds by definition. As for (IV.2),
Whittaker noticed that [56, p.
143], but indeed (IV.2) holds for all , as we now see. Let

denote the coefficients of the optimal (in the mean-
square sense) linear interpolator of in terms of , and
let denote the associated estimation error

where we set . The coefficients minimize the mean-
square error and can thus be found from
the orthogonality principle: for all

. Taking successively the inner product of
with and with , we see that

and (as is well known) that theth row of contains, up to
normalization, the terms

Equation (IV.2) follows immediately.

Lemma 4.2:Let

and

Then, for all

(IV.3)

(IV.4)

Proof: Equation (IV.3) holds by definition. Equa-
tion (IV.4) is a well-known determinantal formula [57, p. 94],

5To the best of our knowledge, out of the six formulas (IV.1) to (IV.6), only
(IV.2) and (IV.6) are original. However, (IV.4) and (IV.5) need to be recalled
since they will be used in Section V.
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[16, p. 306], [56, p. 143]. In the context of this paper, it is also
a direct consequence of (IV.2) and of (III.6).

We are now ready to extend Lemma 4.2. We refer to the annex
for the definition and elementary properties of Schur comple-
ments. Let (resp., ) be the ( th-order) Schur
complement of in (of the top left
corner of in ). The reader should
notice that . In the same way that a total corre-
lation coefficient is a partial correlation coefficient of order zero,
the original covariance matrix and its inverse are Schur com-
plements of order zero. From this point of view, the following
theorem encompasses and generalizes Lemma 4.2 (which cor-
responds to the particular case ).

Theorem 4.1:Let

Let moreover

(resp., ) be the Schur complement of
in (of the top left corner of in ).
For , we set , , ,

, and . Then, for all
, and for all

(IV.5)

(IV.6)

Proof: A proof of (IV.5) is given a few lines below. Note
that (IV.5) is actually given in [4, p. 37] as the definition of
the parcor , under the assumption that the probability law
of is Gaussian. Of course, it is a standard result that
the theory of conditioning in the Gaussian case algebraically
leads to the same results as the theory of linear regression in

; this is because in the Gaussian case, the condi-
tional law of given is Gaussian with covariance
matrix .

On the other hand, (IV.6) is a direct application of (IV.4), after
it has been observed, with the help of (A2), that

(IV.7)

We now turn to the connection with the ST cosine laws.

Corollary 4.1: Up to normalization, an elementary (i.e., rank
) Schur complement step on (resp., on ) performs the

law of cosines (I.3) (resp., the polar law of cosines (III.9)): For
all and for all

(IV.8)

(IV.9)

Proof: We begin with (IV.8). As we now see, it happens
that the Schur complementation step
provides the loop of a mathematical induction proof of (IV.5),
which we get as a by-product; since, on the other hand, this
loop is indeed one of the recursive projective identities of Sec-
tion III-A, the link with ST is immediate. So, let us assume that

(for holds by
definition). Due to the quotient property (A.3)

This equality reads componentwise

and thus

due to (III.7). Normalizing as in Section III-A we get both (IV.5)
and (IV.8).

We next consider (IV.9). Similarly, due to the quotient prop-
erty (A.3),

But this equality reads componentwise

Dividing this equation by and using (IV.6), we get

Remarking from (IV.2) and (IV.7) that

and using (III.3), we get

and thus (IV.9), which indeed is the polar cosine law (III.10)
(III.9).

V. NON-EUCLIDEAN (SPHERICAL) GEOMETRICAL ASPECTS OF

THE SCHUR AND LEVINSON–SZEGÖ ALGORITHMS

Notations are as in Section IV. From now on, we shall fur-
ther assume that , where

is a zero-mean, discrete-time, wide-sense sta-
tionary time series. As a consequence, is a Toeplitz ma-
trix. For simplicity, let us denote by and by .
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The parcors satisfy a shift-invariance property: for all
, . Among all

correlation coefficients (total or partial), the function
(with , as in Theorem 4.1) is the

partial autocorrelation function of the process. It is well known
to be in one-to-one relation with the autocorrelation function
[50] and is of particular interest in signal processing.

Let us turn back to the Schur and Levinson–Szegö algorithms.
In this final section, we shall use the results of Sections III and
IV to propose a new interpretation of the algorithm in terms of
ST.

More precisely, we shall write the common (lattice) recur-
sions of both algorithms as two Schur complement recursions
(in the forward and backward directions), but acting on the co-
variance matrix (in the Schur case) or on its inverse, i.e., on the
covariance matrix of the normalized interpolation process (in
the Levinson–Szegö case). From Section IV, the link with ST
will follow immediately: up to normalization, the Schur (resp.,
inverse Levinson–Szegö) algorithm performs the law of cosines
(resp., the polar law of cosines). This is a new feature of the
classical duality of the Schur and Levinson–Szegö algorithms.
As for the Levinson–Szegö algorithm, it is an implementation
of the polar five-elements formula.

A. Spherical Geometry of the Schur Algorithm

The new (spherical) geometrical interpretation of the algo-
rithm stems from the connection between the Schur algorithm
and linear regression (recall from Section I that the algorithm
can be used to check whether a given sequence is the co-
variance function of a wide-sense stationary process). Let us
thus initialize (II.3), via (I.1), with

In this case, for all , the Schur parameter is equal to
the (partial) correlation coefficient . It is convenient [39],
[40] to write the algorithm in vector form: for ,

...
...

...
...

...
...

...
...

(V.1)

with initialization , and for
.

From the point of view of analytic interpolation theory
(which was that of Section II-A), thisth step of the algorithm
incorporates the new data in the covariance extension
problem. This problem is recursive and “hierarchical” by
nature: given such that is positive
definite , if and only if belongs to a disk
(of decreasing radius ), the center of
which depends on . So for all , the row
number of (V.1) integrates the contribution of the correlation
lag in the subsequent (possible) compatibility of with

. In particular, the row number zero tells
whether is compatible with the data via the
following test: assuming that , if and only if

This progressive incorporation of the constraints
in the analytic interpolation problem corresponds

to the progressive incorporation of the random variables
in the linear prediction problem, and

thus to the progressive updating of the associated projection
operator (this, of course, is nothing but the classical lattice
or Gram–Schmidt interpretation of the Schur algorithm [29]).
To see this, let us rewrite the Schur algorithm in terms of
projective identities. It is easily seen (by induction) that for

, the two recursions of the row numberof (V.1) are two
coupled occurrences of the same identity (III.7): see (V.2) at the
bottom of the page. Since all these quantities are covariances
of estimation errors, they reduce to parcors when appropriately
normalized; so a connection of the recursive equations (V.2)
with ST is expected.

In fact, both equations are easily seen to be Schur complement
recursions in

These two Schur complementation steps correspond to aug-
menting the set of variables in the projective space
in its two (contiguous) opposite directions: the forward

(V.2)
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and the backward . Because of stationarity, the resulting
quantities still are covariances of estimation residuals with
respect to the same subspace, because the right-hand side of
(V.2) also reads

and the two coefficients in the transformation matrix reduce to
and . From the discussion in section Sec-

tion III, the link with ST is immediate

Propostion 5.1: Up to normalization, an elementary step of
the Schur algorithm performs two coupled occurrences of the
law of cosines: for all , and for all ,

(V.3)

Proof: Divide (V.2) by

which is equal to

and use (III.3).

B. Spherical Geometry of the Levinson–Szegö Algorithm

We now turn to the spherical geometry of the Levinson–Szegö
algorithm. Recall from Theorem 4.1 that successive Schur
complements in (resp., in ) correspond to an increase
(resp., a reduction) in the number of variables in the regression
problem. So, as was already the case at the end of Section II,
the comparison with the Schur algorithm indeed proves easier
when dealing with order-decreasing recursions.

Let us introduce the forwardth-order linear prediction coef-
ficients by

with . From the Wiener–Hopf equations and Theorem
4.1, we get

So the order-decreasing Levinson–Szegö recursions read as
shown in (V.4) at the bottom of the page6 (the first equation
is valid for , with , and the second for

with ).
These equations are Schur complement recursions in;

they correspond to reducing the set of variables in
the projective space in its two (extremum) opposite directions:
the forward one and the backward one . From the dis-
cussion in Section IV, we thus expect that appropriate normal-
ization of the covariances of the estimation errors will reduce
(V.4) to some ST polar law.

This hint is enforced when looking at the random variables in
the left-hand side of (V.2) and (V.4). Let

and

So

if

and

if

Then (V.2) can be visualized as projective identities within the
tetrahedron , and (V.4) as projective identi-
ties within the tetrahedron ,

6In this subsection (as well as in Section V-A), we are only interested in the
real core of the algorithm, i.e., in (V.4). This is the reason why we do not talk of
the way� is computed.

(V.4)
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which can be shown [20] to be the polar tetrahedron of
.

Proposition 5.2: Up to normalization, an elementary step of
the order-decreasing Levinson–Szegö algorithm (resp., of the
Levinson–Szegö algorithm) performs two coupled occurrences
of the polar law of cosines (resp., of the polar five-elements
formula): for all and for all

(V.5)

and

(V.6)

Proof: Using (III.6), (V.4) can be rewritten as

Next divide by

which is equal to

Using (III.3), we get (V.5) (V.6).

VI. CONCLUSION

In this paper, we addressed non-Euclidean geometrical as-
pects of the Schur and Levinson–Szegö algorithms. We showed
that the Lobachevski geometry is, by construction, the natural
geometrical environment of these algorithms, since they call
for automorphisms of the unit disk. By considering the algo-
rithms in the particular context of their application to linear
prediction, we next gave them a new interpretation in terms
of ST. The role of Schur complementation in linear regression
analysis was emphasized, because of the natural link between
this basic algebraic mechanism and the ST cosine laws. Finally,
the Schur (resp., Levinson–Szegö) algorithm received a direct
(resp., polar) ST interpretation, which is a new feature of the
classical duality of both algorithms.

Finally, let us briefly mention that these interpretations pro-
vide the algorithms with structural constraints of a geometrical
nature. The Lobachevski invariants are the Poincaré distance
and the cross ratio (because of the use of LFT), and those of
ST are expressed by the relations among parcors which were
derived in Section III-B. These constraints could prove useful
in the design of practical algorithms.

APPENDIX

SOME RESULTS ONSCHUR COMPLEMENTS

In this appendix, we briefly recall some well-known results
[9], [14], [46] on Schur complements. Let the matrix be par-
titioned as

(A1)

Then the Schur complements of in and
of in , if they exist, are defined, respectively, as

and (these definitions
can obviously be generalized to any pivot or block pivot). Schur
complements appear in particular when computing the inverse
of a partitioned matrix

(A2)

It is well known [15] that Schur complements can be obtained
recursively: if in (A1) is itself partitioned as

then the “quotient formula” holds

(A3)
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