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EXACT BAYESIAN PREDICTION IN NON-GAUSSIAN  
MARKOV-SWITCHING MODEL 

Noémie Bardel1, François Desbouvries2 
Telecom Sudparis / CITI department & CNRS UMR 5157, 

9 rue Charles Fourier, 91011 Evry, France 
E-mail: Noemie.Bardel, Francois.Desbouvries@it-sudparis.eu 

Abstract: In this paper we consider a class of recently introduced jump-Markov switching models, in-
volving a hidden process X, an observed process Y and a latent process R which models the switches or 
changes of regimes in (X,Y). We address the Bayesian prediction problem, and we show that the p-step 
ahead a posteriori conditional expectation (and associated conditional covariance matrix) can be com-
puted exactly linearly in time.   

Keywords: Bayesian restoration, jump-Markov models, non-Gaussian models. 

1. Introduction 
Let 1: 1( ,..., )N NX X X=  be a hidden random sequence with values in qR , 1: 1( ,..., )N NY Y Y=  an observed 

random sequence with values in mR , and 1: 1( ,..., )N NR R R=  a discrete random sequence with values in a fi-
nite set { }1,...,S s= , which  usually models the random changes of regime, or switches of the distribution 
of ( , )n nX Y . The three chains are linked via some probability distribution ),,( :1:1:1 NNN yrxp . Bayesian restora-
tion consists in efficiently computing a posterior probability density function (pdf) of interest, namely 

)|( :1nk yxp  for some value of k and n.  
As is well known, the exact (recursive) computation of )|( :1nk yxp  is not possible in many commonly 

used stochastic models and one needs to resort to approximations. Let us consider for instance the classi-
cal conditionally linear Gaussian model, also called jump-Markov state-space system, which consists in 
considering that R  is a Markov chain and, roughly speaking, that conditionally on R , the couple ),( YX  
is the classical Gaussian dynamic linear system. This is summarized in the following : 
 R  is a Markov chain; (1) 
 nnnnn WXRFX +=+ )(1  ; (2) 
 

nnnnn
ZXRHY += )( , (3) 

where matrices ( )n nF R  and ( )n nH R  depend on 
n

R ,  1W , …,  NW  are Gaussian vectors in qR , 1Z , …,  
NZ  are Gaussian vectors in mR , and 1X , 1W , …,  NW , 1Z , …,  NZ  are independent (see the oriented de-

pendence graph in Figure 1, (a)). For fixed 11 rR = , …,  
nn
rR = , … the computation of ][ :1nn

yXE , say, is 
obtained by classical Kalman-like methods. However, it has been well known since Tugnait, 1982 that 
exact computation is no longer possible with random Markov R  and different approximations must be 
used, including particle filtering methods, see e.g. Tugnait, 1982, Andrieu et al., 2003, Ristic et al., 2004, 
Cappé et al., 2005, Costa et al., 2005, Zoeter et al., 2006, or Giordani et al., 2007. 

On the other hand, in most situations we are indeed more interested by some moment )|)(( :1nk yxgE  
than by pdf )|( :1nk yxp  itself. In particular, the conditional expectation )|( :1nk yxE  is of particular interest 
since it is the solution to the Bayesian estimation problem with quadratic loss. 

The Bayesian prediction problem which we address in this paper consists in computing efficiently the 
conditional expectation ][ :1npn yXE +  and associated conditional covariance matrix ][ :1npn yXCov +

 in a particu-
lar class of stochastic dynamical models with Markov regime. More precisely, the contribution of this  
 



N. Bardel, F. Desbouvries 

 200 

paper consists in showing that ][ :1npn yXE + and ][ :1npn yXCov +
 can be computed exactly, with complexity lin-

ear in time, in a recent jump-Markov model proposed in Pieczynski, 2008. 

 
(a)                                (b) 

Fig. 1: Dependence oriented graphs of: (a) the classical Markov switching model;  
(b) the Markov switching model considered in this paper. 

In this paper we thus consider the following Markov-switching model (see figure 1, (b)) : 
 

 
n
R is a Markov Chain; (4) 

 ),( nn YR is a Markov Chain; (5) 
 

nnnnn
UXRFX +=+ )(1 , (6) 

where {1,..., }{ }n n NU ∈ are independent zero-mean random vectors, such that for each {1, ..., }n N∈ , nU is 
independent from 1: 1:( ),N NR Y . Note that in (6) (as compared to (2)) vectors nU  are not necessarily Gaus-
sian; nevertheless, exact computation of the conditional posterior mean ][ :1npn yXE +  will be feasible, as we 
shall see in section 2. From (4)-(6) we see that conditionally on nR :1 , n

X :1  and n
Y :1  are independent; but of 

course 
n

X :1  and n
Y :1  are actually dependent, and are linked through the Markov chain nR :1 . 

2. Exact Bayesian prediction 
Notation 
For each integer k and for each {1, ..., }n N∈ , let us set : 
 ∫ ++++++

=
qR

knnknknknnknkn dxyrxpxyrM )|,(),( :1:1 .  (7) 

If the covariance matrix nΣ  of nU  exists for all n, let us set : 
 ∫ +++++++ =

qR
knnknkn

T
knknnknkn dxyrxpxxyrV )|,(),( :1:1 . (8) 

 
Of course, 1: 1:( | )n p n nE X Y y+ = and 1:( | )n p nCov x y+ can be computed from 1:( , )n p n p nM r y+ + and 

1:( , )n p n p nV r y+ + as: 
 

 1: 1: 1:( | ) ( , )
n p

n p n n n p n p n
r

E X Y y M r y
+

+ + += = ∑  and 

 
1: 1:

1: 1:

( | ) ( , )

( ( , ))( ( , ))
n p

n p n p

n p n n p n p nr
T

n p n p n n p n p nr r

Cov x y V r y

M r y M r y
+

+ +

+ + +

+ + + +

= ∑

− ∑ ∑ .
 

 
In the following we thus focus on the computation of 1:( , )n p n p nM r y+ +  and 1:( , )n p n p nV r y+ + . 
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Proposition 
Let 1: 1: 1:( , , )N N NX R Y  satisfy (4)-(6), with given transitions 1 1( , | , )n n n np r y r y+ + and 1( | )n np r r+ . Then 

1:( , )n p n p nM r y+ + can be recursively computed with linear complexity in time index by the following 
scheme:  

• compute 1:( , )n n nM r y with the algorithm presented in Pieczynski, 2008; 
• for each integer 0p ≥ , compute  

 1 1 1: 1: 1( , ) ( ) ( , ) ( | )
n p

n p n p n n p n p n p n p n n p n p
r

M r y F r M r y p r r
+

+ + + + + + + + + + += ∑ . (9) 

Furthermore, if the covariance matrix nΣ  of nU  exists for all n, it is possible to compute 
1:( , )n p n p nV r y+ +  as follows: 

• compute 1:( , )n n nV r y with the algorithm presented in Pieczynski, 2008; 
• for each integer 0p ≥ , compute:  

 
1 1 1: 1

1:

( , ) ( | )

( ) ( , ) ( )
n p

n p n p n n p n pr
T

n p n p n p n p n n p n p n p

V r y p r r

F r V r y F r
+

+ + + + + + +

+ + + + + + +

= ∑

× + Σ  
 (10) 

Proof 
We have:  

 
1 1 1: 1 1 1:

1: 1 1 1:

( , | ) ( , , , | )

( , | ) ( , | , , )
q n p

q n p

n p n p n n p n p n p n p n n prR

n p n p n n p n p n p n p n n prR

p x r y p x r x r y dx

p x r y p x r x r y dx
+

+

+ + + + + + + + + + +

+ + + + + + + + +

= ∑∫
= ∑∫ .   (11) 

 
On the other hand, by the Bayes formula: 

 1 1 1:

1 1 1: 1 1:

( , | , , )
( | , , , ) ( | , , )
n p n p n p n p n

n p n p n p n p n n p n p n p n

p x r x r y

p x x r r y p r x r y
+ + + + + +

+ + + + + + + + + += .
 

Then, from (4) and (6), 1 1 1:( | , , , )n p n p n p n p np x x r r y+ + + + + + reduces to 1( | , )n p n p n pp x x r+ + + +  and 
1 1:( | , , )n p n p n p np r x r y+ + + + reduces to 1( | )n p n pp r r+ + + . 

 
We next multiply (11) by 1n px + + and integrate with respect to 1n px + +  to get: 
 

 

1 1 1:

1 1 1 1: 1

1:

1 1 1 1

( , )
( , | )

( , | )

( | , ) ( | )

n p

q

q

q

n p n p n

n p n p n p n n p
R

n p n p nrR

n p n p n p n p n p n p n p n p
R

M r y
x p x r y dx

p x r y

x p x x r dx p r r dx

+

+ + + +

+ + + + + + + +

+ +

+ + + + + + + + + + + +×

= ∫
= ∑∫

∫   

 

Since the {1,..., }{ }n n NU ∈ are independent, zero-mean and independent from 1: 1:( , )N NR Y ,  we have : 

 1 1 1( | , ) ( )
q

n p n p n p n p n p n p n p n p
R

x p x x r dx F r x+ + + + + + + + + + +=∫ .
 

 
Finally: 
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1 1 1:

1: 1

1

1: 1

( , | )1:

( , )
( , | ) ( ) ( | )

( ) ( | )

( ) ( , ) ( | )

n p

n p

n p

q

n p n p n

n p n p n n p n p n p n p n p n prR

n p n p n p n pr

n p n p n p n p n n p n pr

x p x r y dxn p n p n p n n pqR

M r y
p x r y F r x p r r dx

F r p r r

F r M r y p r r

+

+

+

+ + + +

+ + + + + + + + +

+ + + + +

+ + + + + + +

  ∫ + + + +   

= ∑∫

= ∑

= ∑

 

which completes the proof of (9). 
(10) is obtained similarly, by multiplying (11) by 1 1

T
n p n px x+ + + + and integrating with respect to 1n px + + . 
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