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Preface

This handout is not a probability course but a collection of problems and exercises. It is conventionally

divided into 7 chapters. In each chapter, there is a list of exercises and homeworks. They are preceded

by a set of important results (formulas and theorems) which are necessary for their solving.

Recommended references
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• Jean-Pierre Delmas, Introduction aux Probabilités, Applications aux télécommunications avec exer-

cices et problèmes commentés, Ellipses, Paris, France, 2000.
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Chapter 1

Random experiment, axioms of

probability, general theorems

1.1 Events and axioms of probability and main theorems

• Random experiment ⇔ (Ω,A, P ) where

– Ω denotes the sample space whose members ω are called outcomes

– A denotes a collection of subset (called events) of Ω (structured as a σ field),

– P is a mapping: A ∈ A 7→ that satisfies three conditions: (a) P (A) ∈ [0, 1], (b) P (Ω) = 1 and

(c) the σ additive axiom for a countable family of events

P (
∞⋃
n=1

An) =
∞∑
n=1

P (An), for Ai ∩Aj = ∅ ∀i 6= j

• A σ field A is a collection of subsets of Ω that satisfies three conditions: (a) Ω ∈ A, (b) if A ∈ A
then Ā ∈ A and (c) if (An)n1,2,... ∈ A then

⋃∞
n=1 ∈ A.

lim supnAn
def
=
∞⋂
n=1

( ∞⋃
m=n

Am

)
= {ω; such that ω are in infinitely many of An}

lim infnAn
def
=

∞⋃
n=1

( ∞⋂
m=n

Am

)
= {ω; such that ω are in all An except in a finite number of An}

limn→∞An exists by definition if lim supnAn = lim infnAn.

• The probability satisfies many properties, e.g.,

P (∅) = 0

P (Ā) = 1− P (A)

A ⊂ B ⇒ P (A) ≤ P (B)
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P (A ∪B) = P (A) + P (B)− PA ∩B)

P (

∞⋃
n=1

An) ≤
∞∑
n=1

P (An), (sub σ additive relation)

lim
n→∞

P (An) = P ( lim
n→∞

An) with lim
n→∞

An
def
=
∞⋃
n=1

An, if A1 ⊂ ... ⊂ An ⊂ An+1

lim
n→∞

P (An) = P ( lim
n→∞

An) with lim
n→∞

An
def
=
∞⋂
n=1

An, if An+1 ⊂ An... ⊂ A1

lim
n→∞

P (An) = P ( lim
n→∞

An), if lim
n→∞

An exists (continuity theorem of probability)

• Poincaré formula

P (∪nk=1Ak) =

n∑
i=1

P (Ai)−
∑

1≤i1<i2≤n
P (Ai1 ∩Ai2)...

+ (−1)k+1
∑

1≤i1<i2<...<ik≤n
P (Ai1 ∩Ai2 .. ∩Aik)...+ (−1)n+1P (∩nk=1Ak)

1.2 Conditional probability and independence

• The conditional probability PB is a mapping from A to [0, 1] which is a probability set function

P (A/B)
def
= PB(A) =

P (A ∩B)

P (B)
if P (B) 6= 0

• The conditional probability PB satisfies all the properties summarized above, e.g.,

P (A ∪B/C) = P (A/C) + P (B/C)− PA ∩B/C)

• Multiplication rule

P (∩nk=1Ak) = P (A1)P (A2/A1)P (A3/A1 ∩A2)......P (An/A1 ∩ ... ∩An−1),

• Law of total probability, if (Ck)k=1,..,n, or (Ck)k=1,.., forms a partition of Ω

P (A) =

n∑
k=1

P (Ck)P (A/Ck), P (A) =

∞∑
k=1

P (Ck)P (A/Ck),

• Bayes relation

P (C/A) =
P (C)

P (A)
P (A/C)

• Bayes theorem = Bayes relation + Law of total probability (if (Ck)k=1,..,n, or (Ck)k=1,.., forms a
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partition of Ω)

P (Ci/A) =
P (Ci)P (A ∩ Ci)∑n
k=1 P (Ck)P (A/Ck)

, P (Ci/A) =
P (Ci)P (A ∩ Ci)∑∞
k=1 P (Ck)P (A/Ck)

,

• Two events A and B are independent ⇔ P (A ∩B) = P (A)P (B).

If P (A) 6= 0, A and B are independent ⇔ PA(B) = P (B). If P (B) 6= 0, A and B are independent

⇔ PB(A) = P (A).

• The events of a family (Ai)i∈I are mutually independent ⇔ P (∩nk=1Aik) =
∏n
k=1 P (Aik) for all

finite subset (i1, i2, ...in) of I.

In this case, all combinations of these events and their complement are mutually independent, e.g.,

(Ai)i=1,2,3,4,5 are mutually independent ⇒ A1 ∪ Ā2, Ā3 and A4 ∩ Ā5 are mutually independent.

1.3 Exercises

Exercise 1.1 Probability space, disjoint events, independent events

A communication network with four terminals 1, 2, 3, 4 are connected with four links a, b, c, d as

shown in the figure. Not all links, however, are necessarily available. Let p denote the probability that

any particular link is available and assume that the availability of each link is independent of the state of

all others links. Two terminals can communicate if and only if they are connected by at least one chain

of available links.

1

2

3

4

a d

c

b

1] Construct an appropriate probability model with 16 sample points, on each state of the system. Specify

Ω, the family of events A and the probability P (.).

2] Let A
def
= {ω : 1 and 4 can communicate} and let B

def
= {ω : 2 and 3 can communicate}. After

carefully describing the events A and B, calculate P (A), P (B) and P (A ∩ B). Are the events A and B

independent?

3] Show that P (A) = pP (A/c available) +(1 − p)P (A/c not available). Using this formula, re-evaluate

P (A) by inspection.

4] Prove that P (A) would be increased if link c were connected between 1 and 3 rather than between 2

and 3.

Exercise 1.2 Bayes’ theorem, introduction to detection
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Consider a binary channels linking a transmitter X to a receiver Y with π0 = P (X = 0) and

π1 = 1 − π0 = P (X = 1). This channel can make errors and we donote by p0 = P (Y = 1/X = 0) and

p1 = P (Y = 0/X = 1).

1] Deduce the probability of error P (X 6= Y ) as a function of π0, π1, p0, and p1.

2] Consider now two independent binary symmetric (i.e., with p0 = p1
def
= q) channels with respective

error probability q1 and q2 linking a transmitter and a receiver. The a priori probability at the transmitter

are P (0) = π0 = 0.3 and P (1) = π1 = 0.7. We suppose that q1 = 10−7 and q2 = 2.10−7.

1–qi

1–qi 00

1 1

qi

qi
RE

0

1

q  =10–7

q 2 = 2.10

{0,1..,1} {0,1..,0} 

–7

1

For each transmitted bit, the receiver receives two bits, one of the channel 1 and the other from the

channel 2. Therefore, it receives one of the four couples (00), (01), (10) and (11) and must deliver a de-

tected bit to the user of the transmission. Suppose that the receiver makes its decision along the following

rule. For each received couple (Y1, Y2), it compares the probabilities P (0 transmitted/(Y1, Y2) received)

and P (1 transmitted/(Y1, Y2) received) and decides to choose the most likely transmitted bit. Specify

the decision rule. Begin by analyzing the case (01) received.

3] Calculate directly or by the law of total probability the probability of errors of such a receiver.

Exercise 1.3 Repetition code, elementary feedback scheme

Equilikely symbols 0 and 1 are transmitted along the following scheme. Each symbol is transmitted

twice. These symbols are transmitted along an independent binary symmetric channel with error prob-

ability p. If the received symbols are equal, the receiver makes the decision and decides in favor of the

common symbol. But if the received bits are different, the receiver uses a free-error feedback channel

to inform the transmitter that no decision was possible on the previous symbol and to retransmit the

symbol twice. The process keeps on until two identical symbols are received.

1] Calculate the probability of error of such a feedback scheme. Comment on the result when p� 1.

2] Let N be the random variable that gives the number of symbols transmitted by useful symbol, N ∈
{2, 4, . . . , 2k, . . . .}. Compute P (N = 2k) for k ∈ N∗. Deduce the expectation E(N) and the variance

Var(N). Comment on the result when p� 1.

Exercise 1.4 Introduction to Poisson process

A point process is called a homogenous Poisson process of intensity λ iff the following conditions are

verified:

R

t' 1 t" 1 t" 2t' 2

[ [[[

(a) If the intervals (t′1, t
′
2] and (t”1, t”2] are mutually exclusive, the events {Nt′1,t

′
2

= k′} and {Nt”1,t”2 = k”}
are independent (where {Nt1,t2 = k} denotes the event {there are k points in the interval (t1, t2] ),

(b) P (Nt0,t0+t = 1) = λt+ o(t) where o(t) is a function of t that satisfies limt→0
o(t)
t = 0,

(c) P (Nt0,t0+t > 1) = o(t).
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1] After commenting on hypothesis (a), (b) and (c), prove the following:

P (Nt0,t0+t = 0) = 1− λt+ o(t), for t > 0 (1.1)

P (Nt0,t0+t+∆t = 0) = (1− λ∆t+ o(∆t))P (Nt0,t0+t = 0), for t > 0, ∆t > 0 (1.2)

P (Nt0,t0+t+∆t = k) = (1− λ∆t+ o(∆t))P (Nt0,t0+t = k)

+ (λ∆t+ o(∆t))P (Nt0,t0+t = k − 1) + o(∆t), for t > 0, ∆t > 0, k ∈ N∗.(1.3)

2] Deduce from (1.2) an ordinary differential equation for the function P (Nt0,t0+t = 0) of t. Solve this

equation and give the expression of P (Nt0,t0+t = 0). In the same way, deduce from (1.3) an ordinary

differential equation for the function P (Nt0,t0+t = k) of t for k > 0. Solve this equation and give the

expression of P (Nt0,t0+t = k) for k > 0 by induction. Prove that

P (Nt0,t0+t = k) =
(λt)k

k!
e−λt for k ∈ N,

i.e., the random variable Nt0,t0+t that represents the number of points in the interval [t0, t0 + t) is Poisson

distributed with parameter λt.

Exercise 1.5 The Monty Hall problem: goats and cars

In a game show, you have to choose one of three doors. One conceals a brand new car, two conceal

old goats. You choose a door, say No.1, but your chosen door is not opened immediately. Instead the

presenter (who knows which is behind the doors) opens another door, say No.3 which reveals a goat. He

offers you the opportunity to change your choice to the third door (unopened and so far unchosen), say

No.2. Using conditional probabilities, Is it your advantage to switch your choice?

1.4 Homeworks

Homework 1.1 Disjoint events, independent events

Consider a digital submarine channel. This channel is composed of n independent binary symmetric

channels with error probability p, separated by n− 1 repeaters.

E RRR RR

Emitter ReceiverRepeater  Regenerator

1 2 n

Repeater  Regenerator

1] Give the error probability Pn(error) of the digital submarine channel as a function of n and p under a

sum expression.

2] Express Pn(error) in terms of Pn−1(error). Deduce a simple closed-form expression of Pn(error).

Homework 1.2 Fusion of bit estimates

In wireless cellular communications, fusing information from the various base stations can improve

link performance. Consider a bank of K detectors, each operating on the same input data observed

through individual independent channels. We assume the following: The K detectors make independent

9



decisions, each channel is binary symmetric with respective error probabilities (p1, p1 . . . , pK) and the

transmitted bits have equal a priori probability.

Channel 1

Channel 2

Channel K

Detector 1

Detector 2

Detector K

bt

y1, t

y2, t

yK, t

b̂tfusion
  rule

1] The receiver makes decisions along to the majority rule, i.e. it counts among the K received bits the

respective number of 0 and 1 and decides in favor of the majority bit. Give the probability of error of this

receiver P (error) as a function of (p1, p2 . . . , pK). It is useful to distinguish K even and K odd. Finally,

consider the particular case (p1, p2 . . . , pK) = p.

2] The optimum receiver (the best receiver with respect to the probability of error) is

the receiver that compares the a posteriori probabilities P (0 transmitted/y1,t, y2,t, . . . , yK,t) and

P (1 transmitted/y1,t, y2,t, . . . , yK,t) and decides in favor of that bit whose a posteriori probability is

greatest. Prove that criteria is equivalent to compare the probabilities P (y1,t, y2,t, . . . , yK,t/0 transmitted)

and P (y1,t, y2,t, . . . , yK,t/1 transmitted) (denoted Likelihoods of (y1,t, y2,t, . . . , yK,t). Deduce the following

optimum fusion rule:

K∑
k=1

(2yk,t − 1)ln
1− pk
pk

H1

>

<

H0

0

3] Comment on this receiver. Prove that this optimum receiver comes down to the majority receiver

when the probabilities of error (pk)k=1,...,K are equal.

4] Suppose now that the probabilities of error (p1, p2, ...pK) are unknown. Propose a method to estimate

(p1, p2, ...pK) with K ≥ 3 , from the observation of the receiver’s symbols only (yk, t)k=1,2,..,K,t=1,2,..,T .
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Chapter 2

Random variable

2.1 Definition, probability law

• A real-valued random variable is a mapping from Ω to R (univariate or scalar) or to Rn (mul-

tivariate or multidimensional): ω ∈ Ω 7→ x = X(ω) ∈ R or ω ∈ Ω 7→ (x1, ..., xn) = X(ω) =

(X1(ω), .., Xn(ω)) ∈ Rn such that X−1(B) ∈ A for any Borel set R, respectively Rn

• Notation (X = x)
def
= {ω;X(ω) = x} and (X ∈ B)

def
= {ω;X(ω) ∈ B}

• Probability law (denoted also by probability distribution) (denoted PX) : all mean characterizing

P (X ∈ B) for any Borel set of R, respectively Rn

2.2 Cumulative distribution function

• Univariate (scalar) FX(x)
def
= P (X ≤ x) = P (X ∈ (−∞, x])

Properties

– FX(x) is a nondecreasing function, limx→−∞ FX(x) = 0 and limx→+∞ FX(x) = 1

– FX(x+
0 ) = FX(x0) (continuous on the right) and FX(x0) = FX(x−0 ) + P (X = x0)

(finite or countable number of discontinuity)

– P (X ∈ (a, b]) = FX(b)− FX(a)

• Multivariate (vector) FX(x) = FX(x1, .., xn)
def
= P [(X1 ≤ x1) ∩ ... ∩ (Xn ≤ xn)]

Properties

– FX(x1, .., xn) is a nondecreasing function with respect to any component xk

– FXk(xk) = FX(+∞, ..+∞, xk,+∞, ..+∞)

• The cumulative distribution function characterizes the probability law for arbitrary random vari-

able.
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2.3 Discrete random variable

• X(ω) ∈ {x1, .., xn} (finite case) or X(ω) ∈ {x1, .., xk, ....} (countable case)

• The probability law is characterized by the probability mass function P (X = xk) ∀k ∈ {1, ..., n}
or ∀k ∈ {1, ..., n, ...}. The cumulative distribution function is a staircase function and is given by

FX(x) =
∑

xk≤x P (X = xk).

• Property

P (X = xi) =
∑
j

P [(X,Y ) = (xi, yj)], (bivariate case).

2.4 Continuous random variable

• The cumulative distribution function is continuous and is derivable almost everywhere and its

derivative is called probability density function

fX(x)
def
=

dFX(x)

dx
, (univariate case),

fX(x1, ..xn)
def
=

∂nFX(x1, ..., xn)

∂x1, .., ∂xn
, (multivariate case)

• Properties

P (X = x0) = 0, ∀x0, (scalar case),

P (X ∈ B) =

∫
B
fX(x)dx, P (X ∈ (−∞, x]) =

∫ x

−∞
fX(u)du, (univariate case),

P (X ∈ B) =

∫
.
.

∫
B
fX(x1, ..xn)dx1..dxn, (multivariate case)

fX1(x1) =

∫ +∞

−∞
fX(x1, x2)dx2, fX1,X2(x1, x2) =

∫ +∞

−∞
fX(x1, x2, x3)dx3, ....

2.5 Generalized law of total probability

• For arbitrary event A and continuous random variable X with probability density function fX(x),

we have:

P (A) =

∫ +∞

−∞
P (A/X = x)fX(x)dx.

In the particular case where A is the event (Y = yk), where Y is a discrete random variable with

Y ∈ {yk; k ∈ {1, ..., n} or k ∈ {1, ..., n, ...}}, we get:

P (Y = yk) =

∫ +∞

−∞
P (Y = yk/X = x)fX(x)dx.

12



2.6 Independence of random variables

• X1 and X2 are independent ⇔ the events (X1 ∈ B1) and (X2 ∈ B2) are independent for all Borel

sets B1 and B2 ⇔ P [(X1 ∈ B1) ∩ (X2 ∈ B2)] = P (X1 ∈ B1)P (X2 ∈ B2) for all Borel sets B1 and

B2

• Proving that X1 and X2 are not independent ⇔ Finding a specific couple (B1, B2) such that

P [(X1 ∈ B1) ∩ (X2 ∈ B2)] 6= P (X1 ∈ B1)P (X2 ∈ B2)

• The random variables of the family (Xi)i∈I are mutually independent ⇔ the events of the family

(Xi ∈ Bi)i∈I are mutually independent, ∀Bi

• The random variables of the family (Xi)i∈I are mutually independent ⇒ the random variables

of the family gi(Xi)i∈I are mutually independent for arbitrary (measurable) function gi, e.g.,

(X1, X2, X3, X4) mutually independent ⇒ sin(X1), X3
2 + cos 2X3 and 1/X4 mutually indepen-

dent

• Characterization of independence of X1 and X2

– Discrete case : P [(X1 = x1,k ∩ (X2 = x2,l)] = P (X1 = x1,k)P (X2 = xl), ∀(k, l) ∈ N2

– Continuous case : fX(x1, x2) = fX1(x1)fX2(x2) ∀(x1, x2) ⇔ FX(x1, x2) = FX1(x1)FX2(x2)

∀(x1, x2) ⇔ fX(x1, x2) = g(x1)h(x2) ∀(x1, x2) for arbitrary functions g and h ⇔ FX(x1, x2) =

G(x1)H(x2) ∀(x1, x2) for arbitrary functions G and H.

2.7 Change of variables

• Definition : Giving the distribution of a probability on a space Rn specified by the law of probability

of X and a mapping g: x ∈ Rn 7→ y = g(x) ∈ Rq, we want to know the probability law of Y = g(X).

The general approach to find this new probability law is to first derive the cumulative distribution

function of Y

• If X is discrete ⇒ Y is discrete, but If X is continuous ⇒ Y may be discrete.

• If g is one to one differentiable and X is continuous, the smooth change of variable formula applies:

– monovariate case:

fY (y) = |dx
dy
|fX(x)|x=g−1(y) =

1

| dydx |
fX(x)|x=g−1(y)

– bivariate case:

fY(y1, y2) = |det

(
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

)
|fX(x1, x2)|(x1,x2)=g−1(y1,y2)

=
1

|det

(
∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

)
|
fX(x1, x2)|(x1,x2)=g−1(y1,y2)
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2.8 Exercises

Exercise 2.1 Introduction to Poisson process (continued)

2] From the preceding point process N , we build another point process N ′ defined as the following.

Each point of the process N can by erased with a probability 1 − µ (and consequently not erased with

probability µ). The erasing are mutually independent. Prove that the new point process is a homogenous

Poisson process of intensity λµ. (This problem happens with Geiger counter in the process of emission

of particles from a radioactive source in which only a fraction µ of the particles are counted).

3] Prove that if we know that the Poisson process has n points in the interval (t0, tn], the instants of the

n points can be obtained by independently choosing at random n points in (t0, tn]. To prove this result,

compute the probability of the following events by two different means: the first point to the right of t0

is located in (t0, t1], the second point in the interval (t0, tn] is located in (t1, t2]. . . and the n-th is located

in (tn−1, tn], conditional on n points in (t0, tn]. Comment on this result.

4] Prove that for t0 < t1 < t2, the random variable Nt0,t1 conditional on Nt0,t2 = n is a random variable

of Binomial distribution with parameters n and t1−t0
t2−t0 .

5] Let T1, T2 . . . , Tn be the duration from the base time t0 of the first, second. . . and n-th point located

to the right of t0. Determine the distributions of the random variables T1, T2 . . . , Tn.

R
t0

T1 T n

6] Let Dk
def
= Tk+1 − Tk be the random variables representing the time between two consecutive points

of the Poisson process. We want to derive the probability density function of (T1, D1, ..., Dn). For that

a solution consists to derive the cumulative distribution function FT1,T2,...,Tn,Tn+1(t1, t2, ...tn, tn+1) of the

random variable (T1, T2, ..., Tn, Tn+1). For that fix points (s1, s2, ...sn) such that

0 < s1 < t1 < s2 < ... < sk < tk < sk+1 < ... < sn < tn < tn+1.

After giving the probability density function of the random variable (T1, T2 . . . , Tn+1) prove that the

random variables T1, D1, D2, . . . , Dn are independent and exponentially distributed with parameter λ,

i.e. with probability density function fT (t) = λe−λt1(0,+∞)(t).

7] Prove that if the random variable X is exponentially distributed, it satisfies the following property:

P (X > a+ b/X > a) do not depend on a for all a ≥ 0, b ≥ 0.

Conversely, prove that if a positive continuous random variable satisfies the preceding property, it is

exponentially distributed. Comment on this curious property of no memory with reference to questions

6 and 7.

Exercise 2.2 Change of variables, continuous random variables

Consider n mutually independent continuous random variables (Xk)k=1,...,n identically distributed of

probability density and cumulative distribution functions fX(x) and FX(x). Let In and Sn be respectively

the minimum and maximum values among (Xk)k=1,...,n.

1] Give the expression of the probability density functions fIn(x) and fSn(x).

2] Give the cumulative distribution function FIn,Sn(x, y) of the random variable (In, Sn). For that, you
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can use the derivation of the probability P (In > x ∩ Sn ≤ y). Deduce the probability density function

fIn,Sn(x, y).

3] Let us consider the random variable range Rn
def
= Sn − In. Give the cumulative distributive function

FRn(x). Deduce the probability density function fRn(x).

4] Derive in the particular cases a) (Xk)k=1,...,n are uniformly distributed in (0, 1), b) (Xk)k=1,...,n are

exponentially distributed with parameter λ, the expressions of fSn(x), fIn(x), fRn(x), FSn(x), FIn(x)

and F5n(x).

5] Derive in the particular cases, the limit of the distribution of the sequence of random variables Wn =

n(Sn − 1) for a) and Gn = λSn − lnn for b) Comment on.

Exercise 2.3 Distribution of a sum of independent random variables,

1] Consider two independent continuous random variables X1 and X2 with probability density functions

fX1(x) and fX2(x). Prove that the sum X = X1 + X2 is a continuous random variable and give its

probability density function fX(x).

2] Consider two independent integer-valued discrete random variables X1 and X2 that take values n ∈ N
with respective probabilities P (X1 = n) and P (X2 = n) What are the probabilities taken by the sum

X = X1 +X2.

3] Consider two independent random variables X1 and X2 either continuous uniform in [0, 1] or discrete

uniform in {1, 2, 3, 4, 5, 6} (two dices). What are the distribution of the sum X = X1 +X2?

4] Let X1 and X2 be two independent Poisson distributed random variables with parameter λ1 and λ2.

What is the distribution of the random variable X = X1 +X2?

5] Let X1 and X2 be two independent exponential distributed random variables (i.e, of probability density

function fX(x) = λe−λx1[0,∞[) with parameter λ1 and λ2. What is the distribution of the random variable

X = X1 +X2?

Exercise 2.4 Distribution of a sum of independent random variables, mixture of distributions

1] Consider two independent random variables X1 and X2. X1 is continuous with probability density

function fX1(x) and X2 is discrete and takes the values (an)n∈N (N is finite or countable) with probabilities

(pn)n∈N. Prove that the sum X = X1+X2 is a continuous random variable and give its probability density

function fX(x).

2] Let (fXn(x))n∈N be a family of probability density functions and (Cn)n∈N a set of causes of probabilities

(pn)n∈N. Consider a random variable X that conditional on Cn has the probability density function

fXn(x). Give the probability density function of the random variable X. Give some examples, comment

on and compare the probability density functions obtained in questions 1 and 2.

Exercise 2.5 Mixed random variable, definitions

From the continuity property of the probability, i.e.,

limn→∞ P (An) = P (limn→∞An) with limn→∞An
def
= ∪∞n=1An if A1 ⊂ ... ⊂ An ⊂ An+1

limn→∞ P (An) = P (limn→∞An) with limn→∞An
def
= ∩∞n=1An if An+1 ⊂ An... ⊂ A1

prove the following properties of the cumulative distribution function FX(x)
def
= P (X ≤ x) of a real-valued

random variable X for any x0:

1] FX(x+
0 ) = FX(x0)
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2] FX(x0) = FX(x−0 ) + P (X = x0)1.

If the random variable is neither continuous, nor discrete, il is called mixed. In practice, the cumulative

distribution function can be decomposed into:

FX(x) = FXc(x) + FXd(x)

where FXc(x) is continuous and FXd(x) =
∑

xk≤x P (X = xk) with xk are the discontinuity points of

FX(x). FXc(x) is derivable almost everywhere with derivative fXc(x)
def
=

dFXc (x)
dx . In the engineering

literature, a derivative fXd(x) of FXd(x) is sometimes defined by fXd(x)
def
=
∑

xk
P (X = xk)δ(x− xk). In

this case a derivative of FX(x) is defined by fX(x)
def
= fXc(x) + fXd(x).

3] Make a figure of FX(x) and fX(x) in the particular case of a single point x0 of discontinuity of FX(x).

Consider an elementary queueing process in which the probability of waiting is p and the distribution of

waiting time is exponential with parameter λ. Give the probability density fX(x) and the cumulative

distribution function FX(x) of the random variable X giving the waiting time. For p = 0.1 and λ = 1s−1,

specify the numerical value of P (X ≤ 1s).

Exercise 2.6 Change of variables, mixed random variables

A random variable X with probability density function fX(x) is applied at the input of each of the

five nonlinear devices illustrated in the following.

–2 0 1 2 3 4

x

f X(x)

0,2

0,1

aδ(x–1)

i th nonlinear device
x yi

1] Calculate a and plot the cumulative distribution function FX(x).

y=kx

x

y

0

amplifier

x

y

0

y =|x |
full wave rectfier

ideal hard limiter
x

y

0

+1

–1

x

y

0 2,5 3,51,50,5

1

4uniform quntizer

x

y

0

+1

–1

–1 +1

peak clipper

2] Calculate and plot the resulting cumulative distribution function FYi(y) and probability density func-

tions fYi(y) for i = 1, . . . , 5.

2.9 Homeworks

Homework 2.1 Two overlapping Poisson processes (Exercise 2.1 continued)

Let N1 and N2 be two independent Poisson processes with parameter λ1 and λ2 respectively, and N ′

be the number of points of N2 between any two successive points of N1. What is the distribution of the

integer valued random variable N ′ (it is useful to use the generalized law of total probability)? Comment

on this distribution of probability (e.g., if N1 and N2 represent the arrival and departure Poisson processes

1FX(x−0 ) and FX(x+
0 ) denote the limit to the left and to the right, respectively.
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at a counter, N ′ represents the number of departures between two successive arrivals).

Homework 2.2 Geometrical probability

Pick a point M at random inside the unit radius circle C of origine O. Let (X,Y ) and (R,Θ) (with

R > 0 and Θ ∈ [0, 2π)) be the cartesian and polar coordinates of M , respectively.

1] Find the cumulative distribution function of the random variables Θ, R, X and Y .

2] Then, deduce the probability density function of these four random variables.

3] Are Θ and R independent? Are X and Y independent?
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Chapter 3

Expectation

3.1 Definition, fundamental theorem of expectation

• For arbitrary random variable X = (X1, .., Xn), if the integral on Ω:
∫

Ω |X(ω)|dP < ∞, the

expectation of X is given by E(X)
def
=
∫

Ω X(ω)dP .

• Specific definitions of the expectation

E(X) =

n∑
k=1

xkP (X = xk), (finite discrete case),E(X) =

+∞∑
k=1

xkP (X = xk), (countable discrete case),

E(X) =

∫ +∞

−∞
xfX(x)dx, (continuous case)

E(X) =
∑
k

xkP (X = xk) +

∫ +∞

−∞
xfXc(x)dx, (mixed case)

• Fundamental theorem of expectation for Y = g(X) = g(X1, .., Xn)

E(Y ) =

∫ +∞

−∞
...

∫ +∞

−∞
g(x1, .., xn)fX((x1, .., xn)dx1..dxn, (for X continuous)

E(Y ) =
∑
k

g(x1,k, .., xn,k)P (X = (x1,k, .., xn,k)), (for X discrete)

3.2 Variance, covariance matrix

• Variance

var(X)
def
= E[(X − E(X))2] = E(X2)− [E(X)]2

• Covariance

cov(X1, X2)
def
= E[(X1 − E(X1))(X2 − E(X2))] = E(X1X2)− E(X1)E(X2)

• Correlation coefficient of X1 and X2 = covariance of the reduced random variables Xr1
def
= X1−m1

σ1
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and Xr2
def
= X2−m2

σ2

ρX1,X2

def
= cov(Xr1 , Xr2) =

E[(X1 −m1)(X2 −m2)]

σ1σ2

ρX1,X2 ∈ [−1,+1], ρX1,X2 = +1⇔ X2 −m2

σ2
=
X1 −m1

σ1
, ρX1,X2 = −1⇔ X2 −m2

σ2
= −X1 −m1

σ1

• Covariance matrix of X = (X1, ..Xn)

[C]k,l
def
= cov(Xk, Xl) ⇒ C = E[(X−m)(X−m)T ] = E(XXT )−m mT

C is n× n symmetric, positive (aTCa ≥ 0, ∀a 6= 0) or nonnegative matrix (aTCa > 0,∀a 6= 0)

var(Xk) = uTkCuk,with, uk
def
= (0, , 0, 1, 0..0)T , 1 in position k

var(Xu) = uTCu, where Xu
def
= uTX orthogonal projection of X on u with u arbitrary unit vector

• Properties deduced from the fundamental theorem of expectation

E

((
n∑
k=1

akXk

)
+ b

)
=

(
n∑
k=1

akE(Xk)

)
+ b

var

((
n∑
k=1

akXk

)
+ b

)
=

n∑
k=1

a2
kvar(Xk) + 2

∑
1≤i<j≤n

aiajcov(Xi, Xj)

= aTCa with a
def
= (a1, .., an)T

• If the random variables X1, X2,.. and Xn are mutually independent

⇒ E[
∏n
k=1 gk(Xk)] =

∏n
k=1 E(gk(Xk)) for arbitrary measurable functions gk

⇒ X1, X2,.. and Xn are uncorrelated, i.e., cov(Xi, Xj) = 0,∀i 6= j

3.3 Markov and Chebyshev’s inequalities

• Markov’s inequality

P (|X| ≥ c) ≤ E(|X|r)
cr

, ∀c > 0 and ∀r > 0

• Chebyshev’s inequality = Markov’s inequality with r = 2 and X replaced by X −m

P (|X −m| ≥ c) ≤ var(X)

c2
, ∀c > 0 ⇐⇒ P (|X −m| < c) ≥ 1− var(X)

c2
, ∀c > 0
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3.4 Characteristic function

• The characteristic function φX(u)
def
=
∫

Ω e
uTX(ω)dP exists for arbitrary random variable X

φX(u) =
∑
k

eiuxkP (X = xk), (univariate discrete case),

φX(u) =

∫ +∞

−∞
eiuxfX(x)dx, (univariate continuous case)

φX(u) =

∫ +∞

−∞
..

∫ +∞

−∞
eiu

TxfX(x1, ..xn)dx1...dxn, (multivariate continuous case)

• Properties

X1, ..Xn mutually independent ⇒ φY (u) =
n∏
k=1

φXk(u),with Y
def
=

n∑
k=1

Xk

Expansion of φX(u) around zero ⇒ calculus of moments E(Xk):

φX(u) =

n∑
k=0

ikuk

k!
E(Xk) + o(un), if E(Xn) exists

3.5 Exercises

Exercise 3.1 Lognormal distribution

Consider the change of random variable Y
def
= eX where X is normally distributed with mean m and

variance σ2.

1] Find the probability density function of the random variable Y . The random variable is said to have

a lognormal distribution (since lnY = X has a normal distribution).

2] Specify the mode, the expectation, the median and the variance of the random variable Y .

3] What is the probability density function of the random variable Z
def
= z0 + Y ? This random variable

is said to have a generalized lognormal distribution. Suppose that this distribution models the monthly

salaries of the employees of a company. Specify the parameters m, σ and z0 of this distribution if out

of 10000 observed employees, half the employees earn more than $2000, 1587 earn more than $3000 and

1587 earn less $1500.

Exercise 3.2 Mixture of Gaussian random variables

Consider a image satellite whose gray level of each pixel can be modeled by the realization of a

random variable X. Each pixel is supposed to be issued from one among two classes: vegetation and

water (image of nature in Finland). The proportion of vegetation and water are p1 and p2 respectively

(p1 + p2 = 1). Each pixel of the two classes are modeled as Gaussian random variables with mean m1

and m2, and variance σ2
1 and σ2

2 respectively.

1] Give the expression of the probability density function of an arbitrary pixel X.

2] Give closed form expressions for E(X) and Var(X).
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Exercise 3.3 Continuous bivariate random variable

Let be

fX,Y (x, y) = (x+ y)1[0,1]2(x, y)

a probability density function of the random variable (X,Y ).

1] Check that fX,Y (x, y) is a probability density function. Derive fX(x) and fY (y).

2] Give the values of E(X), Var(X) and Cov(X,Y ).

Exercise 3.4 Monte Carlo method

It is required to estimate J =
∫ 1

0 g(x)dx, where 0 ≤ g(x) ≤ 1 for all x ∈ [0, 1]. Let X and Y

be independent random variables uniformly distributed in [0, 1]. Let1 U
def
= 1Y≤g(X), V

def
= g(X) and

W
def
= 1

2 [g(X) + g(1−X)].

1] Prove that E(U) = E(V ) = E(W ) = J .

2] Prove that Var(U) ≥ Var(V ) ≥ Var(W ).

3] Derive a scheme to estimate efficiently J from a sequence of n independent random variables (Xk)k=1,...,n

uniformly distributed in [0, 1].

3.6 Homeworks

Homework 3.1 Fundamental theorem of expectation, optimization

In the mass production of bars, the length of the bars must in fact be considered as a random variable

X because of the dispersion of the length around the mean value m. Let fX(x) be the probability density

function of the length of the bars produced. Suppose we want the bars to have exactly the length a.

Consequently if the produced length is larger than a, the bar are cut at the length a and the rest X − a
is discarded, otherwise if the produced length is smaller than a all the bar is X discarded.

1] Give the expression of the cumulative distribution function FY (y) of the length lost by produced bar

represented by the random variable Y and derive the associated probability density function fY (y). We

assume in this question that fX(x) = 0 outside [0, 2a].

2] Give the expression of E(Y ) from fY (y) and from the theorem of expectation.

3] Suppose that the distribution of the random variable X is Gaussian with mean m and variance σ2.

What does m and σ mean? Explain why 2σ
m may mean the relative accuracy (or uncertainty) of this

mass production. Comment on this model, in particular prove that P (X < 0)� 1. Use for this purpose

the following upper bound that will be proved:∫ +∞

x

1√
2π
e−

t2

2 dt <
1

2
e−

x2

2 , for x > 0

4] Give the optimum value of m that minimizes the expectation of the lost length Y . Consider the

particular case a = 2 meters and σ = 0.02 meter.

11A
def
= 1 if the event A is satisfied and 0 elsewhere (indicator function of the event A).
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Chapter 4

Gaussian distribution

4.1 Univariate Gaussian distribution

• The random variable X is Gaussian (normal) distributed N (m,σ2) ⇔

fX(x) =
1

σ
√

2π
e−

(x−m)2

2σ2 , E(X) = m and var(X) = σ2

• X is Gaussian distributed N (m,σ2) ⇒ Y = aX + b is Gaussian distributed N (am+ b, a2σ2)

• Associated normalized (reduced) random variable

Xr
def
=

X −m
σ

⇒ fXr(x) =
1√
2π
e−

x2

2 , E(Xr) = 0 and var(Xr) = 1

• Order of magnitude

P (X ∈ [m− 2σ,m+ 2σ]) ≈ 0.95 P (X ∈ [m− 3σ,m+ 3σ]) ≈ 0.997

P (X ∈ [m− 6σ,m+ 6σ]) ≈ 1− 1.2 10−8

• Error function Q(x)
def
=
∫ +∞
x

1√
2π
e−

u2

2 du

1

x
√

2π

(
1− 1

x2

)
e−

x2

2 ≤ Q(x) ≤ 1

x
√

2π
e−

x2

2 , for x > 0

• Characteristic function

φX(u) = eimue−
σ2u2

2 , φXr(u) = e−
u2

2 ⇒ E(Xk
r ) =

(
(2n)!
2nn! for k = 2n

0 for k odd

• Derivation of E(Xk)

E(Xk) = E[(σXr +m)k], with e.g., E(X2
r ) = 1,E(X4

r ) = 3
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4.2 Multivariate Gaussian distribution

• The random variable X = (X1, ..., Xn) is Gaussian distributed ⇔ Y =
∑n

k=1 ukXk is Gaussian

distributed ∀u = (u1, .., un) ∈ Rn

• Its distribution is characterized by the expectation E(X) = m and the covariance matrix cov(X) =

C and denoted by N (m,C)

• Properties

– If X is N (m,C) ⇒ Y = AX + b is N (Am + b,ACAT ) where A and b are deterministic.

In particular the marginal random variables Xk are Gaussian distributed N (mk, σ
2
k) with mk

is the k-th component of m and σ2
k = [C]k,k

– If X1, X2.. Xn are Gaussian distributed, X = (X1, ..., Xn) is not necessarily Gaussian dis-

tributed

Ex: Let X be Gaussian distributed N (0, 1) and X1
def
= X and X2

def
=

(
X if |X| ≤ 2

−X if |X| > 2

⇒ X1 and X2 are Gaussian distributed N (0, 1), but X = (X1, X2) is not Gaussian distributed

because Y
def
= X1 +X2 is a mixed random variable (P (Y = 0) = P (|X| > 2) ≈ 0.05 6= 0)

– But if X1, X2.. and Xn are Gaussian distributed and mutually independent ⇒ X =

(X1, ..., Xn) is Gaussian distributed

– If X = (X1, ..., Xn) is Gaussian distributed and X1, X2.. and Xn mutually uncorrelated ⇒
X1, X2.. and Xn are mutually independent

– If the covariance matrix C is not singular, the probability density function exists

fX(x1, .., xn) =
1

(2π)n/2det1/2(C)
e−

1
2

(x−m)TC−1(x−m)

for n = 2, m =

(
m1

m2

)
and C =

(
σ2

1 σ1σ2ρ1,2

σ1σ2ρ1,2 σ2
2

)
⇒

fX(x1, x2) =
1

2πσ1σ2

√
1− ρ2

1,2

e
− 1

2(1−ρ21,2)

(
(x1−m1)

2

σ21
−2ρ1,2

(x1−m1)(x2−m2)
σ1σ2

+
(x2−m2)

2

σ22

)

4.3 Exercises

Exercise 4.1 Baseband data transmission, introduction to probability of error calculus

Consider a sequence of bits 0 and 1 transmitted along a channel with respective probabilities 1 − p
and p. Suppose that the transmitter maps bits into a voltage X(t), say 0 → −a and 1 → +a. Suppose

that the channel corrupts the transmitted signal by the addition of statistically independent noise voltage

which is zero-mean Gaussian distributed with variance σ2. Consequently, the transmitted and received

signals are random and denoted X(t) and Y (t) = X(t) + N(t) respectively, where N(t) denotes the

additive noise.
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+a

–a

t

X(t,ω0)

1] Considering the detection of one bit, suppose that the receiver observes the voltage at only on time

t0. It samples Y (t) at time t0 and compares the value of this random variable Y (t0) to a threshold s. Its

decision rule is the following: {
if Y (t0) > s ⇒ bit 1 detected

if Y (t0) < s ⇒ bit 0 detected

Give the probability of error of such a detector as a function of p, a, σ and s. What is the optimal value

of this threshold s (value that minimizes the probability of error)? Examine the particular case p = 1
2 .

Show that in this case the probability of error can be expressed as a function of a
σ thanks to the error

function:

Q(x)
def
=

∫ +∞

x

1√
2π
e−

t2

2 dt.

2] Considering the detection of one bit, suppose that the receiver now observes the voltage at several

times t1, t2, . . . tK . It samples Y (t) at times t1, t2, . . . tK during the reception of this bit and compares

the mean value Y
def
= 1

K

∑K
k=1 Y (tk) to a threshold s and the receiver decision rule is now the following:{

if Y > s ⇒ bit 1 detected

if Y < s ⇒ bit 0 detected

The random variables N(t1), N(t2), . . . , N(tK) are supposed independent. Prove that the results of

question 1] remain valid if σ is replaced by σ√
K

. Examine the particular case p = 1
2 . Compare the

expression of the probability of error to those of question 1. What strange result happens when K

increases indefinitely.

3] Explain why the hypothesis ”the random variables N(t1), N(t2), . . . , N(tK) are supposed independent”

if (tk)k∈(t0,t0+T ) (i.e. during the observed bit, where 1
T bits/s is the bit rate) when K increases without

bound is unrealistic. The correct model for random signal N(t) is to consider it as a zero-mean Gaussian

random process with spectra (power spectral density) Sn(f) constant, i.e. Sn(f) = N0
2 on a large domain

of frequency (typically large with respect to 1
T ). We consider the particular case p = 1

2 . Using

lim
k→∞

1

k

K∑
k=1

Y (tk) =
1

T

∫ T+t0

t0

Y (t)dt

where (tk)k=1,...,K are regularly spaced in (t0, t0 +T ), give an expression of the probability of error of the

receiver that uses all the values of Y (t) during the observed bit.

Exercise 4.2 Correlation coefficient

Consider a two dimensional Gaussian random variable (X1, X2) with zero mean, variance σ2 and

correlation coefficient ρ. Let W1
def
= sign(X1) and W2

def
= sign(X2). Give a closed form expression of

E(W1W2).
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4.4 Homeworks

Homework 4.1 Independent and uncorrelated random variables.

Consider a two independent zero mean Gaussian random variable X1 and X2 with variance σ2. Let

Y1
def
= X1 +X2 and Y2

def
= X1 + aX2. What are the values of a for which Y1 and Y2 are independent?
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Chapter 5

Convergence of sequences of random

variables

5.1 Convergence of sequences of random variables

• There exists two family of convergence associated with two meanings : closeness of Xn to X and

closeness of the distribution PXn of Xn to the distribution PX of X when n→∞.

• Convergence in probability: Xn →P X

lim
n→∞

P (|Xn −X| ≥ ε) = 0 ⇐⇒ lim
n→∞

P (|Xn −X| < ε) = 1

• Convergence in mean: Xn →M X

lim
n→∞

E|Xn −X| = 0

• Quadratique convergence: Xn →Q X

lim
n→∞

E[(Xn −X)2] = 0

• Almost surely convergence: Xn →AS X

P [ω; lim
n→∞

Xn(ω) = X(ω)] = 1

• Convergence in distribution (in law): Xn →L X or Xn →L PX

lim
n→∞

FXn(x) = FX(x), ∀x such that FX(x) is continuous

⇔ lim
n→∞

P (Xn ∈ [a, b]) = P (X ∈ [a, b]) ∀(a, b) if FX(x) is continuous

• Characterization:

Xn →L X ⇔ limn→∞ φXn(u) = φX(u), ∀u ∈ R
Xn →L X ⇔ limn→∞ E[g(Xn)] = E[g(X)], ∀g bounded and continuous
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• Property: When FX(x) is continuous, limn→∞ Supx{|FXn(x)− FXn(x)|} = 0.

• There exist the following relations between these convergences:

Almost surely convergence ⇒ Convergence in probability ⇒ Convergence in distribution

⇑

Quadratique convergence ⇒ Convergence in mean

5.2 Central limit theorem

There are many central limit theorems (CLT) depending on the assumptions made on the sequence

(Xn)n=1,...k... The simplest and most known is the following:

• Let (Xn)n=1,...k.. be a sequence of mutually independent identically distributed random variables

where m = E(Xk) and σ2 = var(Xk) exist, if Un is the reduced sum which is equal to the reduced

mean:

Un =
(
∑n

k=1Xk)− nm
σ
√
n

=
( 1
n

∑n
k=1Xk)−m

σ√
n

→L N (0, 1)

• Extension to the multivariate case: if m = E(Xk) and C = Cov(Xk) exist

(
∑n

k=1 Xk)− nm√
n

=
( 1
n

∑n
k=1 Xk)−m

1√
n

→L N (0,C)

In the particular case where C is not singular, there exist square roots Σ of C (i.e., C = ΣΣT )

Σ−1

(
(
∑n

k=1 Xk)− nm√
n

)
= Σ−1

(
( 1
n

∑n
k=1 Xk)−m

1√
n

)
→L N (0, I)

5.3 Useful theorems

• Theorem of continuity: for all continuous function x 7→ g(x) such that P{x; g(x) is continuous}) = 1

• Xn →P X ⇒ g(Xn)→P g(X)

• Xn →AS X ⇒ g(Xn)→AS g(X)

• Xn →L X ⇒ g(Xn)→L g(X)

• Slutsky theorem: Let Un be a sequence which converges in law to U and Vn be a sequence which

converges in probability to a constant c, then this implies that for all continuous function (u, v) 7→
g(u, v), the sequence g(Un, Vn) converges in law to g(U, c).

5.4 ∆ method

• Let (Xn)n=1,...k.. be a sequence of random variables such that

cn(Xn − θ)→L N (0, σ2)

27



where (cn)n=1,...k.. is a deterministic sequence such that limn→∞ cn = ∞ (ex cn =
√
n). Suppose

the function g differentiable at θ with g′(x)|x=θ 6= 0, then:

cn[g(Xn)− g(θ)]→L N (0, σ2(g′(θ))2)

5.5 Laws of large numbers

There are many laws of large numbers depending on the assumptions made on the sequence (Xn)n=1,...k...

The most known are the following:

• Let (Xn)n=1,...k.. be a sequence of mutually uncorrelated random variables identically distributed

(but non necessary independent) with same m = E(Xk) and σ2 = var(Xk) that exist

Mn =
1

n

n∑
k=1

Xk →P m, (weak law of large numbers)

• Let (Xn)n=1,...k.. be a sequence of mutually independent identically distributed random variables

where m = E(Xk) exists

Mn =
1

n

n∑
k=1

Xk →AS m, (strong law of large numbers)

• In the case where Xn is Bernoulli (p) distributed: P (Xn = 1) = p, P (Xn = 0) = 1− p,

m = p, and σ2 = p(1− p).

Xn = 1 can be associated with the realization of a specific event A in a repetition of independent

random experiments: Xn = 1An .

⇒ 1
n

∑n
k=1Xk and p represent the relative frequency of realization of A in the first n experiments,

and the probability of A, respectively.

The relative frequency of A converges in probability and almost surely to the probability of A.

5.6 Approximation of probability distribution

• For each convergence in distribution : limn→∞ FXn(x) = FX(x), we deduce that for n � 1 the

approximations:

FXn(x) ≈ FX(x) and P (Xn ∈ B) ≈ P (X ∈ B) for any Borel set of R.

More precisely, is it required to specify from what value of n, we have

Supx;FXn (x)6=0,FXn (x) 6=1|FXn(x)− FX(x)|
FXn(x)

� 1 (in practice 10−1 or 10−2).
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• For Xn =
∑n

k=1 2−kVk ∈ {0, 1
2n ,

2
2n , .., 1−

1
2n } where (Vk)k=1,... is a sequence of mutually independent

uniform distributed in {0; 1} random variables,

⇒ FXn(x) = 1
2n
∑2n

k=1 1[ k−1
2n

,1](x) + 1(1,+∞)(x) ⇒ limn→∞ FXn(x) = x1(0,1](x) + 1(1,+∞)(x) ⇐⇒
Xn →L X, where X is uniformly distributed in [0, 1]

⇒ for n� 1 FXn(x) ≈ FX(x), i.e., Xn is approximately uniformly distributed in [0, 1].

• From the central limit theorem, let (Xn)n=1,...k.. be a sequence of mutually independent identically

distributed random variables, we get for n � 1, Un =
∑n
k=1Xk−nm
σ
√
n

is approximately Gaussian

N (0, 1) distributed. Consequently for n� 1:

Sn
def
=

n∑
k=1

Xk is approximately Gaussian N (nm, nσ2) distributed

Mn
def
=

1

n

n∑
k=1

Xk is approximately Gaussian N (m,
σ2

n
) distributed

• Ex: If Xn are uniformly distributed in {0; 1}, m = 1
2 and σ2 = 1

4 , Un ∈ [−
√
n,+
√
n]

⇒ for n� 1 (n ≥ 30), Sn is approximately Gaussian N (n2 ,
n
4 ) distributed.

• Ex: If Xn are uniformly distributed in [0, 1], m = 1
2 and σ2 = 1

12 , Un ∈ [−
√

3n,+
√

3n]

⇒ for n� 1 (n ≥ 12), Sn is approximately Gaussian N (n2 ,
n
12) distributed.

The speed of convergence specifies the order of magnitude of n to have a good approximation.

Roughly speaking, the more symmetric the distribution of Xn, the better the approximation.

This is justified by the Berry Essen inequality:

Supx|FUn(x)− FU (x)| ≤ 0.8
E(|X −m|3)

σ3
√
n

.

which also implies that FUn(x) = FU (x) +O( 1√
n

) with the big O notation.

Ex: If Xn are Bernoulli (p) distributed, m = p and σ2 = p(1 − p), Un ∈ [−
√

np
1−p ,+

√
n(1−p)

p ] and

Supx|FUn(x)− FU (x)| ≤ 0.8√
n

(p2+(1−p)2)√
p(1−p)

⇒ for n � 1 (n ≥ 30, np > 5 and n(1 − p) > 5), Sn is approximately Gaussian N (np, np(1 − p))
distributed, i.e., the Binomial (n, p) distribution is approximated by a Gaussian N (np, np(1 − p))
distribution.

Ex: Xn is Poisson (λ) distributed, m = λ and σ2 = λ ⇒ for n � 1, Sn that is Poisson (nλ)

distributed is approximated by a Gaussian N (nλ, nλ) distribution.

⇒ the Poisson (λ) distribution is approximated by a Gaussian (λ, λ) distribution if λ ≥ 10.

• The convergence Xn Binomial (n, pn = λ
n) distributed →L X Poisson (λ) distributed, because for

k fixed limn→∞
(
n
k

)
(λn)k(1− λ

n)n−k = λk

k! e
−λ

⇒ the Binomial (n, p) distribution is approximated by a Poisson (np) distribution if n ≥ 30 and

np < 5.
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5.7 Exercises

Exercise 5.1 Notion of confidence interval for the estimation of a probability of error

We wish to estimate the probability error p = P (error) of a digital communication. To do so, we

observe the communication and we count the number k of errors on n observed symbols. Consequently

the rate of error which is defined as k
n is an estimate of the unknown parameter p.

1] Considering the zero-one random variable associated with each observed symbol i, i.e.

Xi
def
=

{
1 if error on symbol i

0 otherwise
,

the rate of error can be considered as the sample mean X̄n of the sequence of random variables (Xi)i=1,...,n,

i.e.,

X̄n =

∑n
i=1Xi

n
.

Prove the convergence in distribution

X̄n − p√
p(1−p)
n

→L N (0, 1) (5.1)

Deduce by application of the weak law of large number, the continuity theorem and the Slutsky theorem,

that (5.1) implies:
X̄n − p√
X̄n(1−X̄n)

n

→L N (0, 1) (5.2)

2] An approximate confident interval is a random interval [p1(X1, . . . , Xn), p2(X1, ..., Xn)] such that

P [(p1(X1, . . . , Xn), p2(X1, ..., Xn)) 3 p] ≈ α

for n� 1, where α is the so-called confidence coefficient. In practice it takes the values 0.90, 0.95 or 0.99

according to the applications.

Prove from (5.1), then from (5.2) that p1(X1, . . . , Xn) = X̄n−h(α)

√
X̄n(1−X̄n)

n and p2(X1, . . . , Xn) =

X̄n + h(α)

√
X̄n(1−X̄n)

n is such an interval where h(α) is defined by:

∫ h(α)

0

1√
2π
e−

x2

2 dx = α.

Comment on the relative precision p2(X1,...,Xn)−p1(X1,...,Xn))
2p with respect to n, p and α.

3] We consider now the practical case where p� 1. How many symbols n must be observed to estimate p

with a relative precision of 1% with a confidence coefficient of 95%. In applications, p is unknown. Prove

that in practice the problem reduces to count the number k =
∑n

i=1Xi of errors. Give for a confidence

coefficient of 95%, the number of errors that must be observed to have a relative precision of 10%, then

1%. Comment on these results.
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5.8 Homeworks

Homework 5.1 Generation of a sequence of independent Gaussian random variables by the central limit

theorem

1] Suppose, we have a generator of a sequence Un of independent uniformly distributed in (0,1) random

variables (such variates are often simply called random numbers in (0,1)). Deduce from an approximation

of the central limit theorem, a generator of sequence Xn of independent Gaussian distributed random

variables with mean m and variance σ2 from the sequence Un. Comment on this approach. 12 successive

values of Un are frequently used. Explain why.

2] Same question, where the sequence Un is replaced by sequence Vn of independent uniformly distributed

in {0, 1} random variables, where 30 successive values of Vn are frequently used.
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Chapter 6

Conditional expectation, conditional

distribution

6.1 Conditional expectation, solution of the least mean square ap-

proximation

• Approximation of Y by a constant

min
a

E[(Y − a)2]⇒ a = E(Y ) and min
a

E[(Y − a)2] = var(Y )

min
a

E|Y − a| ⇒ a = mediane(Y )

• Approximation of Y by an affine function Ŷ = aX + b

min
a,b

E[(Y − (aX + b︸ ︷︷ ︸
Ŷ

))2]⇒ Ŷ = my + ρx,y
σy
σx

(X −mx), min
a,b

E[(Y − (aX + b))2] = σ2
y(1− ρ2

x,y)

with mx
def
= E(X), my

def
= E(Y ), σ2

x
def
= Var(X), σ2

y
def
= Var(Y ) and ρx,y

def
= Cov(X,Y )

σxσy
.

Approximation of X by an affine function X̂ = cY + d

min
c,d

E[(X − (cY + d︸ ︷︷ ︸
X̂

))2]⇒ X̂ = mx + ρx,y
σx
σy

(Y −my), min
a,b

E[(X − (cY + d))2] = σ2
x(1− ρ2

x,y)

• Approximation of Y by a function Ŷ = g(X)

min
g

E[(Y − g(X))2]⇒ Ŷ = E(Y/X = x).
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By the fundamental theorem of expectation

E[(Y − g(X))2] =

∫ +∞

−∞

∫ +∞

−∞
(y − g(x))2fX,Y (x, y)dxdy (continuous case)

=

∫ +∞

−∞

[∫ +∞

−∞
(y − g(x))2fY/X=x(y)dy

]
fX(x)dx

where fY/X=x(y)
def
=

fX,Y (x,y)
fX(x) is the probability density function of Y given X = x

⇒ Ŷ = E(Y/X = x) =
∫ +∞
−∞ yfY/X=x(y)dy

E[(Y − g(X))2] =
∑
i

∑
j

(yj − g(xi))
2P ((X,Y ) = (xi, yj)) (discret case)

=
∑
i

∑
j

(yj − g(xi))
2P (Y = yj/X = xi)

P (X = xi)

where P (Y = yj/X = xi)) =
P ((X,Y )=(xi,yj))

P (X=xi)
=

P (X=xi)∩(Y=yj))
P (X=xi)

is the conditional probability mass

function of Y given that X = xi

⇒ Ŷ = E(Y/X = xi) =
∑

j yjP (Y = yj/X = xi).

• ming E|Y − g(X)| ⇒ g(x) = mediane(Y ) given X = x

• X and Y are independent (continuous case)⇔ fY/X=x(y) = fY (y) ⇔ fX/Y=y(x) = fX(x), ∀(x, y)

• X and Y are independent (discrete case) ⇔ P (Y = yj/X = xi) = P (Y = yj) ⇔ P (X = xi/Y =

yj) = P (X = xi), ∀(xi, yj)

• Two meanings of the conditional expectation: random variable E(Y/X) = g(X) and deterministic

function x 7→ E(Y/X = x) = g(x)

E(Y ) = E[E(Y/X)] =

∫ +∞

−∞
E(Y/X = x)fX(x)dx

known as law of total expectation.

• Generalized law of total probability

P (A) =

∫ +∞

−∞
P (A/X = x)fX(x)dx
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6.2 Conditional cumulative distribution function

• Distribution of Y given X = x (continuous case)

P (Y ≤ y/X ∈ (x0, x]) =
P ((Y ≤ y) ∩ (X ∈ (x0, x]))

P (X ∈ (x0, x])
=
P ((Y ≤ y) ∩ (X ∈ (x0, x]))

FX(x)− FX(x0)

=
1

FX(x)−FX(x0)
x−x0

1

(x− x0)

∫ x

x0

[∫ y

−∞
fX,Y (u, v)dv

]
du

⇒ lim
x→x0

P (Y ≤ y/X ∈ (x0, x]) =
1

fX(x0)

∫ y

−∞
fX,Y (x0, v)dv =

∫ y

−∞
fY/X=x0(v)dv

P (Y ≤ y/X = x0)
def
= lim

x→x0
P (Y ≤ y/X ∈ (x0, x]) = FY/X=x0(y)

fY/X=x0(y) =
dFY/X=x0(y)

dy
, (conditional probability density function)

• Conditional variance

var(Y/X = x0)
def
= E[(Y − E(Y/X = x0))2] =

∫ +∞

−∞
(y − E(Y/X = x0))2fY/X=x0(y)dy.

6.3 Specific case of the Gaussian distribution

• (X,Y ) is Gaussian distributed N

((
mx

my

)
,

(
σ2
x σxσ2ρx,y

σxσyρx,y σ2
y

))

fY/X=x(y) =
1

σy
√

1− ρ2
x,y

√
2π
e
−

[y−(my+ρx,y
σx
σy

(x−mx))]2

2σ2y(1−ρ2x,y)

E(Y/X = x) = my + ρx,y
σx
σy

(x−mx)

var(Y/X = x) = σ2
y(1− ρ2

x,y)

6.4 Exercises

Exercise 6.1 Consider the estimation of a parameter θ through the noisy observation x.

x = θ + n

n is a realization of the random variable N of Gaussian distribution N (0, σ2
n). The prior knowledge about

θ is such that θ is a realization of a random variable Θ which is Gaussian distributed with mean mθ and

variance σ2
θ . The random variables N and Θ are assumed independent.

We are going to choose as estimate θ̂(x) of the unknown parameter θ, the more likely value, once x

is known. This estimator is called the maximum a posteriori probability (MAP) estimate, i.e., the mode

of the posterior distribution of Θ.
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1] Give an example of such case.

2] Derive the posterior probability density function fΘ/X=x(θ) using the probability density function

fΘ,X(θ, x). Comment on the posterior probability density function fΘ/X=x(θ).

3] Deduce the MAP estimate θ̂(x). Prove that θ̂ = E(Θ/X = x)

4] Derive the posterior probability density function fΘ/X=x(θ) in another way using the Bayes’ relation

fΘ/X=x(θ) = fX/Θ=θ(x)
fΘ(θ)

fX(x)

and the interpretation of fX/Θ=θ(x).

5] Derive the expression of the mean square error E[(θ̂(X)−Θ)2]. Comment on.

6] Explain why, the posterior probability density function fΘ/X=x(θ) cannot be directly derived from

the relation θ = x− n by the interpretation of fΘ/X=x(θ) ?

Exercise 6.2 Two meanings of the conditional expectation: Random variable E(Y/X) and deterministic

function E(Y/X = x). Geometric interpretation of random variables.

Let (X,Y ) be a continuous bivariate random variable such that E(Y 2) exists.

1] Prove E[E(Y/X)] = E(Y ). Comment on.

2] Prove by the geometric interpretation of random variables as vectors in a vector space that: E(Y 2) =

E[(Y − E(Y/X))2] + E[(E(Y/X))2]. Deduce that Var[E(Y/X)] ≤ Var(Y ). Comment on.

3] Derive E(Y ), Var(Y ), E[E(Y/X)] and Var[E(Y/X)] in the particular case fX,Y (x, y) = 210≤y≤x≤1(x, y).

6.5 Homeworks

Homework 6.1 Some properties of Markov chain.

Consider a Markov chain, i.e. a sequence of discrete random variables (Xn)n∈N that take values in a

finite or countable set E that satisfies the condition:

P (Xn = xn/X0 = x0, X1 = x1, . . . , Xn−1 = xn−1) = P (Xn = xn/Xn−1 = xn−1)

for all n ≥ 1 and all x0, x1, . . . , xn in E. We note this property by the simplest notation

P (xn/x0, x1, . . . , xn−1) = P (xn/xn−1) for short. Using this notation, the multiplicative rule

P (∩nk=1Ak) = P (A1)P (A2/A1)P (A3/A1 ∩A2)......P (An/A1 ∩ ... ∩An−1),

and the partition rule

P (A) =
∑
i∈I

P (A ∩ Ci), (Ci)i∈I partition of Ω, I finite or countable
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prove and comment on, at least some of the following properties for all x0, . . . ., xn in E.

P (x0, x1, . . . , xn) = P (x0)P (x1/x0) . . . P (xn/xn−1), for n ≥ 0 (6.1)

P (xn/xk, xk+1, . . . , xn−1) = P (xn/xn−1), for 0 ≤ k ≤ n− 1 (6.2)

P (xn/xn−k, xn−k+1, . . . , xn−l) = P (xn/xn−l), for 0 ≤ l ≤ k ≤ n (6.3)

P (xk, xk+1, . . . , xn) = P (xk)P (xk+1/xk) . . . P (xn/xn−1), for k < n (6.4)

P (xk/xk+1, . . . , xn) = P (xk/xk+1), for k < n (6.5)

P (x0, x1, . . . , xn) = P (xn)P (xn−1/xn) . . . P (x0/x1) (6.6)

P (xn/xn+l, . . . , xn+k) = P (xn/xn+l), for all 0 ≤ l ≤ k (6.7)

P (xn/x1, . . . , xn−1, xn+1, . . . , xn+k) = P (xn/xn−1, xn+1) for k ≥ 1 (6.8)

and if xba denotes the set {xa, xa+1, . . . , xb},

P (xn/x
n−k
n−l , x

n+k′

n+l′ ) = P (xn/xn−k, xn+l′) for l′ ≤ k′ and k ≤ l (6.9)

P (xn−kn−l , xn, x
n+k′

n+l′ ) = P (xn−kn−l /xn)P (xn)P (xn+k′

n+l′ /xn), for l′ ≤ k′ and k ≤ l (6.10)

P (xn−kn−l , x
n+k′

n+l′ /xn) = P (xn−kn−l /xn)P (xn+k′

n+l′ /xn), for l′ ≤ k′ and k ≤ l (6.11)

P (xn−k, . . . , xn−1, xn, . . . , xn+l) = P (xn−k/xn−k+1) . . . P (xn−1/xn)P (xn)P (xn+1/xn) . . . P (xn+l/xn+l−1)

for k ≤ 0 and l ≤ 0. (6.12)
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Chapter 7

Random variables simulation

7.1 Meaning of random number sequence

• A periodic deterministic sequence of numbers of very large period such that it passes various statis-

tical tests of hypothesis that the numbers are uniformly distributed on [0,1] and are independent.

Property:

From a sequence (Un)n=1,2,... of mutually independent random variables Un uniformly distributed

in [0, 1] or from a sequence (Vn)n=1,2,... of mutually independent random variables Vn uniformly

distributed in {0; 1} (i.e., with P (Vn = 0) = P (Vn = 1) = 1/2), it is possible to generate sequences

Xn of mutually independent or not independent and arbitrary distributed univariate or multivariate

random variables.

7.2 Pseudo-random numbers generators

Generation of sequences of random numbers mutually independent and uniformly distributed in {0; 1}
or [0, 1]

• Generation by shift register of (Vn)n=1,2,...: vn ≡
∑m

k=1 αkvn−k mod 2, where αk ∈ {0, 1} and

(v1, v2, ..., vm) 6= (0, 0, .., 0) called root. Ex: vn ≡ vn−152 + vn−401 ∈ {0; 1} with period 2401 − 1 ≈
5.1 10120

• Generation of (Un)n=1,2,... from (Vn)n=1,2,...: un =
∑q

k=1 2−kv(n−1)q+k ∈ {0, 1
2q ,

2
2q , ..., 1−

1
2q } ∈ [0, 1)

• Generation of (Un)n=1,2,... by linear congruential generator: un = wn
m where wn ≡ awn−1 +c mod m,

with w0 ∈ N, w0 6= 0 mod m and a ∈ N∗, c ∈ N. Ex: a = 1313, c = 0 and m = 259 ≈ 5.8 1017 with

period m− 1

7.3 Generation of random number sequences with arbitrary distribu-

tions

• Generic methods : Inverse method and acceptance reject method
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– Inverse method for univariate case:

xn = inf{ x ; un ≤ FX(x)}

which reduces for continuous strictly increasing cumulative distribution functions FX(x), to

xn = F−1
X (un), (see exercise 7.1 for discrete random variables).

Ex: FX(x) = x−a
b−a1[a,b](x) +1(b;+∞)(x) for uniform distribution in [a, b] ⇒ xn = a+ (b− a)un

Ex: FX(x) = (1− e−λx)1(0;+∞)(x) for exponential distribution (λ) ⇒ xn = − 1
λ ln(1− un) or

more simply xn = − 1
λ ln(un)

– Inverse method for bivariate case (for inversible cumulative distribution functions FX1(x1) and

FX2/X1=x1(x2)

(x1,n, x2,n) solution of FX1(x1,n) = u2n−1 and FX2/X1=x1,n(x2,n) = u2n

– Acceptance reject method for univariate case : see exercise 7.3

– Acceptance reject method for bivariate case: (suppose fX1,X2(x1, x2) < c, X1 ∈ [a1, b1] and

X2 ∈ [a2, b2])

Draw u′1 uniform on [a1, b1] (u′1 = a1 + (b1 − a1)u1),

Draw u′2 uniform on [a2, b2] (u′2 = a2 + (b2 − a2)u2),

Draw w uniform on [0, c] (W = cu3),

If W < fX1,X2(u′1, u
′
2), then (x1, x2) = (u′1, u

′
2), otherwise draws again (u′1, u

′
2, w)

• Specific methods for the Gaussian (see homework 5.1 and 7.1) and Poisson (see exercise 7.2) dis-

tributions for example.

7.4 Exercises

Exercise 7.1 Generation of a sequence of independent identically distributed random variables, by the

inverse transformation method. Let Un be a sequence of independent uniform in [0,1] random variables.

1] For any strictly increasing continuous distribution function F (x), if we define the random variable Xn

by Xn
def
= F−1(Un), prove that the random variable Xn has the distribution function F (x).

Apply this result to the generation of a sequence of uniformly distributed random variables in [a, b],

then to exponential distributed distributed random variables from a sequence of independent uniform

[0,1] random variables Un.

2] Let (pi)i∈I be strictly positive real numbers that satisfy
∑

i∈I pi = 1. Prove that the sequence of

random variables defined in the following is a sequence of independent discrete random variables with
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probabilities P (Xn = xi) = pi, i ∈ I.

Xn =



x1 if Un < p1

x2 if p1 < Un < p1 + p2

...

xi if
∑i−1

j=1 pj < Un <
∑i

j=1 pj
...

Apply this result to the generation of a sequence of Poisson distributed random variables. Specify the

drawback of this approach.

Exercise 7.2 Generation of a sequence of independent Poisson distributed random variables deduced

from the Poisson processes (Exercise 2.1 continued)

1] Deduce from the relation Tn ≥ t ⇔ Nt0,t0+t ≤ n − 1 for t > 0 and n ∈ N∗ used in the Poisson point

process between Nt0,t0+t (number of points between t0 and t0 + t) and Tn (duration between t0 to the

n-th points to the right of t0) that has been used in exercise 2.1, the relation for t > 0:

t ≤ T1 ⇔ Nt0,t0+t = 0

Tl < t ≤ Tk+1 ⇔ Nt0,t0+t = k, k ∈ N∗

and then a mean to generate a sequence of independent Poisson distributed random variables from a

sequence of exponentially distributed random variables of parameter λ.

2] Prove, independently of exercise 2.1, that if (Yi)i=1,... is a sequence of independent exponentially dis-

tributed random variables of parameter λ, the following discrete random variable X is Poisson distributed

with parameter λ

X =



0 if Y1 ≥ 1

1 if Y1 < 1 ≤ Y1 + Y2

...

k if
∑k

j=1 Yj < 1 ≤
∑k+1

j=1 Yj
...

(You may used the relation
∫
..
∫
R∗k∩y1+...,yk<1 dy1 . . . dyk = 1

k!).

3] Let (Uk)k=1,... be a sequence of independent uniform (0,1) random variables. Using exercise 7.1], prove

that the procedure

X = (arg min
n

n∏
k=1

Uk ≤ e−λ)− 1

gives a random variable X that is Poisson distributed with parameter λ.

4] Let K denote the random number of samples of Uk to give a sample of X. Specify its distribution

and its mean E(K). Comment on?

Exercise 7.3 Acceptance rejection method.

Consider a continuous random variable X with a bounded probability density function fX(x) with a
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bounded support included in [a, b] with c such that fX(x) ≤ c and a sequence (Un)n=1,2,... of independent

uniformly distributed random variables in [0, 1].

∆

fX(x)

a b

x

c
Mn  = (Vn, Wn)

x Vn

Wn

1] Prove that it is possible to generate a sequence of independent points Mn = (Vn,Wn) uniformly

distributed in the rectangle [a, b]× [0, c] from the sequence (Un)n=1,2,....

2] Consider the following algorithm: If the point Mn = (Vn,Wn) is located in the domain ∆ below the

probability density function fX(x), we define X by Vn. If the point Mn = (Vn,Wn) is not located in

the domain ∆, we generate a new point Mn+1 = (Vn+1,Wn+1) and so on, until a point Mn is located

in the domain ∆. Decompose the event {X ≤ x} in a countable union of events easier using the events

(Mn ∈ ∆) and (Mn ∈ ∆x) with ∆x
def
= ∆ ∩ {(v, w); v ≤ x}.

3] Deduce the cumulative distribution function FX(x), then the probability density function fX(x) of the

random variable Xobtained by this algorithm.

4] If N denotes the number of generated terms of the sequence (Un)n=1,2,.. by generated X, give the

expression of E(N) (the identity
∑∞

k=1 k(1 − p)k−1p = 1
p for p ∈ (0, 1] can be used). Comment on this

algorithm.

5] This method can be extended to arbitrary probability density functions fX(x) if there exists another

probability density function fY (y) such that the random variable Y can be easily generated, and a

constant c > 0 such that fX(x) ≤ cfY (x). Prove that the following algorithm generates the distribution

of X: Generate a sequence Yn of independent random variables of probability density function fY (y) and

a sequence Un independent of Yn. If cUnfY (Yn) ≤ fX(Yn), we define X by Yn. If cUnfY (Yn) > fX(Yn),

we consider the couple (Yn+1, Un+1) and so on, until cUnfY (Yn) ≤ fX(Yn).

7.5 Homeworks

Homework 7.1 Generation of a sequence of independent Gaussian random variables by the polar method

Let X and Y be two independent zero-mean unit Gaussian random variables (E(X) = E(Y ) = 0 and

Var(X) = Var(Y ) = 1).

1] What is the probability density of the two-dimensional random variable (X,Y )? Consider the following

change of variables where R and Θ are defined by

R =
√
X2 + Y 2 and Θ = Arg(X + iY ), Θ ∈ [0, 2π)

Using the smooth change of variable formula, derive the joint probability density function fR,Θ(r, θ) of

the random variable (R,Θ). Deduce the marginal probability density functions of R and Θ. Are the

random variables R and Θ independent?
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2] Deduce from R and Θ, two one to one changes of variable R = g(U) and Θ = h(V ) such that the

random variables U and V are independent and uniformly distributed in (0,1).

3] Deduce from X = R cos(Θ) = g(U) cos(h(V )) and Y = R sin(Θ) = g(U) sin(h(V )), a generation of a

sequence Xn of independent Gaussian random variables with mean m and variance σ2 from a sequence

Un of independent random variables uniformly distributed in the interval (0,1).

4] Compare the pros and cons of this method versus this method deduced from the central limit theorem

that is reminded.
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