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New insights into widely linear MMSE receivers
for communication networks using data-like

rectilinear or quasi-rectilinear signals
Pascal Chevalier, Jean-Pierre Delmas, and Roger Lamberti

Abstract—Widely linear (WL) processing has been of great
interest these last two decades for multi-user (MUI) inter-
ference mitigation in radiocommunications networks using
rectilinear (R) or quasi-rectilinear (QR) signals in particular.
Despite numerous papers on the subject, this topic remains of
interest for several current and future applications which use
R or QR signals, described hereafter. In this context, using a
continuous time approach, it is shown in this paper the sub-
optimality of most of the WL MMSE receivers of the literature,
which are implemented at the symbol rate after a matched
filtering operation to the pulse shaping filter, and the necessity
to know the MUI channels, always cumbersome in practice, to
implement the optimal WL MMSE receiver. Then, the main
challenge addressed in the paper is to propose new WL MMSE
receivers able to implement the optimal one without requiring
the MUI channels knowledge. For this purpose, two new WL
MMSE receivers, a two-input one and a three-input one, are
proposed and analyzed in this paper for R and QR signals
corrupted by data-like MUI. The two-input and three-input
receivers are shown to be quasi-optimal respectively for R
signals using Square Root Raised Cosine (SRRC) filters with
a low roll-off and for R and QR signals whatever the pulse
shaping filter, showing in particular the non-equivalence of
R and QR signals for WL MMSE receivers. These two new
receivers open new perspectives for the implementation of the
optimal WL MMSE receiver in the presence of data-like MUI
from the only knowledge of the SOI channel.

Index Terms—Non circular, Widely linear, MMSE, Recti-
linear, Quasi-Rectilinear, SAIC/MAIC, MUI, ISI, Continous-
Time, two-input, three-input, FRESH, MSK, GMSK, OQAM,
ASK, BPSK
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I. INTRODUCTION

W IDELY linear (WL) processing [1] has been of great
interest these last two decades for many applications
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involving second-order (SO) non-circular (or improper) sig-
nals [2] and for data-like multi-user interference (MUI)
and multi-antenna interference (MAI) mitigation in radio-
communication networks using rectilinear (R) or quasi-
rectilinear (QR) signals in particular. Let us recall that R
signals correspond to mono-dimensional signals, or real-
valued signals to a potential phase term, such as amplitude
modulated (AM), amplitude shift keying (ASK) or binary
phase shift keying (BPSK) signals, whereas QR signals are
complex signals corresponding, after a simple derotation
operation [3], to a complex filtering of an R signal. Exam-
ples of QR signals are signals using π/2-BPSK, minimum
shift keying (MSK) or offset quadrature amplitude (OQAM)
modulations, while an example of approximated QR signal
is a signal using the Gaussian MSK (GMSK) modulation.
For data-like R or QR MUI or MAI, a well-suited WL
receiver implemented from N antennas creates N additional
virtual antennas and generates a virtual array of 2N anten-
nas, allowing to discriminate the received sources by the
phase, in addition to the spatial discrimination available
for N > 1 [4]. It then allows the potential rejection of
2N−1 (instead of N−1 for linear receivers) data-like MUI
or MAI, and a Single Antenna Interference Cancellation
(SAIC) capability from a single antenna reception [4], hence
its great practical interest.

For this reason, WL processing has been considered in the
past for R MUI and narrow-band interference (NBI) miti-
gation in code division multiple access (CDMA) networks
[5], [6], in orthogonal frequency division multiplex systems
[7] and in ultra wide band networks [8] in particular. It has
also been proposed for R MAI suppression in V-BLAST
single user Muti-Input Multi-Output (MIMO) systems [9],
[10] and for R MUI mitigation in MIMO systems using
spatio-temporal block coding [11]. Moreover, since the end
of the nineties, WL processing has also been proposed for
QR MUI mitigation in CDMA networks using offset quadra-
ture phase shift keying (OQPSK) modulation [12]. It has
also been strongly studied and applied for single/multiple
antenna interference cancellation (SAIC/MAIC) in radio-
communication networks using QR signals, and in the GSM
cellular networks in particular, which use the GMSK modu-
lation. Several SAIC WL receivers, allowing the separation
of two users from only one receive antenna, have been
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proposed in [4], [13], [14] and inserted in most of GSM
handsets since 2006 [15], allowing significant capacity gains
in GSM networks [14], [16]. Other WL receivers have also
been proposed for SAIC [17], [18] and SAIC/MAIC [19]
in voice services over adaptive multi-user channels on one
slot (VAMOS) networks, a standardized extension of GSM
networks, aiming at increasing the capacity of GSM, while
maintaining backward compatibility with the legacy system.

Despite these numerous papers about WL processing for
R and QR MUI or MAI mitigation, this topic remains of
great interest for several current and future applications. This
concerns in particular anti-collisions processing in radio
frequency identification systems [20] or in dense machine-
type networks such as grant-free narrow-band internet of
things (IoT) networks for uplink transmissions [21], which
use R and QR signals respectively, and in satellite-AIS
systems for maritime surveillance which use GMSK signals
[22]. This topic is also relevant to allow 5G and beyond
5G (B5G) networks to support a massive number of low
data rate devices through one-dimensional signaling [23],
potentially jointly with MIMO non-orthogonal multiple ac-
cess (MIMO-NOMA) systems [24], or fully or over-loaded
large MU-MIMO systems using R signals [25]. Moreover,
QR interference mitigation by WL processing remains also
of great interest for unmanned aerial vehicles (UAVs or
drones), who are expected to become one of the impor-
tant enabling technologies for B5G cellular networks and
whose applications development is growing dramatically
for many civilian applications (monitoring, surveillance,
traffic control, relaying etc..) [26]. Indeed, the bidirectional
Control and Non Payload Communications (CNPC) link,
connecting the ground control station to the UAV, which is
a safety-critical link requiring improved receivers in terms
of reliability, availability and low latency in a large vari-
ety of environmental and propagation conditions, uses the
GMSK modulation [27]. In low-altitude operations, CNPC
links meet frequency selective wireless channels and WL
processing is of interest for channel equalization, as already
described in [27]. In order to reduce the size, and then
the complexity, of the equalizer, an additional interest of
WL processing may be to potentially cancel the multiple
paths arriving outside the equalizer length, thus considered
as MUI. Another application where QR interference miti-
gation by WL processing may be still of interest concerns
communication networks using FBMC-OQAM waveforms
[28] candidate for beyond 5G and future Internet of Things
networks [29], thanks to their good frequency localization
and compatibility with asynchronous links. For frequency
selective channel, FBMC-OQAM waveforms generate Inter-
Carrier Interference (ICI) at reception, which may be pro-
cessed by efficient WL processing. Preliminary WL based
solutions for FBMC-OQAM waveforms are presented in
[30], [31] for MIMO links using spatial multiplexing at
transmission and in [32] for SISO links.

In this challenging context, let us note that most of the
WL receivers currently available in the literature for R or
QR MUI, MAI or ICI mitigation are WL MMSE receivers.
Although these receivers have been strongly studied these
two last decades, several important questions related to the
relevance of their structure, their performance, their imple-
mentation requirements and their potential equivalence for R
and QR signals remain surprisingly raised. More precisely,
except for those presented in [12] and [19], most of the other
WL MMSE receivers are implemented at the symbol rate,
after a matched filtering operation to the pulse shaping filter
and have thus a particular structure constraint (sc). Among
these constrained receivers, [9], [10], [20], [21], [23], [25],
[30] fully exploit the similar waveform of SOI and MUI by
jointly estimating the SOI and interference symbols, which
requires the a priori knowledge or estimation of both the
SOI and MUI channels. Other WL MMSE receivers [4]–[8],
[14], [17], [18], [31], [32] estimate the SOI symbols only,
which does not require the a priori knowledge or estimation
of the MUI channels. In this context, the first contribution
of this paper is to show, for both R and QR signals and
under the previous structure constraint, the equivalence of
these two approaches for both the linear (L) (or one-input)
and the WL (or two-input) MMSE receivers, thus discarding
the need to know or to estimate in this case the MUI
channel responses, always cumbersome in practice. The
previous receivers are called in the following sc M -input
receivers with M = 1 and 2 respectively. As only R and
QR signals are considered, only WL receivers are of interest
in this paper, whereas L receivers are only considered as
reference receivers. The second contribution of this paper is
to compute, for R and QR signals and for M = 1, 2, the
M -input MMSE receiver without any structure constraint,
called optimal M -input MMSE receiver and denoted by o
M -input MMSE receiver. The o M -input receiver is very
scarcely considered in the literature. It fully exploits the
MUI waveform knowledge and implicitly exploits all the
cyclostationarity properties of the MUI, in addition to their
SO non-circularity for M = 2. However, contrary to the sc
M -input MMSE receiver, the o M -input MMSE receiver
requires the a priori knowledge or estimation of the MUI
channels, which is one of its main limitations. The third
contribution of this paper is to show, for R and QR signals
and for M = 1, 2, the general sub-optimality of the sc
M -input MMSE receiver, yet mainly used in the literature,
which thus cannot implement the o M -input MMSE receiver
in most cases. It then becomes interesting to propose new
M -input MMSE receivers able to implement the o M -input
MMSE receiver but without requiring the knowledge of the
MUI channels. In this context, the main contributions of
this paper is to propose, for both R and QR signals, two
new WL MMSE receivers aiming at implementing the o
two-input MMSE receiver but without requiring the MUI
channels. The first receiver, which constitutes the fourth



3

contribution of this paper, is a two-input MMSE receiver,
called s two-input MMSE receiver, having no structure
constraint but assuming a false stationarity property of the
MUI. This receiver does not require the knowledge of the
MUI channels, hence its practical interest. However, the
performance analysis of this receiver, presented in this paper,
shows its quasi-optimality for R signals using SRRC filters
with weak roll-off but its increasing sub-optimality as the
roll-off increases. Moreover, this receiver is shown to be
always sub-optimal for QR signals, showing in particular
the non-equivalence of R and QR signals for WL MMSE
processing, contrary to what is implicitly assumed in most
of papers dealing with WL processing of QR signals. For
this reason, a second receiver, which constitutes the fifth
contribution of this paper, and corresponding to a three-
input WL frequency shifted (FRESH) receiver, is proposed
in this paper. This receiver, called s three-input MMSE
receiver, is shown to be quasi-optimal for both R and QR
signals, for most filters and propagation channels, allowing
to quasi-implement the o two-input MMSE receiver without
the need to know the MUI channels, which seems to be
unprecedented and which opens new perspectives for the
implementation of the latter.

To introduce the previous receivers we adopt a
continuous-time (CT) approach which is justified by three
reasons. The first one, is that implementation issues are
out of the scope of the paper, which is mainly concep-
tual but which may be a prerequisite for implementation
optimizations investigated elsewhere. The second one, is
that a CT approach allows us to remove the potential
influence of the sample rate imposed by a discrete-time
(DT) approach. The third one, is that it allows us to obtain
analytical and potentially interpretable expressions for the
output performance of the receivers considered in the paper,
which are completely original and which constitute the
sixth contribution of this paper. Note that a three-input WL
FRESH receiver has already been proposed in [33] and [34]
for QR data-like MUI mitigation, both without and with
frequency offset respectively, but using a pseudo Maximum
Likelihood Sequence Estimation (MLSE) approach. This
gives rise to the three-input WL pseudo-MLSE receiver
much more heavy to implement than the three-input WL
MMSE receiver introduced in this paper. Moreover, note
that the MMSE-based M -input FRESH receiver introduced
in [35] for co-channel interference (CCI) mitigation, also
called M -input cyclic Wiener receiver, is very different
from the receivers introduced in this paper. Indeed the M -
input cyclic Wiener receiver of [35] is the solution of an
MMSE estimation problem and generates the best M -input
MMSE estimate of a CT digital signal in the presence of
cyclostationary CCI. On the contrary, the different MMSE
receivers considered in this paper are equalizers rather than
signal estimators and generate M -input (M = 1, 2, 3)
MMSE estimates of the received useful symbols under

different assumptions on the MUI and receiver structure.
None of the receivers introduced in this paper is considered
in [35] which, in addition, does not mention QR signals and
does not present any analytical performance results.

The paper is organized as follows. Section II introduces
the observation model and the extended one for both two-
input and three-input WL processing of both R and QR
signals, jointly with the SO statistics of the total noise.
Section III derives, for R and QR signals, the sc and o M -
input (M = 1, 2) and the s M -input (M = 1, 2, 3) MMSE
receivers. Section IV gives, for R and QR signals, general
closed-form expressions of the SINR on the current symbol
at the real-part output of these derived receivers. Section ??
considers the presence of zero and one data-like MUI and
gives very insightful analytical interpretable expressions of
these SINRs in some particular cases, which is very original.
A comparative analysis of these SINR is then presented,
both analytically and by computer simulations, for several
propagation channels, and several kinds of signals, which is
the seventh contribution of this paper. Section V shows that
the results obtained through the output SINR criterion are
still valid for the output symbol error rate (SER). Finally
Section VI concludes this paper.

Notations: Before proceeding, we fix the notations used
throughout the paper. Non boldface symbols are scalar
whereas lower (upper) case boldface symbols denote col-
umn vectors (matrices). T , H and ∗ means the transpose,
conjugate transpose and conjugate, respectively. ⊗ is the
convolution operation. δ(x) is the Kronecker symbol such
that δ(x) = 1 for x = 0 and δ(x) = 0 for x 6= 0. 0K and
IK are the zero and the identity matrices of dimension K,
respectively. Moreover, all Fourier transforms of vectors x
and matrices X use the same notation where time parameters
t or τ is simply replaced by frequency f .

II. MODELS AND TOTAL NOISE SECOND-ORDER
STATISTICS

A. Observation model and total noise SO statistics

A1) Observation model: We consider an array of N
narrow-band antennas receiving the contribution of a SOI,
which may be R or QR, P data-like MUI, having the same
nature (R or QR), the same symbol period and the same
pulse-shaping filter as the SOI, and a background noise. The
N×1 vector of complex amplitudes of the data at the output
of these antennas after frequency synchronization can then
be written as

x(t) =
∑
`

a`g(t−`T )+
∑

1≤p≤P

∑
`

ap,`gp(t−`T )+ε(t)

=
∑
`

G(t−`T )a`+ε(t)
def
=
∑
`

a`g(t−`T )+n(t).(1)

Here, (a`, ap,`) = (b`, bp,`) for R signals, whereas
(a`, ap,`) = (j`b`, j

`bp,`) for QR signals, where b` and
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bp,` (1 ≤ p ≤ P ) are real-valued zero-mean indepen-
dent identically distributed (i.i.d.) random variables, cor-
responding to the SOI and MUI p symbols respectively
for R signals and directly related to the SOI and MUI
p symbols, respectively for QR signals [36]–[38], T is
the symbol period for R, π/2-BPSK, π/2-ASK, MSK and
GMSK signals [37], [38] and half the symbol period for
OQAM signals [36], g(t) = v(t) ⊗ h(t) is the N × 1
impulse response vector of the SOI global channel, v(t)
and h(t) are respectively the scalar and N × 1 impulse
responses of the SOI pulse shaping filter and propagation
channel, respectively, gp(t)

def
= v(t) ⊗ hp(t) where hp(t)

is the impulse response vector of the propagation channel
of the MUI p, G(t) is the N × (P + 1) matrix defined
by G(t)

def
= [g(t),g1(t), ...,gp(t)] = v(t) ⊗ H(t) where

H(t)
def
= [h(t),h1(t), ...,hp(t)], a` is the (P +1)×1 vector

defined by a`
def
= [a`, a1,`, ..., aP,`]

T , ε(t) is the N × 1
background noise vector assumed to be zero-mean, circular,
stationary, temporally and spatially white and n(t) is the
total noise vector composed of the P MUI and background
noise. Note that model (1) with (a`, ap,`) = (j`b`, j

`bp,`) is
exact for π/2-BPSK, π/2-ASK, MSK and OQAM signals
whereas it is only an approximated model for GMSK signals
[37].

For R signals, the filter v(t) is assumed to correspond to
a normalized (with unit-energy) square root raised cosine
(SRRC) filter with a roll-off ω and a bandwidth B =
(1 +ω)/T . For QR signals, four normalized filters v(t) are
considered, depending on the QR constellation. For π/2-
BPSK or π/2-ASK constellations, v(t) is the same as for
R signals. For OQAM signals, v(t) is also a normalized
SRRC filter but for the symbol duration 2T instead of T .
For a MSK signal, v(t) is defined by

v(t) =

{ 1√
T

sin( πt2T ), t ∈ [0, 2T ]

0, elsewhere,
(2)

whereas for a GMSK signal, v(t) is, ideally, approximately
defined by the c0(t) pulse of the Laurent decomposition
[37]. However, as c0(t) is a complicate function of t, in this
paper we approximate this pulse by the following Gaussian
filter

v(t) ≈ 1

(σT
√

2π)1/2
e
− (t−2T )2

4(σT )2 , (3)

where σ has to be chosen to approximate c0(t). The value
σ = 1 seems to be a good choice [13].

A2) Total Noise SO statistics: The SO statistics of n(t)
are characterized by the two correlation matrices Rn(t, τ)

and Cn(t, τ), defined by Rn(t, τ)
def
= E[n(t+ τ/2)nH(t−

τ/2)] and Cn(t, τ)
def
= E[n(t + τ/2)nT (t − τ/2)]. Using

(1), it is easy to verify that Rn(t, τ) and Cn(t, τ) are
periodic functions of t, whose periods are equal to T and
T , respectively for R signals, and to T and 2T , respectively
for QR signals. Matrices Rn(t, τ) and Cn(t, τ) have then

Fourier series expansions given by

Rn(t, τ) =
∑
αi

Rαi
n (τ)ej2παit (4)

Cn(t, τ) =
∑
βi

Cβi
n (τ)ej2πβit. (5)

Here, αi and βi are the so-called non-conjugate and con-
jugate SO cyclic frequencies of n(t), such that αi = i/T
(i ∈ Z) for both R and QR signals, whereas βi = i/T and
βi = (2i+1)/2T (i ∈ Z) for R and QR signals, respectively
[39], [40], Rαi

n (τ) and Cβi
n (τ) are the first and second cyclic

correlation matrices of n(t) for the cyclic frequencies αi and
βi and the delay τ , defined by

Rαi
n (τ)

def
= < Rn(t, τ)e−j2παit > (6)

Cβi
n (τ)

def
= < Cn(t, τ)e−j2πβit >, (7)

where < . > is the temporal mean operation in t over an
infinite observation duration. Note that (6) and (7) for αi =
βi = 0 simply reduce to < Rn(t, τ) > and < Cn(t, τ) >,
respectively. The Fourier transforms Rαi

n (f) and Cβi
n (f),

of Rαi
n (τ) and Cβi

n (τ), respectively, are called the first and
second cyclospectrum of n(t) for the cyclic frequencies αi
and βi, respectively.

B. Two-input extended models for standard WL processing
For both R and QR signals, a conventional linear pro-

cessing of x(t) only exploits the information contained
at the zero non-conjugate (α = 0) SO cyclic frequency
of x(t), through the exploitation of the temporal mean
< Rx(t, τ) > of the first correlation matrix, Rx(t, τ)

def
=

E[x(t+ τ/2)xH(t− τ/2)], of x(t). It does not exploit the
potential SO non-circularity of x(t).

For R signals, a standard WL or two-input processing
of x(t), only exploits the information contained at the
zero non-conjugate and conjugate (α0, β0) = (0, 0) SO
cyclic frequencies of x(t) through the exploitation of the
temporal mean < Rx̃(t, τ) > of the first correlation matrix
Rx̃(t, τ)

def
= E[x̃(t + τ/2)x̃H(t − τ/2)], of the two-input

extended model x̃(t)
def
= [xT (t),xH(t)]T , defined by

x̃(t) =
∑
`

G̃(t−`T )b`+ε̃(t) =
∑
`

b`g̃(t−`T )+ñ(t), (8)

where ε̃(t)
def
= [εT (t), εH(t)]T , ñ(t)

def
= [nT (t),nH(t)]T ,

G̃(t)
def
= [g̃(t), g̃1(t), .., g̃P (t)], g̃(t)

def
= [gT (t),gH(t)]T ,

g̃p(t)
def
= [gTp (t),gHp (t)]T , 1 ≤ p ≤ P , and b`

def
=

[b`, b1,`, ...bP,`]
T . Note that < Rx̃(t, τ) > conveys the infor-

mation contained in both < Rx(t, τ) > and < Cx(t, τ) >
and thus exploits the potential SO non-circularity of x(t)
when (a`, ap,`) = (b`, bp,`) in (1).

For QR signals, as no information is contained at β = 0,
i.e., in < Cx(t, τ) >, when (a`, ap,`) = (j`b`, j

`bp,`)
in (1), a derotation preprocessing of the data is required



5

before standard WL filtering. Using (1) with (a`, ap,`) =
(j`b`, j

`bp,`) for QR signals, the derotated observation vec-
tor can be written as:

xd(t)
def
= j−t/Tx(t) =

∑
`

Gd(t− `T )b` + εd(t)

=
∑
`

b`gd(t− `T ) + nd(t), (9)

where εd(t)
def
= j−t/T ε(t), nd(t)

def
= j−t/Tn(t), Gd(t)

def
=

[gd(t),g1,d(t), ..,gP,d(t)] = vd(t) ⊗ Hd(t), gd(t)
def
=

j−t/Tg(t), gp,d(t)
def
= j−t/Tgp(t), vd(t)

def
= j−t/T v(t),

Hd(t)
def
= [hd(t),h1,d(t), ..,hP,d(t)], hd(t)

def
= j−t/Th(t)

and hp,d(t)
def
= j−t/Thp(t). Note that the derotation opera-

tion of x(t) may also be defined, alternatively, as xd(t)
def
=

jt/Tx(t). Expression (9) shows that the derotation operation
makes a QR signal looks like an R signal, with a non-
zero information at the zero conjugate SO cyclic frequency.
Indeed, it is easy to verify [33] that xd(t) has non-conjugate,
αd,i and conjugate, βd,i, SO cyclic frequencies such that
αd,i = αi = i/T and βd,i = βi − 1/2T = i/T , which
proves the presence of information at βd,0 = 0. Thus
standard WL or two-input processing of QR signals, exploits
the information contained at (αd,0, βd,0) = (0, 0) through
the exploitation of the temporal mean < Rx̃d(t, τ) >,
of the first correlation matrix, Rx̃d(t, τ)

def
= E[x̃d(t +

τ/2)x̃Hd (t − τ/2)], of the two-input extended derotated
model x̃d(t)

def
= [xTd (t),xHd (t)]T , defined by

x̃d(t)=
∑
`

G̃d(t−`T )b`+ ε̃d(t)=
∑
`

b`g̃d(t−`T )+ ñd(t),

(10)
where ε̃d(t)

def
= [εTd (t), εHd (t)]T , ñd(t)

def
= [nTd (t),nHd (t)]T ,

G̃d(t)
def
= [g̃d(t), g̃1,d(t), .., g̃P,d(t)], g̃d(t)

def
= [gTd (t),

gHd (t)]T and g̃p,d(t)
def
= [gTp,d(t),g

H
p,d(t)]

T , 1 ≤ p ≤ P .
Note that < Rx̃d(t, τ) > conveys the information contained
in both < Rxd(t, τ)

def
= E[xd(t+ τ/2)xHd (t− τ/2)] > and

< Cxd(t, τ)
def
= E[xd(t + τ/2)xTd (t − τ/2)] > and thus

exploits the potential SO non-circularity of xd(t). This is
equivalent to exploit the energy contained in the SO cyclic
frequencies (α0, β0) = (0, 1/2T ) of x(t).

C. Three-input extended models for WL FRESH processing

C1) Sub-optimality of the two-input model and interest
of a M -input model with M > 2: The two-input model
introduced in the previous section exploits the information
contained in the SO cyclic frequencies (α0, β0) = (0, 0)
of x(t) for R signals and in (αd,0, βd,0) = (0, 0) of xd(t),
or equivalently in (α0, β0) = (0, 1/2T ) of x(t), for QR
signals.

For R signals/MUI, a large amount of energy is contained
in the SO cyclic frequencies (α0, β0) = (0, 0), whatever
the real-valued filter v(t), and this energy is equally dis-

tributed in α0 and β0. Moreover, the energy contained in
αi = βi = i/T , i 6= 0, increases with the signals/MUI
bandwidth and decreases with an increasing value of |i| [35],
[39]. Consequently, for small signals/MUI bandwidth, the
SO cyclic energy of R signals/MUI is mainly contained in
(α0, β0) = (0, 0), the energy contained in αi = βi = i/T ,
i 6= 0 is negligible and the two-input model (8) is SO quasi-
optimal. However, for increasing signals/MUI bandwidth,
the SO cyclic energy contained in α1 = β1 = 1/T and in
α−1 = β−1 = −1/T is equally distributed and is no longer
negligible with respect to that on (α0, β0). In this case, the
two-input model becomes sub-optimal and it may be useful
to built M -input models (M > 2) able to fetch the energy
contained in the latter non-zero SO cyclic frequencies of the
observations to improve the performance of receivers. Note
that increasing again the number of input to fetch the energy
contained in αi = βi = i/T for |i| > 1 is generally useless
since only a very weak residual energy is contained in these
non-zero SO cyclic frequencies.

For QR signals/MUI, a large amount of
energy is contained in the SO cyclic frequencies
(α0, β0, β−1) = (0, 1/2T,−1/2T ) of x(t), or, equivalently,
in (αd,0, βd,0, βd,−1) = (0, 0,−1/T ) of xd(t), with an
equal energy on β0, β−1, βd,0 and βd,−1 [40], whatever
the real-valued filter v(t). Consequently, the two-input
model (10), which only exploits the SO energy contained
in (αd,0, βd,0) = (0, 0), i.e., a part of the main energy,
is sub-optimal whatever the bandwidth B > 1/(2T ), for
which the energy contained in β0, β−1, βd,0 and βd,−1 is
not zero. It may then be useful to built M -input models
(M > 2) able to fetch, at least, the energy contained
in (αd,0, βd,0, βd,−1) = (0, 0,−1/T ). As the SO cyclic
energy contained in αd,i = i/T (i 6= 0) and in βd,i = i/T
(i 6= 0 and i 6= −1) increases with the signals/MUI
bandwidth, the sub-optimality of the two-input model (10)
increases with the signals/MUI bandwidth. Finally, note
that a further increase of the number of input to fetch the
energy contained in αd,i for |i| > 1 and in βd,i for i 6= 0
and i 6= −1 is generally useless since these energies are
generally negligible with respect to the one contained in
αd,0, βd,0 and βd,−1.

C2) Three-input FRESH model: To fetch most of the
residual SO cyclic energy which is not exploited by the two-
input models (8) and (10), for R and QR signals respectively,
well-suited M -input models (M > 2) must be built. It
will be shown in the following of the paper that a three-
input FRESH model is generally sufficient to fetch most
of the SO cyclic energy which is not used by the two-input
model. Moreover, a three-input model is a good compromise
between performance and complexity of the implementation.

For R signals, we propose the three-input FRESH model
defined by

x3(t)
def
= [xT (t),xH(t), e−j2πt/TxH(t)]T , (11)
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whereas for QR signals, we propose the following three-
input model

x3(t)
def
= [xTd (t),xHd (t), e−j2πt/TxHd (t)]T

= j−t/T [xT (t), ej2πt/2TxH(t), e−j2πt/2TxH(t)]T

def
= j−t/Tx′3(t). (12)

A three-input processing of x(t) exploits the temporal
mean, < Rx3

(t, τ) >, of the first correlation matrix,
Rx3(t, τ)

def
= E[x3(t+τ/2)xH3 (t−τ/2)], of x3(t). Using (6)

and (7) and developing < Rx3
(t, τ) >, it is straightforward

to verify that < Rx3
(t, τ) > exploits the information con-

tained in (α0, α−1, α1, β0, β−1) = (0,−1/T, 1/T, 0,−1/T )
for R signals and in (α0, α−1, α1, βd,0, βd,−1) =
(0,−1/T, 1/T, 0,−1/T ) for QR signals, which corre-
sponds, in this latter case, to (α0, α−1, α1, β0, β−1) =
(0,−1/T, 1/T, 1/2T,−1/2T ). Following the analysis of
the previous section, we deduce that, whatever the pulse
shaping filter, the three-input model (11) for R signals ex-
ploits all the main non-conjugate and conjugate energetical
SO cyclic frequencies of x(t), except β1, whereas the three-
input model (12) for QR signals exploits all the main non-
conjugate and conjugate energetical SO cyclic frequencies
of x(t). Note that a time invariant linear processing of x3(t)
becomes now a time varying WL processing of x(t), called
here three-input WL FRESH processing of x(t).

Note that, for R signals, the three-input model (11) might
also be defined by x3(t) = [xT (t),xH(t), ej2πt/TxH(t)]T

For QR signals, the three-input model x′3(t) might have
also been chosen instead of x3(t), which has been done in
[33]. An alternative three-input model for QR signals might
also be defined by x3(t) = [xTd (t),xHd (t), ej2πt/TxHd (t)]T

provided that xd(t) is, in this case, defined by xd(t)
def
=

jt/Tx(t).

D. M -input generic model for L, standard WL and WL
FRESH processing

In the following, we consider L, standard WL and WL
FRESH MMSE receivers as one, two and three-input re-
ceivers respectively. Then, for the M -input MMSE receivers
(M = 1, 2, 3), we denote by xM (t) the generic observation
vector. For linear receivers (M = 1), xM (t) reduces to x(t)
for R signals and to xd(t) for QR signals. For standard WL
or two-input receivers (M = 2), xM (t) corresponds to x̃(t)
for R signals and to x̃d(t) for QR signals. For WL FRESH or
three-input receivers (M = 3), xM (t) corresponds to x3(t)
defined by (11) and (12) for R and QR signals respectively.
We then deduce from (1) and (8) to (12) that xM (t) always

takes the form

xM (t)=
∑
`

b`gM (t−`T )+
∑

1≤p≤P

∑
`

bp,`gp,M (t−`T )+εM (t)

=
∑
`

GM (t− `T )b` + εM (t)

def
=

∑
`

b`gM (t− `T ) + nM (t). (13)

Here, gM (t), gp,M (t), εM (t) and nM (t) are defined in
a similar way as xM (t), where x(t) is replaced by g(t),
gp(t), ε(t) and n(t), respectively, whereas G1(t) = G(t)
for R signals and G1(t) = Gd(t) for QR signals,
G2(t) = G̃(t) for R signals and G2(t) = G̃d(t) for
QR signals, whereas matrix G3(t) is defined by G3(t)

def
=

[g3(t),g1,3(t), ...,gP,3(t)].

III. M -INPUT MMSE RECEIVERS

In this section we compute, for R and QR signals, M -
input MMSE receivers (M = 1, 2, 3), both with and without
the structure constraint, fully exploiting or not the MUI
waveform knowledge.

A. MMSE criterion

As for R and QR signals, an = bn and an = jnbn re-
spectively, where bn are real-valued zero-mean independent
random variables, an M -input MMSE receiver considered
in this paper generates an output yM (t) which minimizes,
at each symbol time nT , the MSE criterion defined by

MSE = E(|bn − yM (nT )|2). (14)

Note that the MSE is here minimized at each symbol time
contrary to the MSE considered in [35] which is minimized
at every moment t. In other words, the approach considered
in this paper is an equalization approach, whereas the one
considered in [35] is a signal estimation approach. The
different M -input receivers considered in the paper differ
in their structure and the assumptions made about the MUI.

B. One and two-input MMSE receivers with a particular
structure constraint

B1) Presentation: In order to simplify their implemen-
tation, most of the L and WL MMSE receivers of the
literature are computed at the symbol rate after a matched
filtering operation to the pulse shaping filter. They have
thus a particular structure constraint, which is shown in
this paper to be generally sub-optimal in most cases. These
L and WL receivers are called in the following sc M -
input MMSE receivers with M = 1 and 2, respectively.
To compute the sc M -input MMSE receiver, we denote by
xv(t)

def
= v∗(−t)⊗x(t), the observation vector after matched

filtering operation to the pulse-shaping filter. We then deduce
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from (1) and (13) that, after the sampling operation at the
symbol rate, the M -input observation vector becomes,

xv,M (nT ) =
∑
`

b`gv,M ((n− `)T )

+
∑

1≤p≤P

∑
`

bp,`gpv,M ((n−`)T )+εv,M (nT )

=
∑
`

Gv,M ((n− `)T )b` + εv,M (nT )

def
=

∑
`

b`gv,M ((n− `)T ) + nv,M (nT ). (15)

Here, xv,M (t), gv,M (t), gpv,M (t), εv,M (t) and nv,M (t) are
defined in a similar way as xM (t), where x(t) is replaced
by xv(t), gv(t), gpv (t), εv(t) and nv(t) respectively, with
av(t)

def
= v∗(−t) ⊗ a(t), whereas Gv,M (t) is defined in

a similar way as GM (t) where gv(t) and gpv (t) replace
g(t) and gp(t), respectively. We denote by wd

M

∗
(−kT ), the

samples of the discrete time (DT) M -input receiver whose
output at time nT is defined by

yM (nT ) =
∑
k

wd
M

H
(−kT )xv,M ((n− k)T ). (16)

Note that the d-index is used in the paper to characterize
either DT quantities or Fourier transform of DT quantities
and that wd

M

∗
(−kT ) has the dimension MN × 1. The DT

M -input receiver, wd
M

∗
(−kT ), whose output (16) mini-

mizes (14) is denoted by wd
Msc

∗
(−kT ) and is called sc

M -input MMSE receiver. It is proved in Appendix A that
the frequency response, wd

Msc

∗
(f), of wd

Msc

∗
(−kT ) is such

that:

wd
Msc

(f) = πb[R
d
xv,M (f)]−1gdv,M (f)

=
[
1/πb+gdv,M

H
(f)[Rd

nv,M (f)]−1gdv,M (f)
]−1

[Rd
nv,M (f)]−1gdv,M (f)

def
= cdMsc

(f)[Rd
nv,M (f)]−1gdv,M (f), (17)

if v(f) does not vanish in [−1/2T,+1/2T ]. Otherwise
wd
Msc

(f) = 0 for the frequencies f which are outside
the support of gdv,M (f), i.e., such that xdv,M (f) = 0,
where xdv,M (f) is the Fourier transform of xv,M (nT ). Here

πb
def
= E(b2k), cdMsc

(f) and gdv,M (f), both periodic of
period 1/T , are the inverse scalar term appearing in (17)
and the frequency response of the DT SOI channel vector
gv,M (kT ), respectively, such that

gdv,M (f) =
∑
k

gv,M (kT )e−j2πfkT =
1

T

∑
`

gv,M (f− `

T
).

(18)
Matrices Rd

xv,M (f) and Rd
nv,M (f) are the Fourier trans-

forms of matrices Rd
xv,M (kT )

def
= E[xv,M (nT )xHv,M ((n −

k)T )] and Rd
nv,M (kT )

def
= E[nv,M (nT )nHv,M ((n−k)T )], re-

spectively, where the DT vectors xv,M (nT ) and nv,M (nT )

are SO stationary, defined by

Rd
xv,M (f) =

∑
k

Rd
xv,M (kT )e−j2πfkT

= Rd
nv,M (f) + πbg

d
v,M (f)gdv,M

H
(f).(19)

Rd
nv,M (f) =

∑
k

Rd
nv,M (kT )e−j2πfkT

=

P∑
p=1

πbg
d
pv,M (f)gdpv,M

H
(f)+Rd

εv,M (f).(20)

Here gdpv,M (f) is defined similarly as gdv,M (f), where
gv,M (kT ) is replaced by gpv,M (kT ), and Rd

εv,M (f) is the

Fourier Transform of Rd
εv,M (kT )

def
= E[εv,M (nT )εHv,M ((n−

k)T )], defined by

Rd
εv,M (f)=

∑
k

Rd
εv,M (kT )e−j2πfkT =

1

T

∑
`

Rεv,M (f−`
T

),

(21)
where Rεv,M (f) is the Fourier transform of Rεv,M (τ)

def
=

E[εv,M (t + τ/2)εHv,M (t − τ/2)], since εv,M (t) is SO sta-
tionary. Note that the second equality of (17) comes from
the application of the Woodbury Identity to [Rd

xv,M (f)]−1,
using (19). The output, at time kT , of the sc M -input
MMSE receiver is given by

yMsc(k) = T

∫
∆

wd
Msc

H
(f)xdv,M (f)ej2πfkT df

=

∫
wd
Msc

H
(f)xv,M (f)ej2πfkT df

=T

∫
∆

cdMsc
(f)gdv,M

H
(f)[Rd

nv,M (f)]−1xdv,M (f)ej2πfkT df

=

∫
cdMsc

(f)gdv,M
H

(f)[Rd
nv,M (f)]−1xv,M (f)ej2πfkT df,(22)

where ∆
def
= [−1/2T, 1/2T ]. Note that when v(f) vanishes

in ∆, the integration appearing in (22) is over the frequency
support of xdv,M (f) or xv,M (f). Expressions (17) and (22)
show that, for both R and QR signals, sub-optimal L and
WL MMSE receivers with the structure constraint of the
literature, are composed of two operations, as depicted in
Fig.1. The first one, gdv,M

H
(f)[Rd

nv,M (f)]−1, implements a
DT M -input spatio-temporal or spatio-frequential matched
filter to the global channel of the SOI in a spatially and
temporally colored total noise, which is stationary in this
case. The second one, cdMsc

(f), implements a scalar digital
filtering operation, corresponding to an MMSE equalizer of
the SOI channel at the output of the matched filter. Note
that the implementation of the receivers (17) requires the a
priori knowledge or estimation of Rd

xv,M (f) and gdv,M (f)
and then of h(kT ), i.e,. of the DT impulse response of the
SOI channel vector only. Comparing (17) to (30), we find
that wd

Msc
(f) and wMs(f), both exploiting a true and false

SO stationarity property of the MUI respectively, have very
similar forms but where the matched filter to the SOI global
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channel in colored noise is CT in (30) and DT in (17), at
the symbol rate.

xv,M (nT )
gd
v,M

H
(f)[Rd

nv,M (f)]−1 cdMsc
(f)

yMsc(k)

Fig. 1. Structure of the sc M -input MMSE receiver

B2) Equivalence with the sc MMSE receivers jointly
estimating the SOI and MUI symbols: We show in this
section that (17) also corresponds to the first column of
the sc M -input MMSE receiver jointly estimating the SOI
and MUI symbols, which fully exploit the MUI waveform.
Denoting by Gd

v,M (f) the Fourier transform of Gv,M (kT ),
it is proved in Appendix A that (17) can also be written as

wd
Msc

(f) = πb[R
d
xv,M (f)]−1Gd

v,M (f)f

= [Rd
εv,M (f)]−1Gd

v,M (f){(1/πb)IP+1

+Gd
v,M

H
(f)[Rd

εv,M (f)]−1Gd
v,M (f)}−1f , (23)

where f is the (P + 1) × 1 vector defined by f =
[1, 0, ..., 0]T . We then deduce from this result that the
DT filter, wd

Msc

∗
(−kT ), whose output at time nT (16)

minimizes the MSE (14), also corresponds to the first
column of the DT matrix, Wd

M

∗
(−kT ), denoted by

Wd
Msc

∗
(−kT ), whose output vector at time nT , yM (nT ) =∑

kW
d
M

H
(−kT )xv,M ((n − k)T ), minimizes the joint

MSE, JMSE def
= E[|bn − yM (n)|2], where bn has been

defined in Section II-B. This result proves that with the
previous structure constraint, expressions (23) and (17) are
equivalent, which discards the need to know the MUI
channels to implement the sc M -input MMSE receiver.

C. Optimal one and two-input MMSE receivers

To show the sub-optimality of the sc M -input MMSE
receiver (M = 1, 2) for R and QR signals, it is necessary
to compute the optimal M -input MMSE receiver (M =
1, 2), called o M -input MMSE receiver in the following.
Contrary to the sc M -input MMSE receiver, the o M -input
MMSE receiver has no structure constraint and fully exploit
the waveform of the MUI, which means that it takes into
account the explicit MUI form appearing in model (1). This
implicitly consists to take into account the cyclostationarity
of the MUI, for M = 1, 2, in addition to their SO non-
circularity, for M = 2. We denote by w∗M (−t), the CT
M -input receiver whose output is defined by

yM (t) = wH
M (−t)⊗ xM (t). (24)

Note that w∗M (−t) has the dimension MN × 1. The CT
M -input receiver, w∗M (−t), whose output (24) minimizes
(14) at each symbol time, is denoted by w∗Mo

(−t) and is
called optimal or o M -input MMSE receiver. It is proved

in Appendix B that the frequency response, w∗Mo
(f), of

w∗Mo
(−t) is such that

wMo
(f) = GM (f)[(N0/πb)IP+1

+ 1/T
∑
`

GH
M (f − `/T )GM (f − `/T )]−1f

def
= GM (f)Cd

Mo
(f)f

def
= GM (f)cdMo

(f). (25)

Here N0 is the power spectral density of each compo-
nent of the noise vector ε(t), f has been defined after
(23), Cd

M0
(f) is the (P + 1) × (P + 1) inverse matrix

appearing in (25), which is periodic of period 1/T , whereas
cdM0

(f)
def
= Cd

M0
(f)f is a (P + 1) × 1 vector. We deduce

from (25) that w∗Mo
(−t) also corresponds to the first column

of the matrix W∗
M (−t), of dimension MN × (P + 1),

denoted by W∗
Mo

(−t), whose output vector, yM (t) =
WH

M (−t)⊗xM (t), minimizes, at each symbol time, the joint
MSE criterion, JMSE def

= E[|bn−yM (n)|2]. Hence, once the
waveform of the MUI is fully exploited, estimating the SOI
symbols only or jointly with the MUI symbols give rise to
two equivalent approaches for the SOI symbols estimation.

Furthermore, it is important to note, which is proved in
Appendix B, that, for both R and QR signals, the optimal
three-input WL MMSE receiver whose input is x3(t), is the
receiver whose frequency response, w∗3o(f), is given by

w∗3o(f) = [wH
2o(f),0T ]T , (26)

where w2o(f) is given by (25) for M = 2. This confirms
that the o two-input MMSE receiver optimally exploits all
the SO cyclostationarity of the MUI.

The output, at time kT , of the o M -input MMSE receiver
is given

yM0
(k) =

∫
wH
M0

(f)xM (f)ej2πfkT df

=

∫
cdMo

H
(f)GH

M (f)xM (f)ej2πfkT df.(27)

To make cdMo
(f) more concrete, we compute its expres-

sion in the presence of P = 1 MUI, which gives in this case
cdMo

(f) = [cdM,1(f), cdM,2(f)]T , where cdM,1(f) and cdM,2(f)
are given by

cdM,1(f) =
πb(N0 + πb

T

∑
` ‖g1,M (f− `

T )‖2)
(N0+ πb

T

∑
` ‖gM (f− `

T )‖2)
(N0+ πb

T

∑
` ‖g1,M (f− `

T )‖2)

−π
2
b

T 2 |
∑
` g

H
M (f− `

T )g1,M (f− `
T )|2

,(28)

cdM,2(f) =
−π

2
b

T

∑
` g

H
1,M (f− `

T )gM (f− `
T )

(N0+ πb
T

∑
` ‖gM (f− `

T )‖2)
(N0+ πb

T

∑
` ‖g1,M (f− `

T )‖2)

−π
2
b

T 2 |
∑
` g

H
M (f− `

T )g1,M (f− `
T )|2

,(29)

where GM (f)
def
= [gM,(f),g1,M (f)]. Expressions (25) and

(27) show that, for both R and QR signals, optimal L and
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WL MMSE receivers are composed of three operations, as
depicted in Fig.2. The first one, GH

M (f), implements a set of
P +1 CT matched filtering operation to the global channels
of SOI and MUI. The second one is a sampling, to the
symbol rate, of each of these matched filter outputs. The
third one, cdM0

H
(f), implements a set of P+1 discrete-time

(TD) or digital filtering operations, applied to the previous
P + 1 sampled outputs, which performs the SOI channel
equalization jointly with the noise plus MUI minimization.
Note that the implementation of the receivers (25) requires
the a priori knowledge or estimation of N0 and G(t), and
then of H(t), i.e., of the impulse response of both the SOI
and MUI channel vectors, which may be cumbersome for a
practical implementation.

xM (t)
GH

M (f)

t = kT

cdMo

H
(f)

yMo(k)

Fig. 2. Structure of the o M -input MMSE receiver

D. One, two and three input MMSE receivers falsely as-
suming SO stationary MUI

One way to build, for R and QR signals, M -input MMSE
receivers (M = 1, 2, 3) discarding the need to know or to
estimate the MUI channels without inserting any structure
constraint, is to estimate the SOI symbols only, assuming
that the MUI are falsely SO stationary. We denote by
w∗M (−t), the CT M -input receiver whose output is defined
by (24). The CT M -input receiver, w∗M (−t), whose output
(24) minimizes (14) at each symbol time, assuming that the
MUI, and then the total noise nM (t) in (13), are falsely
SO stationary, is denoted by w∗Ms

(−t) and is called s M -
input MMSE receiver. It is proved in AppendixC that the
frequency response, w∗Ms

(f), of w∗Ms
(−t) is such that

wMs
(f) =

{
(1/πb) + (1/T )

∑
`

gHM (f − `/T )

[R0
n,M (f − `/T )]−1gM (f − `/T )

}−1
[R0

nM (f)]−1gM (f)

def
= cdMs

(f)[R0
nM (f)]−1gM (f). (30)

Here, cdMs
(f) is the inverse scalar term appearing in (30),

which is periodic of period 1/T , g1(f) = g(f) for R
signals and g1(f) = gd(f) for QR signals, g2(f) =
g̃(f) for R signals and g2(f) = g̃d(f) for QR signals,
g3(f)

def
= [gT (f),gH(−f),gH(−1/T − f)]T for R sig-

nals and g3(f)
def
= [gTd (f),gHd (−f),gHd (−1/T − f)]T =

[gT (f + 1/4T ),gH(1/4T − f),gH(−3/4T − f)]T for
QR signals, R0

nM (f) defined as the Fourier transform of
R0
nM (τ)

def
=< E[nM (t+ τ/2)nHM (t− τ/2)] > corresponds

to the power spectral density matrix of nM (t). Using (1), it

is easy to verify that R0
nM (f) is given by

R0
nM (f) =

πb
T

∑
1≤p≤P

gp,M (f)gHp,M (f) +N0INM

= R0
xM (f)− πb

T
gM (f)gHM (f), (31)

where gp,M (f) is defined in a similar way as gM (f) but
where g(f) is replaced by gp(f) and where R0

xM (f) is the
power spectral density matrix of xM (t), defined in a similar
way as R0

nM (f), with xM (t) instead of nM (t). The output,
at time kT , of the s M -input MMSE receiver is given by

yMs
(k) =

∫
wH
Ms

(f)xM (f)ej2πfkT df

=

∫
cdMs

(f)gHM (f)[R0
nM (f)]−1xM (f)ej2πfkTdf.(32)

Expressions (30) and (32) show that, for both R and QR
signals, sub-optimal L and WL MMSE receivers without any
structure constraint falsely assuming SO stationary MUI, are
composed of three operations, as depicted in Fig.3. The first
one, gHM (f)[R0

nM (f)]−1, implements a CT M -input spatio-
temporal or spatio-frequential pseudo-matched filter to the
global channel of the SOI in a spatially and temporally
colored total noise. The second operation is a sampling,
to the symbol rate, of this pseudo-matched filter output.
The third one, cdMs

(f), implements a scalar digital filtering
operation, corresponding to a pseudo-MMSE equalizer of
the SOI channel at the output of the pseudo-matched filter.
Note that the implementation of the receivers (30) requires
the a priori knowledge or estimation of R0

n(f) and g(t),
and then of h(t), i.e., of the impulse response of the SOI
channel vector only, discarding the need to estimate the MUI
channel vectors, which may be advantageous for a practical
implementation.

xM (t)
gH
M (f)[R0

nM (f)]−1

t = kT

cdMs
(f)

yMs(k)

Fig. 3. Structure of the s M -input MMSE receiver

E. Particular case of an absence of MUI

In the absence of MUI and for M = 1, 2, the total
noise is SO stationary and thus the s M -input MMSE
receivers and the o M -input MMSE receivers coincide.
In this case, GM (f), Rn,M (f) and Rd

nv,M (f) reduce to
gM (f), Rε,M (f) = N0INM and Rd

εv,M (f), respectively,
and we deduce from (17), (25) and (30) that:

wMo
(f) = wMs

(f) =

{(N0/πb) + (1/T )
∑
`

‖gM (f − `/T )‖2}−1gM (f) (33)

wd
Msc

(f) = {1/πb + gdv,M
H

(f)[Rd
εv,M (f)]−1gdv,M (f)}−1

[Rd
εv,M (f)]−1gdv,M (f). (34)
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Inserting (33) in (27) and (34) in (22), it is straightforward
to show that in the general case of a frequency selective SOI
channel, yMsc

(k) and yMo
(k) are generally different, which

shows the sub-optimality of sc M -input MMSE receivers,
and thus of most of L and WL MMSE receivers of the
literature. Nevertheless, a more detailed analysis of yMsc(k)
and yMo

(k) allows us to prove the equality of yMsc
(k),

yMs
(k) and yMo

(k), and thus the optimality of (34), if one
of the two following conditions is verified

(a) h(f) = h (35)
(b) The bandwidth of v(t) is included in ∆. (36)

Note that condition (b) is verified for OQAM constellations.

IV. SINR AT THE OUTPUT OF THE M -INPUT MMSE
RECEIVERS

In this section, we compute the general expression of the
SINR at the output of a M -input MMSE receiver before
decision.

A. Generic output of the M -input MMSE receiver before
decision

We deduce from (22), (27) and (32) that the generic
output of the M -input MMSE receivers considered in this
paper can be written as

yMg
(k) =

∫
wH
Mg

(f)xMg
(f)ej2πfkT df (37)

where it is easy to verify from (13) and (15) that

xMg (f) =
∑
`

ble
−j2πf`TgMg (f) + nMg (f). (38)

Note that (yMg (k),wMg (f),xMg (f),gMg (f),nMg (f)) =
(yMsc

(k),wd
Msc

(f),xvM (f),gvM (f),nvM (f)),
(yMg

(k),wMg
(f),xMg

(f),gMg
(f),nMg

(f)) =
(yMo

(k),wMo
(f),xM (f),gM (f),nM (f)),

(yMg
(k),wMg

(f),xMg
(f),gMg

(f),nMg
(f)) =

(yMs(k),wMs(f),xM (f),gM (f),nM (f)) for the receivers
of Sections III-B, III-C and III-D, respectively. Inserting
(38) into (37), we obtain:

yMg
(k) = bk

∫
wH
Mg

(f)gMg
(f)df

+
∑
` 6=k

b`

∫
wH
Mg

(f)gMg (f)ej2πf(k−̀ )T df

+

∫
wH
Mg

(f)nMg (f)ej2πfkT df
def
= bkuMg + eMg (k), (39)

where it is easy to verify that uMg
is a real-valued quantity

and where eMg
(k) is the contribution of the Intersymbol

Interference (ISI), the MUI and the background noise in
yMg

(k). As bk is a real-valued symbol, it is well-known
that, assuming a circular Gaussian eMg (k), a conventional

ML receiver whose input is (39), decides the symbols from
the real-part of yMg (k), given by

zMg
(k)

def
= Re(yMg

(k)) = bkuMg
+ Re(eMg

(k)). (40)

B. Generic SINR at the output of the M -input MMSE
receiver before decision

The SER at the output of the generic receiver wH
Mg

(f)
is directly linked to the SINR in zMg

(k), denoted by
SINRMg

(k). Using the fact that the quantities bkuMg
and

Re(eMg
(k)) are uncorrelated, we deduce that SINRMg

(k)
can be written as

SINRMg (k) =
πbu

2
Mg

E[(Re(eMg
(k)))2]

=
2πbu

2
Mg

E[|y2
Mg

(k)|] + Re(E[y2
Mg

(k)])− 2πbu2
Mg

.(41)

In the presence of R or QR MUI, the CT output yMg
(t)

is SO cyclostationary, which implies that E[|y2
Mg

(k)|] and
E[y2

Mg
(k)] have Fourier series expansions given by [33].

E[|y2
Mg

(k)|] =
∑
γi

ej2πγikT
∫
rγiyMg (f)df (42)

E[y2
Mg

(k)] =
∑
δi

ej2πδikT
∫
cδiyMg (f)df. (43)

Here, the quantities γi and δi denote the non-conjugate and
conjugate SO cyclic frequencies of yMg

(t), respectively,
whereas rγiyMg (f) and cδiyMg (f) are the Fourier transforms
of the first, rγiyMg (τ), and second, cδiyMg (τ), cyclic corre-
lation functions of yMg (t) for the delay τ and the cyclic
frequencies γi and δi, respectively. Moreover, as yMg

(t) is
the output of the filter wH

Mg
(f) whose input is xMg

(t), we
can write

rγiyMg (f) =wH
Mg

(f+γi/2)Rγi
xMg

(f)wMg
(f−γi/2) (44)

cδiyMg (f) =wH
Mg

(f+δi/2)Cδi
xMg

(f)w∗Mg
(δi/2−f),(45)

where Rγi
xMg

(f) and Cδi
xMg

(f) are the Fourier transforms of
the first, Rγi

xMg
(τ), and second, Cδi

xMg
(τ), cyclic correlation

matrices of xMg
(t) for the delay τ and the cyclic frequency

γi and δi respectively. In the presence of MUI having same
nature (R or QR), symbol period and carrier frequency as the
SOI, it is straightforward to verify that for all the previous
considered receivers (M = 1, 2, 3; R and QR signals), γi =
δi = αi = i/T , i ∈ Z. This implies that (42) (43) and then,
SINRMg

(k), do not depend on k and SINRMg
(k) is simply

denoted by SINRMg
. Using (39) and (42) to (45) into (41),
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we obtain:

SINRMg = (46)
2πbu

2
Mg{∑

αi

∫
[wH

Mg
(f+αi/2)Rαi

xMg
(f)wMg

(f−αi/2)

+Re(wH
Mg

(f+αi/2)Cαi
xMg

(f)w∗Mg
(αi/2−f))]df ]−2πbu

2
Mg

,

where uMg

def
=
∫
wH
Mg

(f)gMg (f)df . As for M = 2, it is
straightforward to prove that yMg

(k) is real-valued whatever
the considered receiver, SINR2g reduces in this case to:

SINR2g=
πb[
∫
wH

2g (f)g2g (f)df ]2{∑
αi

∫
wH

2g (f+αi/2)Rαi
x2g

(f)w2g (f−αi/2)df

−πb[
∫
wH

2g (f)g2g (f)df ]2

.

(47)
For the sc and o MMSE receivers, simple specific closed-

forms expressions of the SINR are useful to numerically
calculate (46) and (47).

For the sc M -input MMSE receiver (M = 1, 2), as
xv,M (nT ) (15) and yMsc

(k) (22) are SO stationary, it is
proved in Appendix A that (46) and (47) can be written as

SINRMsc = (48)

2πbT [
∫

∆
gd

H

v,M (f)[Rd
xv,M (f)]−1gdv,M (f)df ]2

∫
∆
gd

H

v,M (f)[Rd
xv,M (f)]−1gdv,M (f)df

+Re[
∫

∆
gd

H

v,M (f)[Rd
xv,M (f)]−1Cd

xv,M (f)[Rd∗

xv,M (−f)]−1

gd
∗

v,M (−f)df ]−2πbT [
∫

∆
gd

H

v,M (f)[Rd
xv,M (f)]−1gdv,M (f)df ]2

SINR2sc =
πbT

∫
∆
gd

H

v,2(f)[Rd
xv,2(f)]−1gdv,2(f)df

1− πbT
∫

∆
gd

H

v,2(f)[Rd
xv,2(f)]−1gdv,2(f)df

,

(49)
when v(f) 6= 0 in ∆ which ensures that Rd

xv,M (f) is not
singular in ∆.

For the o M -input MMSE receiver (M = 1, 2), it is
proved in Appendix B that (46) and (47) can be written as
a function of the only matrix Cd

M (f) and vector f defined
after (25), which gives

SINRMo
=

2πb[1− N0T
πb

∫
∆
fTCd

Mo
(f)fdf ]2

N0T
∫

∆
fTCd

Mo
(f)fdf− 2(N0T )2

πb
(
∫

∆
fTCd

Mo
(f)fdf)2

+
N2

0T
πb

∫
∆

Re[fTCd
Mo

(f)Cd∗

Mo
(−f)f ]df

+δ(M − 2)[N0T
∫

∆
fTCd

Mo
(f)fdf

−N
2
0T
πb

∫
∆
fTCd

Mo
(f)Cd

Mo
(f)fdf ]

(50)

SINR2o =
πb

N0T
∫

∆
fTCd

2o
(f)fdf

− 1. (51)

C. Total noise model and SO statistics

We assume in this section that the total noise n(t) is
composed of a background noise and, at most, one MUI,
which generates the observation model (1) with P = 1. In

this context, the purpose of this section is to compute and
compare the SINR at the output of the previous M -input
MMSE receivers for both R and QR signals. From (1), for
both R and QR signals, for the sc and o M -input MMSE
receivers (M = 1, 2) and s M -input MMSE receivers (M =
1, 2, 3), Rαi

xMg
(f) and Cαi

xMg
(f) appearing in (46) can be

written, from [33], as

Rαi
xMg

(f) =
πb
T

[gMg (f+αi/2)gHMg
(f−αi/2)

+g1,Mg
(f+αi/2)gH1,Mg

(f−αi/2)]+Rαi
εMg

(f)(52)

Cαi
xMg

(f) =
πb
T

[gMg
(f+αi/2)gTMg

(αi/2−f)

+g1,Mg (f+αi/2)gT1,Mg
(αi/2−f)]+Cαi

εMg
(f).(53)

Here, g1,Mg
(f) = g1,M (f) for g = o and (M =

1, 2) or g = s and (M = 1, 2, 3), where g1,3(f)
def
=

[gT1 (f),gH1 (−f),gH1 (−1/T − f)]T for R signals, whereas
g1,3(f)

def
= [gT1,d(f),gH1,d(−f),gH1,d(−1/T − f)]T =

[gT1 (f + 1/4T ),gH1 (1/4T − f),gH1 (−3/4T − f)]T for QR
signals. Besides, g1,Mg

(f) = g1,vM (f) for g = sc and
(M = 1, 2). Moreover, Rαi

εMg
(f) and Cαi

εMg
(f) are such

that:

Rαi
εMo

(f)=Rαi
εMs

(f)=N0δ(αi)IMN ; for M=1, 2 (54)

Rαi
ε3s

(f) = N0δ(αi)I3N +N0δ(αi + 1/T )JT1

+ N0δ(αi − 1/T )J1 (55)
Rαi
εMsc

(f) = N0|v(f)|2δ(αi)IMN ; for R signals,
for R signals and M = 1, 2 (56)

Rαi
εMsc

(f) = N0|v(f + 1/4T )|2δ(αi)IN ;

for QR signals and M = 1 (57)

Rαi
εMsc

(f)=N0δ(αi)

(
|v(f+1/4T )|2IN 0N

0N |v(−f+1/4T )|2IN

)
;

for QR signals and M = 2 (58)
Cαi
εMo

(f) = Cαi
εMs

(f) = N0δ(αi)δ(M − 2)J2N ;

for M = 1, 2 (59)
Cαi
ε3s

(f) = N0δ(αi)J2 +N0δ(αi + 1/T )J3 (60)

Cαi
εMsc

(f) = N0|v(f)|2δ(αi)δ(M − 2)J2N ;

for R signals and M = 1, 2 (61)
Cαi
εMsc

(f) = 0N for QR signals and M = 1 (62)

Cαi
εMsc

(f)=N0δ(αi)

(
0N |v(f+1/4T )|2IN

|v(−f+1/4T )|2IN 0N

)
;

for QR signals and M = 2 (63)

where J1, J2 and J3 are the 3N × 3N matrices defined by

J1 =

0 0 0
0 0 I
0 0 0

, J2 =

0 I 0
I 0 0
0 0 0

, J3 =

0 0 I
0 0 0
I 0 0


(64)

and J2N is the 2N × 2N exchange matrix
(
0 I
I 0

)
.
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D. SINR analysis in the absence of interference

To get more insights into the comparative behavior of the
sc and o M -input MMSE receivers (M = 1, 2) for R and
QR signals, we assume in this section an absence of MUI
interference and a two-tap frequency selective channel such
that

h(t) = µ1δ(t)h1 + µ2δ(t− τ)h2. (65)

Here µ1 and µ2 (0 ≤ µ2 ≤ µ1) control the amplitude of
the first and second paths of the SOI respectively, τ is the
delay between the two paths and h1 and h2, deterministic
or random, with components h1(i) and h2(i), i = 1, .., N ,
respectively, and such that E|h2

1(i)| = E|h2
2(i)| = 1, corre-

spond to the channel vectors of the two paths, respectively.
Using (65) into (1), we deduce that the mean SOI symbol
energy per antenna, Es, can be written as

Es =
πb
N

∫
E(‖g2(t)‖)dt

= πbµ
2
1

[
1+β2+2βRe

(
E
(
hH1 h2/N

))
rv(τ)

]
,(66)

where β
def
= µ2/µ1 is the selectivity coefficient of the

channel and rv(t)
def
= v(t) ⊗ v∗(−t). Denoting by α1,2

def
=

hH1 h2/(‖h1‖‖h2‖) the spatial correlation coefficient be-
tween h1 and h2 and assuming that, in the random case,
h1 and h2 are statistically independent, expression (66)
becomes

Es = πbµ
2
1[1 + β2 + 2βRe(α1,2)rv(τ)];

in the deterministic case, (67)
= πbµ

2
1(1 + β2); in the random case. (68)

For a propagation channel with no delay spread (β = 0),
for both M = 1 and M = 2, for both R and QR signals,
as mentioned in (35), the three receivers o, s and sc are
equivalent and the expected value, E[SINRMg

], of the SINR
at the output of these receivers, SINRMg

, which corresponds
to SINRMg for deterministic channels, is maximal and given
by

E[SINRMg
] =

2NEs
N0

def
= 2εs. (69)

Moreover, for both M = 1 and M = 2, for both R and QR
signals, the three receivers o, s and sc are also equivalent in
the two following situations:
• for R, π/2-BPSK and π/2-ASK SOI and arbitrary

propagation channel, when v(t) is a square-root raised
cosine filter with a zero roll-off, as stated by (36).

• for OQAM SOI, when v(t) is a square-root raised
cosine filter with an arbitrary roll-off, as stated by (36).

Excepted the two previous situations, for both M = 1
and M = 2, for both R and QR signals, the sc M -input
MMSE receiver (34) becomes sub-optimal with respect to
the o M -input MMSE receiver and it has been verified
by computer simulations that this sub-optimality increases
with the SOI bandwidth (and thus with the roll-off for

raised-cosine filters), the channel selectivity β, the modulus,
α

def
= |α1,2|, of the spatial correlation coefficient between h1

and h2. Besides, this sub-optimality is more pronounced
for deterministic than for random channels. To quantify
and illustrate this sub-optimality of the sc M -input MMSE
receivers, we assume now that (τ, φ) where φ is the phase
of α1,2, are r.v. uniformly distributed on [0, 4T ] × [0, 2π].
Under these assumptions, choosing N = 1 (and thus α = 1)
and εs = 10 dB, Figs.4 and 5 show, for R and π/2-
ASK QR signals respectively, for M = 1, 2, ω = 1,
β = 1 and deterministic channels, the variations of the
estimated complementary cumulative distribution function
Pr[(SINRMg

/2εs)dB ≥ xdB]
def
= PMg

(x) as a function of
x (dB). Note that the curves appearing in these figures have
been obtained from 105 Monte Carlo simulations where
SINRMg

have been computed from (46) to (47).
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R 2 sc
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R 1 sc

Fig. 4. PMg (x) as a function of x (N = 1, M = 1, 2, εs = 10 dB,
ω = 1, β = 1, deterministic channels, R signals.
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QR 2 sc
QR 1 o,s
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Fig. 5. PMg (x) as a function of x (N = 1, M = 1, 2, εs = 10 dB,
ω = 1, β = 1, deterministic channels, π/2-ASK QR signals.

We note the sub-optimality of the sc M -input MMSE
receivers for both M = 1, 2 and for both R and QR signals.
Note also the better performance of two-input receivers with
respect to one-input ones due to the phase discrimination
exploitation of the two paths. Note finally the similar
performance for R and QR signals for M = 1 but, for
M = 2, the slightly better performance of o receiver for
QR signals. To complete these results, Figs.6 and 7 show the
same variations as Figs.4 and 5 under the same assumptions
but for Rayleigh fading channels for which h1(1) and h2(1)
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are i.i.d. random variables following a zero-mean circular
Gaussian distribution. The conclusion of Figs.4 and 5 hold
for Figs.6 and 7 with a lower sub-optimality of the sc
receivers and similar performance of o receiver for R and
QR signals.
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Fig. 6. PMg (x) as a function of x (N = 1, M = 1, 2, εs = 10 dB,
ω = 1, β = 1, Rayleigh channels, R signals.
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Fig. 7. PMg (x) as a function of x (N = 1, M = 1, 2, εs = 10 dB,
ω = 1, β = 1, Rayleigh channels, π/2-ASK QR signals.

Finally note that for M = 2, interpretable closed-form
expressions are possible when τ = `T where ` ∈ Z∗ in
(65) where the SINR at the output of the o and s receivers
for arbitrary roll-off are equal to the SINR at the output of
the sc receiver for a zero roll-off, for which we get

SINRR2,o
= SINRR2,s

= SINRR2,sc

SINRQR2,o
= SINRQR2,s

= SINRQR2,sc

= (1+2εs)

(
1−γ2

1+γ2

)
− 1 for β 6= 0

= 2εs for β = 0 (70)

where for β 6= 0:

γ =
(1+2εs)(1+β2)

4βεsα cosφ

(
1−

√
1− 16β2ε2sα

2 cos2 φ

(1+2εs)2(1+β2)2

)
for α cosφ 6= 0

= 0 for α cosφ = 0 (71)

where φ = Arg(α1,2) and φ = Arg(α1,2) + `π/2 for R and
QR signals respectively. We clearly see that these SINR are
decreasing when the spatial correlation α increases and that
these SINR tend to 2εs for β and α cosφ tending to zero
for which γ tends to zero in (71).

E. SINR analysis for one MUI and channels with no delay
spread

C1) Propagation model: To analyze the comparative
behavior of the previous M -input MMSE receivers (M =
1, 2, 3), for R and QR signals, in the presence of interfer-
ence, we assume in this section the presence of one MUI
and propagation channels with no delay spread such that

h(t) = µδ(t)h and h1(t) = µ1δ(t− τ1)h1. (72)

Here µ and µ1 control the amplitude of the SOI and
MUI respectively and τ1 is the delay of the MUI with
respect to the SOI. The vectors h and h1, random or
deterministic, with components h(i) and h1(i), 1 ≤ i ≤ N ,
respectively and such that E[|h(i)|2] = E[|h1(i)|2] = 1,
1 ≤ i ≤ N , correspond to the channel vectors of the
SOI and MUI, respectively. Similarly as (67) and (68),
the mean SOI and MUI energy per antenna, Es and E1

respectively are given by Es = πbµ
2 and E1 = πb1µ

2
1,

where πb1
def
= E(b21,k). We then denote by εs and ε1

the quantities εs
def
= Es E(‖h‖2)/N0 = NEs/N0 and

ε1
def
= E1 E(‖h1‖2)/N0 = NE1/N0.

C2) Deterministic channels and SRRC filters (for T ) with
zero roll-off: Under the previous assumptions, analytical
interpretable expressions of SINRMg

defined by (46) and
(47) are only possible for a square root raised cosine
(SRRC) filter v(t) for the symbol duration T , i.e., for R,
π/2-BPSK and π/2-ASK constellations with a zero roll-off
ω = 0, which is assumed in this subsection. Otherwise, the
computation of SINRMg

can only be done numerically by
computer simulations and will be discussed in the following
subsections. Moreover, we assume in this subsection deter-
ministic channels and we denote by αs,1

def
= |αs,1|ejφs,1 the

spatial correlation coefficient between the SOI and the MUI,
such that 0 ≤ |αs,1| ≤ 1, and defined similarly as α1,2 by
replacing h1 and h2 by h and h1, respectively. Finally, we
denote by SINRRMg and SINRQRMg the SINR (46) at the
output of the M -input MMSE receivers (M = 1, 2, 3), for
R and QR signals respectively.

a) Case |αs,1| 6= 1

When |αs,1| 6= 1, i.e., when there exists a spatial dis-
crimination between the SOI and the MUI (which requires
N > 1), assuming a strong MUI (ε1 � 1), we obtain from
(46) and (47) after cumbersome derivations, the following
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expressions:

SINRR1,o = SINRR1,s = SINRR1,sc

≈ SINRQR1,o = SINRQR1,s = SINRQR1,sc

≈ 2εs(1−|αs,1|2) (73)
SINRR2,o = SINRR2,s = SINRR2,sc

≈ 2εs(1− |αs,1|2 cos2 φs,1) (74)

SINRQR2,o
= SINRQR2,sc

≈ 2εs

(
1− |αs,1|

2

2

(1+2εs)(cos2ζs,1+cos2ψs,1)−4|αs,1|2εscos2ζs,1cos2ψs,1
(1 + 2εs)− |αs,1|2εs(cos2ζs,1 + cos2ψs,1)

)
(75)

which reduces to (74) for synchronous SOI and MUI (τ1 =
0).

SINRQR2,s ≈ 2εs

(
1− |αs,1|

2

2

1 + cos2 ψs,1 + 2εs(1 + cos2 ψs,1(1− 2|αs,1|2))

1 + εs(2− |αs,1|2(1 + cos2 ψs,1))

)
,(76)

After cumbersome derivations, whose some steps are given
in Appendix D, it is proved that, for synchronous SOI and
MUI (τ1 = 0), whatever the values of εs, ε1 and αs,1,
SINRR3,s = SINRQR3,s , showing equivalent performance of
the s three-input MMSE receiver for R and QR signals,
which is not the case for the s two-input MMSE receiver as
shown in (74) and (76). For the general case of potentially
asynchronous SOI and MUI, we deduce from the results of
Appendix D, the following expressions:

SINRR3,s
≈ 2εs

(
1− |αs,1|2(

(1+8 cos2 φs,1)−|αs,1|2(1+2 cos2 φs,1)2

9− |αs,1|2(5 + 4 cos2 φs,1)

))
.(77)

SINRQR3,s
≈ 2εs

(
1− |αs,1|2(

A(εs, |αs,1|2, cos2 ψs,1, cos2 ζs,1)

B(εs, |αs,1|2, cos2 ψs,1, cos2 ζs,1)

))
(78)

where A and B are second-order polynomial in εs, whereas
ψs,1

def
= φs,1 − πτ1/2T and ζs,1

def
= φs,1 + πτ1/2T . We

deduce from (74) to (76) that SINRR2,g
/εs does not depend

on εs, while SINRQR2,g
/εs depends on εs, which proves the

absence (for R signals) and the presence (for QR signals)
of ISI in the output z2g (k). Similarly, we deduce from (68)
and (69) that SINRR3,s/εs does not depend on εs while
SINRQR3,s

/εs depends on εs, which proves the absence (for
R signals) and the presence (for QR signals) of ISI in the
output z3s(k). Note that for εs � 1, i.e., when the ISI
becomes negligible with respect to the noise in z3s(k), (78)
reduces to

SINRQR3,s ≈ 2εs
(
1− |αs,1|2(

(1−|αs,1|2)(1+Γ)2 + (2−Γ)Γ

(1−|αs,1|2)(5+2Γ) + 2(2−Γ)

))
; εs � 1, (79)

where Γ
def
= cos2 ψs,1 + cos2 ζs,1. For synchronous SOI and

MUI, Γ = 2 cos2 φs,1 and we verify that (77) and (79) give
the same expressions.

b) Case |αs,1| = 1

When |αs,1| = 1, i.e., when there is no spatial discrimi-
nation between the SOI and the MUI, which is in particular
the case for N = 1, after tedious computations, we obtain,
for M = 1

SINRR1,o
= SINRR1,s

= SINRR1,sc

=
2εs

1 + 2ε1 cos2 φs,1
(80)

SINRQR1,o
= SINRQR1,s

= SINRQR1,sc

=
2εs

1 + ε1(cos2 ψs,1 + cos2 ζs,1)
, (81)

whereas, assuming a strong MUI (ε1 � 1), we obtain, for
M = 2

SINRR2,o = SINRR2,s = SINRR2,sc

≈ 2εs(1− cos2 φs,1), for φs,1 6= kπ (82)

=
2εs

1 + 2ε1
, for φs,1 = kπ (83)

SINRQR2,o
= SINRQR2,sc

≈ 2εs (1−
(1+2εs)(cos2 ζs,1+cos2 ψs,1)−4εs cos2 ζs,1 cos2 ψs,1

2[1 + 2εs − εs(cos2 ζs,1 + cos2 ψs,1)]

)
,

for (ψs,1, ζs,1) 6= (k1π, k2π), (84)

≈ εs
ε1
, for (ψs,1, ζs,1) = (k1π, k2π), (85)

Note that (84) reduces to (82) for synchronous SOI and MUI
(τ1 = 0).

SINRQR2,s
≈ 2εs

(
1− 1+cos2 ψs,1+2εs(1−cos2 ψs,1)

2[1 + εs(1− cos2 ψs,1)]

)
=

εs sin2 ψs,1

1 + εs sin2 ψs,1
, for ψs,1 6= kπ (86)

≈ 9εs
2ε1(1 + 4 cos2 ζs,1)

, for ψs,1 = kπ. (87)

Furthermore, assuming ε1 � 1, we obtain, after cumber-
some derivations, for M = 3

SINRR3,s ≈ 2εs(1− cos2 φs,1); φs,1 6= kπ (88)

=
2εs

1 + 2ε1
; φs,1 = kπ (89)

whereas (78) reduces to

SINRQR3,s ≈ 2εs

(
1− cos2 ψs,1 + cos2 ζs,1

2

)
;

(ψs,1, ζs,1) 6= (k1π, k2π) and εs � 1 (90)

=
2εs

1 + 2ε1
; (ψs,1, ζs,1)=(k1π, k2π).(91)

Again, for synchronous SOI and MUI, ψs,1 = ζs,1 = φs,1
and we verify that (90) corresponds to (88). Note that
expressions (79) and (90), obtained for εs � 1, correspond
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to the SINR at the output of the three-input pseudo-MLSE
receiver obtained in [33, (63) and (64)] for QR signals,
which does not take into account the ISI in z3s(k), which is
processed by the Viterbi algorithm. Comparing (88) to (82),
we deduce, for ε1 � 1, the following result:

SINRR3,s = SINRR2,o = SINRR2,s = SINRR2,sc

≈ 2εs(1− cos2 φs,1); φs,1 6= kπ, (92)

while comparing (90) to (84) and (86), we deduce, for εs �
1� ε1, that

SINRQR3,s
= SINRQR2,o

= SINRQR2,sc

≈2εs

(
1− cos2ψs,1+cos2ζs,1

2

)
; (ψs,1, ζs,1) 6=(k1π, k2π)(93)

SINRQR2,s ≈ 2εs

(
1− 1 + cos2 ψs,1

2

)
. (94)

c) Analysis
Let us recall that a receiver performs MAIC (for N > 1)

or SAIC (for N = 1) as ε1 → ∞, if the associated SINR
does not converge toward zero. We deduce from (73), (80)
and (81) that, for both R and QR signals, the conventional
receivers (M = 1) perform MAIC as soon as |αs,1| 6= 1, but
perform SAIC very scarcely, only when φs,1 = (2k+1)π/2
for R signals and when (τ1/T, φs,1) = (2k1, (2k2 + 1)π/2)
or (2k1 + 1, k2π) for QR signals, where k, k1 and k2 are
integers.

Moreover, we deduce from (74) to (76) and (82) to (87)
that, for both R and QR signals, the sc, o and s two-input
MMSE receivers perform MAIC as soon as |αs,1| 6= 1,
but perform SAIC as long as φs,1 6= kπ for R signals,
(ψs,1, ζs,1) 6= (k1π, k2π) for QR signals and receivers o and
sc and ψs,1 6= kπ for QR signals and receiver s, enlightening
the great interest of the three two-input MMSE receivers in
both cases.

Moreover, we deduce from equations (73), (74), (80), (82)
and (83) that for R signals, for both M = 1 and M = 2,
the three o, s, sc M -input MMSE receivers are equivalent,
discarding in this case the need to estimate the channel
of the MUI and proving that the structure constraint has
no impact on performance. Expression (73) shows that the
equivalence of the three receivers also holds for QR signal
for M = 1 as long as there is a spatial discrimination
between the SOI and the MUI. However, despite similar
processing and similar extended models (8) and (10) for
R and QR signals respectively, the output SINRs (74) and
(75), (76), for |αs,1| 6= 1, and (82), (84), (86) and (83), (85),
(87) for |αs,1| = 1, correspond to different expressions. This
proves the general non equivalence of R and derotated QR
signals for the sc, o and s two-input MMSE receivers in the
presence of MUI, result which has already been obtained
for the two-input pseudo-ML receivers [33]. In particular,
for a zero roll-off, while (74), only depends on 2εs, the
maximum output SINR obtained without interference, and

the parameters αs,1 and φs,1, (75) and (76) depends not only
on the previous parameters but also on τ1/T . Note that the
only equivalence between R and QR signals for two-input
receivers is obtained for synchronous SOI and MUI for the
o and sc receivers. Moreover, (75), (76) and (84) to (87)
show that for QR signals and a zero roll-off, the s two-input
MMSE receiver becomes sub-optimal with respect to o and
sc two-input MMSE receivers, which are both equivalent in
this case.

Finally, the previous results show, for SRRC filter with
zero roll-off, a strong MUI (for R signals) and a strong
MUI and a weak SOI (for QR signals), the optimality of
the s three-input MMSE receiver. However, while it does not
improve the performance of the s two-input MMSE receiver
for R signals, since the latter is optimal, it outperforms the
performance of the latter for QR signals since SINRQR3,s

≥
SINRQR2,s

.
d) Illustrations
To illustrate the previous results, Fig. 8a and 8b show, for

the o, s two-input and the s three-input MMSE receivers,
the variations of the output SINR as a function of φs,1
for εs = 10 dB, ε1 = 20 dB, synchronous (τ1 = 0) SOI
and MUI and |φs,1| = 1 (N = 1) (a), |φs,1| = 0.75
(b). Similarly, in the same scenario, Fig. 9a and 9b show
the variations of the output SINR as a function of τ1 for
φs,1 = π/3. Fig. 8a and 8b show, for synchronous SOI
and MUI, for both R and QR signals and for the MMSE
three receivers, an increasing output SINR as cos2 φs,1
decreases. Moreover, SINRQR2,s

is lower for εs = 10 dB
than for εs � 1, due to ISI. Finally, note for N = 1,
the equivalent optimal performance of the three receivers,
except the s two-input receiver for QR signals which is
clearly sub-optimal. Note for N > 1, the equivalent quasi-
optimal performance of the s three-input receiver for R and
QR signals and the sub-optimal performance of the s two-
input receiver for QR signals. Fig. 9 clearly shows, for R
signals, optimal performance, independent of τ1, for the
three receivers contrary to QR signals for which output
performance depend on τ1. Note, in this case, quasi-optimal
performance of the s three-input receiver and sub-optimal
performance of the s two-input receiver. Note finally, for
τ1 6= 2kT (with k integer), lower performance of the optimal
receiver for QR signals with respect to R ones, showing
again the non equivalence of R and QR signals for optimal
two-input MMSE receivers.

C3) Deterministic channels and SRRC filters (for T ) with
arbitrary roll-off: To compare, for R and QR signals, the
performance of the sc, o, M -input (M = 1, 2) and the s
M -input (M = 1, 2, 3) MMSE receivers, for ω = 0 and
arbitrary values of τ1 and also to extend the analysis to
arbitrary values of the roll-off ω, we must adopt a statistical
perspective. For this purpose, we still consider deterministic
channels, we assume that (φs,1, τ1) are independent random
variables uniformly distributed on [0, 2π] × [0, 4T ] and we
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Fig. 8. SINRR and SINRQR as a function of φs,1 (|αs,1| = 1 (a),
|αs,1| = 0.75 (b), εs = 10 dB, ε1 = 20 dB, τ1 = 0, ω = 0 deterministic
channels.

choose εs = 10 dB and ε1 = 20 dB.
Under these assumptions, Figs 10 and 11 show, for R and

QR signals respectively, for N = 1, ω = 0, the variations
of Pr[(SINRMg/2εs)dB ≥ xdB]

def
= PMg (x) as a function

of x (dB) for the sc, o and s M -input MMSE receivers for
M = 1, 2. Figs. 12 and 13 show the same variations as 10
and 11, but for ω = 1. Finally, Figs. 14 and 15 show, for
ω = 0 (Fig. 14a and Fig. 15a) and ω = 1 (Fig. 14b and
Fig. 15b), the same variations as Figs 10 and 11 but for
the sc and o two-input and the s two-input and three-input
MMSE receivers. Note that the curves appearing in these
figures are built from 105 Monte-Carlo simulations. Note,
for both R and QR signals, poor performance whatever ω
of the one-input MMSE receivers, i.e., of the conventional
receivers.

Note for R signals, quasi-optimal performance of the
sc and s two-input MMSE receivers for low values of ω
and a slight increasing sub-optimality of these receivers
as ω increases. Note increasing performance with the roll-
off of the s three-input MMSE receiver, which is quasi-
optimal whatever the roll-off and which always improves the
performance of the s two-input MMSE receiver. This proves,
for channels with no delay spread and arbitrary values of ω,
the great interest of sc two-input, s two-input and s-three
input MMSE receivers for R signals.

Note for QR signals, quasi-optimal performance of the
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Fig. 9. SINRR and SINRQR as a function of τ1 (|αs,1| = 1 (a), |αs,1| =
0.75 (b), εs = 10 dB, ε1 = 20 dB, φs,1 = π/3, ω = 0 deterministic
channels.
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Fig. 10. PMg (x) as a function of x (N = 1, M = 1, 2, εs = 10 dB, ε1
= 20 dB, ω = 0, deterministic channels, R signals.

sc two-input MMSE receiver for low values of ω, a slight
increasing sub-optimality of this receiver as ω increases and
a sub-optimality of s two-input MMSE receiver whatever
the roll-off. This proves also the necessity to improve the s
two-input MMSE receiver for QR signals. Note the quasi-
optimal performance, whatever the roll-off value, and then
the practical interest of the s three-input MMSE receiver,
strongly improving the performance of the s two-input
receiver.

C4) Deterministic channels and MSK and GMSK signals:
Figs. 16 and 17 show the same variations as Fig. 15
under the same assumptions, but for MSK and GMSK QR
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Fig. 12. PMg (x) as a function of x (N = 1, M = 1, 2, εs = 10 dB, ε1
= 20 dB, ω = 1, deterministic channels, R signals.

signals respectively. We still note, in both cases, the worst
performance of the s two-input MMSE receiver, the sub-
optimality of the sc two-input MMSE receiver and the quasi-
optimal performance of the s three-input MMSE receiver,
strongly improving the performance of the s two-input
MMSE receiver. We also note better performance obtained
for the MSK signals with respect to GMSK signals due to a
greater power on the cyclic frequency βd,−1 = −1/T [35],
[40].

C5) Rayleigh channels and SRRC filters (for T ) with arbi-
trary roll-off: To complete the previous results, we consider
the assumptions of Figs. 14b and 15b for R and QR signals
respectively. Under these assumptions, Fig. 18 shows, for R
and QR signals and for ω = 1 the same variations as Figs.
14b and 15b but for Rayleigh fading channels for which h(1)
and h1(1) are i.i.d zero mean circular Gaussian distributed
random variables. The conclusions of Figs. 14b and 15b
hold for Figs. 18a and 18b with less sub-optimality of s and
sc two-input MMSE receivers with respect to s three-input
and o two-input MMSE receivers.

F. SINR analysis for one MUI and two tap deterministic
channel

We consider in this sub-section a one-tap deterministic
channel for the SOI and a two-tap frequency selective

-20 -15 -10 -5 0
0

0.2

0.4

0.6

0.8

1

P
M

g(x
)

x(dB)

QR 2 o
QR 2 s
QR 2 sc
QR 1 o
QR 1 s
QR 1 sc

Fig. 13. PMg (x) as a function of x (N = 1, M = 1, 2, εs = 10 dB, ε1
= 20 dB, ω = 1, deterministic channels, π/2-ASK QR signals.
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Fig. 14. PMg (x) as a function of x (N = 1, M = 2, 3, εs = 10 dB, ε1
= 20 dB, ω = 0 (a) and 1 (b), deterministic channel, R signals.

deterministic channel for the MUI such that

h(t) = µδ(t)h

h1(t) = µ11
δ(t−τ1)h11

+ µ12
δ(t−τ1−T )h12

, (95)

where µ11
and µ12

control the amplitudes of the first and
second paths of the MUI, whereas h11

and h12
correspond

to the channel vectors of the latter, such that ‖h11
‖2 =

‖h12‖2 = N . Under these assumptions and for SRRC pulse
shaping filters for T , it is straightforward to verify that
π1 = (µ2

11
+ µ2

12
)πb1 . We assume that (φs,11

, φs,12
, τ1)

are r.v. uniformly distributed on [0, 2π] × [0, 2π] × [0, 4T ],
where φs,11

and φs,12
are the phases of hHh11

and hHh12
,

respectively. Under these assumptions, Figs. 19a and 19b



18

-20 -15 -10 -5 0
0

0.2

0.4

0.6

0.8

1

P
M

g(x
)

x(dB)

QR2o
QR3s
QR2sc
QR2s

=0

(a)

-20 -15 -10 -5 0
0

0.2

0.4

0.6

0.8

1

P
M

g(x
)

x(dB)

QR2o
QR3s
QR2sc
QR2s

=1

(b)

Fig. 15. PMg (x) as a function of x (N = 1, M = 2, 3, εs = 10 dB,
ε1 = 20 dB, ω = 0 (a) and 1 (b), deterministic channel, π/2-ASK QR
signals.
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= 20 dB, deterministic channel, MSK signals.

show, for R and QR signals, respectively and for ω = 1, the
same variations as Figs. 14b and 15b for µ11 = µ12 . The
conclusions of Figs. 14b and 15b hold for Figs. 19a and
19b.

V. SER AT THE OUTPUT OF THE M -INPUT MMSE
RECEIVERS FOR ONE MUI

We show in this section that the main messages of the
previous section, deduced from an output SINR analysis
remain valid from an output SER analysis.

A. Theoretical closed-form expressions

To compare the previous M -input MMSE receivers (M =
2, 3) for R and QR signals from an output SER analysis,
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Fig. 17. PMg (x) as a function of x (N = 1, M = 2, 3, εs = 10 dB, ε1
= 20 dB, deterministic channel, GMSK signals.
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Fig. 18. PMg (x) as a function of x (N = 1, M = 2, 3, εs = 10 dB, ε1
= 20 dB, ω = 1, Rayleigh channel, (a) R and (b) π/2-ASK QR signals.

we still assume in this section that the total noise n(t) is
composed of a Gaussian distributed background noise ε(t)
and a single MUI, which generates the observation model
(13) with P = 1. From (13), we get the generic real part,
zMg

(k), of the generic output yMg
(k), of the different M -
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Fig. 19. PMg (x) as a function of x (N = 1, M = 2, 3, εs = 10 dB, ε1
= 20 dB, µ11 = µ12 , ω = 1, deterministic two-taps channel, (a) R and
(b) π/2-ASK QR signals.

input MMSE receiver for g = o, s, sc.

zMg
(k) = bkuMg,0︸ ︷︷ ︸

SOI

+
∑
6̀=k

b`uMg,k−`︸ ︷︷ ︸
ISI

+
∑
`

b1,`uM1,g,k−`︸ ︷︷ ︸
MUI

+ εMg
(k)︸ ︷︷ ︸

BN

(96)

where uMg,k

def
= Re[

∫
wH
Mg

(f)gMg (f)ej2πfkT df ],

uM1,g,,k

def
= Re[

∫
wH
Mg

(f)g1,Mg
(f)ej2πfkT df ] and

εMg
(k)

def
= Re[

∫
wH
Mg

(f)εMg
(f)ej2πfkT df ] is the

background noise (BN) component which is zero-mean
Gaussian distributed with variance σ2

εMg
whose expression

is derived in Appendix E.
When the number of ISI and MUI terms at the output of

the M -input MMSE receivers is large and when there are
no dominant term in the ISI and MUI, an approximation
of the central limit theorem (Lyapounov theorem [41, th.
27.3]) for independent non identically distributed r.v. can
be applied and the SER is directly deduced from the SINR.
For example, for BPSK symbols bk and b1,k, we get the
approximation:

SERMg ≈ Q(
√

SINRMg ), (97)

with Q(x)
def
=
∫ +∞
x

1√
2π
e−

u2

2 du. This relation (97) con-
firms that the performance in term of output SINR and SER
are equivalent.

When this number of ISI and MUI terms is weak and/or
there is a dominant term in the ISI or MUI, the approxima-
tion is no longer valid, but an exact analytical expression of
the SER can be derived. If S and I denote the sets of the ISI
and MUI symbols, respectively, with respect to the symbol
b0, we now get by conditioning with respect to these BPSK
symbols where S = {−1,+1}|S| and I = {−1,+1}|I|:

SERMg =
1

2|S |2|I|
∑

(..,b−1,b+1,..)∈S

∑
(..,b1,−1,b1,0,b1,+1,..)∈I

Q

(
uMg,0

− (
∑
k 6=0 bkuMg,k

+
∑
k b1,kuM1,g,k

)

σεMg

)
. (98)

B. Monte-Carlo experiments

When the conditions for which (97) can apply are not
satisfied, we can resort to (98) for BPSK modulations. But
this closed-form expression presents no engineering insights
and shows that the SER and SINR are not directly related.
To confirm that the results obtained in Section IV for output
SINR are still vaild for output SER, we present in the
following some Monte Carlo simulations.

B1) One tap deterministic channels: We consider the
transmission of 1000 frames of 200 binary symbols (bk ∈
{−1,+1} and b1,k ∈ {−1,+1}) and we assume, in this
subsection, one tap deterministic channels which are con-
stant over a frame and random from a frame to another. For
each frame, we assume that (φs,1, τ1) are i.i.d. uniformly
distributed on [0, 2π] × [0, 4T ]. Under these assumptions,
Fig. 20 shows the variations of the SER given by the binary
detector at the output of the different receivers for both R
(BPSK) and QR (π/2-BPSK) signals, as a function of εs
for N = 1, ε1/εs = 10 dB and ω = 1.

The results of Fig. 20 confirm, for both R and QR signals
and from a SER perspective, the sub-optimality of the s
and sc two-input receivers and the quasi-optimality of the s
three-input MMSE receiver.

B2) One tap Rayleigh channels: To complete the previous
results and under the assumptions of Fig. 20, Fig. 21 shows
the same variations as Fig. 20, but as a function of E(εs)
for Rayleigh fading channels for which h(1) and h1(1) are
zero-mean circular Gaussian independently distributed, such
that E[ε1]/E[εs] = 10 dB. The conclusions of Fig. 20 hold
for Fig. 21.

VI. CONCLUSION

New insights into linear but especially WL MMSE re-
ceivers have been given in this paper, for both R and
QR signals, omnipresent in numerous present and future
applications, in the absence but mainly in the presence of
data-like MUI, for propagation channels with or without
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Fig. 20. SER as a function of εs (N = 1, ε1/εs = 10 dB, ω = 1,
deterministic one tap channel, R (a) and π/2-ASK QR (b) signals.
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Fig. 21. SER as a function of E(εs) (N = 1, E(ε1)/E(εs) = 10 dB,
ω = 1, Rayleigh fading one tap channel, R and π/2-ASK QR signals.

delay spread and using a CT approach. Several R signals,
such as BPSK and ASK signals, and QR signals, such as

π/2-BPSK, π/2ASK, OQAM, MSK and GMSK signals,
have been considered. It was first recalled that most of the
WL MMSE receivers of the literature correspond to two-
input MMSE receivers which are implemented at the symbol
rate, after a matched filtering operation to the pulse shaping
filter and have thus a particular structure constraint. It has
been shown in this paper that most of these receivers are
equivalent to each other and correspond to the sc two-input
MMSE receiver, which does not require the knowledge of
the MUI channels, contrary to what is generally implicitly
assumed in the literature. However, this receiver has been
shown, to be generally sub-optimal in frequency selective
channels and in the presence of MUI. The optimal WL or
two-input MMSE receiver, denoted by o two-input MMSE
receiver, has been computed. It has no structure constraint,
exploits the MUI waveform or their cyclostationarity but
requires the knowledge or estimation of the MUI channels,
which may be cumbersome in practice. The main challenge
addressed in this paper was then to develop new WL
MMSE receivers able to implement the optimal one without
requiring the knowledge of the MUI channels. To this
aim, a first new WL MMSE receiver, falsely assuming SO
stationary MUI and denoted by s two-input MMSE receiver,
has been proposed. It only requires the knowledge or the
estimation of the SOI channel, hence its practical interest. Its
performance, in terms of output SINR on the current symbol
before decision and in terms of output SER, have been
computed both analytically and by computer simulations and
compared to those of the o two-input MMSE receiver. For
R signals and SRRC filters, the s two-input MMSE receiver
has been shown to be quasi-optimal for low values of the
roll-off, whereas its sub-optimality increases as the roll-off
increases. For QR signals, the s two-input MMSE receiver
has been shown to be always sub-optimal whatever the value
of the roll-off, showing in particular the non equivalence of
R and QR signals for MMSE processing, due to different
SO cyclostationarity properties. For this reason a second
new WL MMSE receiver corresponding to a three-input
FRESH MMSE receiver, still falsely assuming SO stationary
MUI and denoted by s three-input MMSE receiver, has
been proposed. It still only requires the knowledge or the
estimation of the SOI channel, hence its practical interest.
The performance analysis of this new receiver has shown
the quasi-optimality of this three-input MMSE receiver for
both R and QR signals, and whatever the value of the roll-
off. This result has been extended to MSK and GMSK
signals. This interesting result open new perspectives for
the implementation optimization of WL MMSE receivers in
the presence of R and QR data-like MUI and, in particular,
for the implementation of the o WL MMSE receiver from
the only knowledge of the SOI channel.
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APPENDIX

A. Proofs related to the sc M -input MMSE receivers

1) Proof of (17): Because the samples xv,M (kT ) of
xv,M (t) given by (15) are SO stationary, yMsc

(k), de-
fined by (22), is also SO stationary. From (39), where
bk and eMsc

(k) are uncorrelated, and from uMsc
=

T
∫

∆
wdH

Msc
(f)gdv,M (f)df , the MSE = E(|bk − yMsc(k)|2)

is given by:

MSE

= πb|1− uMsc
|2 + E|eMsc

(k)|2 (99)
= πb|1− uMsc

|2 + E|yMsc
(k)|2 − πb|uMsc

|2

= E|yMsc
(k)|2 + πb(1− uMsc

− u∗Msc
)

= T

∫
∆

[
wdH

Msc
(f)Rd

xvM
(f)wd

Msc
(f)

+ πb

(
1−wdH

Msc
(f)gdvM (f)−wdT

Msc
(f)gd∗vM (f)

)]
df,(100)

whose function in the integral (100) is classically minimized
by wd

Msc
(f) given by (17) for the frequencies such that

xdv,M (f) 6= 0.

2) Proof of (23): Similarly, the output yMsc(k) of the
filter Wd∗

Msc
(f) is SO stationary and

yMsc
(k) = UMsc

bk + eMsc
(k), (101)

where UMsc

def
=
∫

∆
WdH

Msc
(f)Gd

vM (f)df and where bk and
eMsc

(k) are uncorrelated. This implies that the JMSE =
E‖bk − yMsc

(k)‖2 is given by:

JMSE

= E‖(UMsc
−IP+1)bk‖2 + E‖eMsc

(k)‖2

= E‖(UMsc
−IP+1)bk‖2+E‖yMsc

(k)‖2−E‖UMsc
bk‖2

= E‖yMsc
(k)‖2 + πbTr[(UMsc

−IP+1)(UMsc
−IP+1)H ]

− πbTr(UMsc
UH
Msc

)

= T

∫
∆

Tr[WdH

Msc
(f)Rd

xvM
(f)Wd

Msc
(f)

+πb(IP+1−WdH

Msc
(f)Gd

vM(f)−WdT

Msc
(f)Gd∗

vM(f))]df (102)

and is minimized for

Wd
Msc

(f) = πb[R
d
xvM

(f)]−1Gd
vM (f), (103)

whose first column is wd
Msc

(f) (23).

3) Proof of (48) and (49): It follows that the derived
structured MMSE receiver wd

Msc
(f) gives

uMsc
= T

∫
∆

gd
H

Msc
(f)[Rd

xvM
(f)]−1gdMsc

(f)df (104)

that is real-valued and besides (22) gives:

E(|yMsc(k)|2)

= T

∫
∆

wdH

Msc
(f)Rd

xvM
(f)wd

Msc
(f)df

= Tπ2
b

∫
∆

gd
H

Msc
(f)[Rd

xvM
(f)]−1gdMsc

(f)df (105)

E(y2
Msc

(k))

= T

∫
∆

wdH

Msc
(f)Cd

xvM
(f)wd∗

Msc
(−f)df (106)

= Tπ2
b

∫
∆

gd
H

vM (f)[Rd
xvM

(f)]−1Cd
xvM

(f)

[Rd∗

xvM
(−f)]−1gd

∗

vM (−f)df.(107)

Using (104), (105) and (107) in (41), (48) and (49) follow
for M = 1 and M = 2, respectively.

B. Proofs related to the o M -input MMSE receivers

1) Proof of (25): Once the SO cyclostationarity of MUI
is fully exploited, estimating the SOI symbols only or
jointly with the MUI symbols gives rise to two equivalent
approaches for the SOI symbols estimation.

In the jointly estimation approach, we deduce from
(13) that the filter w∗M (−t) minimizing the MSE cri-
terion corresponds to the first column of the matrix
W∗

M (−t), of dimension N × (P + 1) for M = 1
and 2N × (P + 1) for M = 2, minimizing the joint
MSE criterion, JMSE = E(‖bn − yM (nT )‖2). In the
latter criterion, bn

def
= [bn, b1,n, ..bP,n]T , whereas yM (t)

is defined by (24) where wM (−f) is replaced by ma-
trix WM (−f). Noting that the JMSE criterion satisfies
E‖bk − yM (kT )‖2 = E|bk − yM (kT )|2 +

∑P
p=1 E|bp,k −

yM,p(kT )|2 where yM,p(t) = w∗M,p(−t) ⊗ xM (t) and
WM (f) = [wM (f),wM,1(f), ..,wM,p(f), ..,wM,P (f)],
the optimal MMSE filter wMo(f) is the first column of the
optimal joint MMSE filter WMo

(f). The output, at time kT
of the filter matrix W∗

M (f) corresponds to the SO stationary
signal:

yM (k) = UM (0)bk+
∑
` 6=k

UM (k−`)b`+εw,M (k), (108)

where UM (`)
def
=

∫
WH

M (f)GM (f)ej2πf`T df and
εw,M (k)

def
=
∫
WH

M (f)εM (f)ej2πfkT df . Consequently the
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JMSE criterion is given by:

JMSE = πbTr[(UM (0)− IP+1)(UM (0)− IP+1)H ]

+ πb
∑
` 6=0

Tr[UM (`)UH
M (`)]

+ Tr[E(εw,M (k)εHw,M (k))]

= πbT

∫
∆

Tr[(IP+1−
∑
`

UM (`)e−j2π`fT )

(IP+1−
∑
`

UM (`)−j2π`fT )H ]df

+ Tr[E(εw,M (k)εHw,M (k))]

= πbT

∫
∆

Tr
[(
IP+1−

1

T

∑
`

WH
M (f− `

T
)

GM (f− `

T
)
)(
IP+1−

1

T

∑
`

WH
M (f− `

T
)GM (f− `

T
)
)H]

df

+N0

∫
∆

Tr
[∑

`

WH
M (f− `

T
)WM (f− `

T
)
]
df,(109)

where we have used the property T
∫

∆
e−j2π`fT df = δ(0)

in the fourth line. This JMSE is a quadratic functional of
WM (f − k

T ), k ∈ Z. Following a standard method of the
calculus of variations (see e.g., [42]), the JMSE (109) is
minimized by WMo

(f) = GM (f)Cd
M (f) where Cd

M (f) =[
(N0/πb)IP+1 + 1/T

∑
`G

H
M (f−`/T )GM (f−`/T )

]−1
.

Whereas this jointly estimation approach involves that the
additive noise is SO stationary, considering the estimation
of the SOI symbols only involves that the total noise is SO
cyclostationary, which implies a more complicated deriva-
tion derived in the following. We consider here the MSE
E|bk−yM (kT )|2 with yM (t) = w∗M (−t)⊗xM (t) where the
SO cyclostationarity of the MUI is taken into account. In this
case, the CT total noise output nM,w(t) = w∗M (−t)⊗nM (t)
is SO cyclostationary with cyclic frequencies γi = αi = i/T
with power at times kT

E[|n2
M,w(k)|] =

∑
γi

ej2πγikT
∫
rγinM,wdf (110)

with

rγinM,w(f) = wH
M (f+γi/2)Rγi

nM (f)wM (f−γi/2) (111)

where

Rαi
nM (f) =

∑
1≤p≤P

πb
T

[gp,M (f + αi/2)gHpM (f − αi/2)

+ N0δ(αi)IMN . (112)

Consequently

E[|n2
M,w(k)|] =

πb
T

∑
1≤p≤P

∑
αi

∫
wH
M (f+αi/2)

gp,M (f+αi/2)gHpM (f−αi/2)wM (f−αi/2)df

+ N0

∫
‖wM (f)‖2df. (113)

This gives after direct algebraic manipulations, the following
expressions of the MSE

MSE = πbT

∫
∆

|1− 1

T

∑
k

wH
M (f− k

T
)gM (f− k

T
)|2df

+

∫
∆

πb
T

∑
1≤p≤P

∑
`

∑
k

wH
M (f− k

T
)

gp,M (f− k
T

)gHp,M (f− `

T
)wM (f− `

T
)df

+ N0

∫
∆

∑
k

‖wM (f − k

T
)‖2df. (114)

This MSE is a quadratic functional of wM (f − k
T ), k ∈ Z.

Similarly to the JMSE, using a variational method, the MSE
(114) is minimized by

wMo(f) = cdM,1(f)gM (f) +
∑

1≤p≤P

cdM,1+p(f)gp,M (f)

(115)
where (cdM,1(f), cdM,2(f), .., cdM,1+P (f))T is the first col-
umn of Cd

Mo
(f) = [N0

πb
IP+1 + 1

T

∑
`G

H
M (f − `

T )GM (f −
`
T )]−1.

2) Proof of (26): Using the approach consisting
to jointly estimate the SOI and MUI symbols bn

def
=

[bn, b1,n, ..bP,n]T , the filter w∗3(−t) minimizing the MSE
criterion corresponds to the first column of the 3N ×
(P + 1) matrix W∗

3(−t) filter whose output is y3(t) =
WH

3 (−t) ⊗ x3(t). This filter minimizes the joint MSE
criterion: JMSE = E(‖bn−y3(nT )‖2). Following the steps
of the proof of (25) given in Appendix B, where contrary
to the two-input signal x2(t), the CT background noise
output W∗

3(−t) ⊗ ε3(t) is SO cyclostationary with cyclic
frequencies αi ∈ {− 1

T , 0,+
1
T }, the JMSE criterion is given

by:

JMSE = πbT

∫
∆

Tr
[(
IP+1−

1

T

∑
`

WH
3 (f− `

T
)

G3(f− `

T
)
)(
IP+1−

1

T

∑
`

WH
3 (f− `

T
)G3(f− `

T
)
)H]

df

+

∫
∆

Tr
[ ∑
i=−1,0,+1

∑
k

WH
3 (f−k

T
)Rαi

ε3 (f)W3(f−k+i

T
)
]
df.(116)

This JMSE is a quadratic functional of W3(f − k
T ), k ∈

Z. Following a standard method of the calculus of variations
(see e.g., [42]), this JMSE (116) is minimized by the unique
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solution in W3(f) of the following equation:

πbG3(f)

[
IP+1 −

1

T

∑
`

GH
3 (f − `

T
)W3(f − `

T
)

]
=

∑
i=−1,0,+1

Rαi
ε3 (f)W3(f − αi). (117)

Noting that
∑
i=−1,0,+1 R

αi
ε3 (f)W3(f − αi) = W3(f) +

+

 0N,P+1

W3,3(f+ 1
T )

W3,2(f− 1
T )

 with W3(f)
def
=

 W3,1(f)
W3,2(f)
W3,3(f)

, it s

straightforward to show that

W3(f) =

[
G2(f)Cd

2o(f)
0N,P+1

]
is solution of (117).

3) Proof of (50) and (51): The first component of yM (k)
(108) is given by

yM (k) = bk(fTUMo
(0)f) + fTUMo

(0)(bk − bkf)
+

∑
` 6=k

fTUMo(k − `)b` + fT εw,M (k)

def
= bk(fTUMo

(0)f) + eM (k), (118)

where bk and eM (k) are uncorrelated and UMo
(0) is given

from the definition of Cd
M (f) in wMo

(f) (25) by

UMo(0) =

∫
∆

Cd
M (f)

∑
`

GH
M (f − `

T
)GM (f − `

T
)df

= IP+1 −
N0T

πb

∫
∆

Cd
M (f)df. (119)

Noting that UMo(0) is Hermitian, the expressions of
E(|eM (k)|2) and E(e2

M (k)) are given by:

E(|eM (k)|2) = πbf
T [
∑
`

UMo(`)U
H
Mo

(`)]f

−πb(fTUMo(0)f)2 + fTE[εw,M (k)εHw,M (k))]f(120)

E(e2
M (k)) = πbf

T [
∑
`

UMo
(`)UT

Mo
(`)]f

−πb(fTUMo
(0)f)2+δ(M−2)fTE[εw,M (k)εTw,M (k))]f ,(121)

where∑
`

UMo
(`)UH

Mo
(`) = T

∫
∆

(
∑
k

UMo
(k)e−j2πfkT )

(
∑
`

UH
Mo

(`)ej2πf`T )df(122)

∑
`

UMo
(`)UT

Mo
(`)) = T

∫
∆

(
∑
k

UMo
(k)e−j2πfkT )

(
∑
`

UT
Mo

(`)ej2πf`T )df(123)

with ∑
k

UMo
(k)e−j2πfkT

=
1

T

∑
`

WH
Mo

(f − `

T
)GM (f − `

T
)

=
1

T
Cd
M (f)[

∑
`

GH
M (f − `

T
)GM (f − `

T
)]

= (IP+1 −
N0

πb
)Cd

M (f). (124)

Using

E[εw,M (k)εHw,M (k))]

= N0

∫
WH

Mo
(f)WMo

(f)df

= N0

∫
∆

Cd
M (f)[

∑
`

GH
M (f− `

T
)GM (f− `

T
)]Cd

M (f)df

= N0T

∫
∆

[Cd
M (f)− N0

πb
Cd
M (f)Cd

M (f)]df (125)

and

E[εw,M (k)εTw,M (k))]

= δ(M−2)N0

∫
WH

Mo
(f)J2NW∗

Mo
(−f)df

= N0T

∫
∆

[Cd
M (f)− N0

πb
Cd
M (f)Cd

M (f)]df (126)

where we have used in (126) for M = 2, the relations
J2NGM (−f) = G∗M (f) and Cd∗

M (−f) = Cd
M (f).

Gathering (125), (122) with (124) in (120), and (126),
(123) with (124) in (121), the generic expression of the
SINR (41) takes the value (50). For M = 2, using
fTCd

M (f)Cd
M (f)f = fTCd

M (f)Cd∗

M (−f)f = ‖Cd
M (f)f‖2,

(50) reduces to (51).

C. Proofs related to the s M -input MMSE receivers

1) Proof of (30): The output, at time kT of the filter
w∗M (f) is given by the SO stationary signal:

yM (k) = uM (0)bk +
∑
` 6=k

uM (k − `)b` + nw,M (k), (127)

where uM (`)
def
=

∫
wH
M (f)gM (f)ej2πf`T df and

nw,M (k)
def
=

∫
wH
M (f)nM (f)ej2πfkT df where nM (t)

is falsely assumed SO stationary with power spectral
density R0

n,M (f). Following the same steps as that of the
derivation of (109), we get the MSE

MSE
def
= E|yk − bk|2

= πbT

∫
∆

∣∣1− 1

T

∑
`

wH
M (f − `

T
)gM (f − `

T
)
∣∣2df

+

∫
∆

∑
k

wH
M (f− k

T
)R(0)

nM (f − k

T
)wM (f− k

T
)df,(128)



24

whose function in the global integral (128) is classically
minimized by wMs

(f) given by (30).

D. Proofs related to SINR of s three-input MMSE receivers

1) Proofs of (77), (78): To derive closed-form expres-
sions of the SINR, it is easier to calculate the powers PSOI,
PISI, PMUI and PBN of the different terms of (96) than to
use the global formulas (46) and (??)

SINR3s =
PSOI

PISI + PMUI + PBN
, (129)

where the different powers are given by

PSOI =πb

[∫
∆

∑
k

wH
3s(f−

k

T
)g3(f− k

T
)df

]2

(130)

PISI =
πb
2T

(∫
∆

|
∑
k

wH
3s(f−

k

T
)g3(f− k

T
)|2df

+ Re

[∫
∆

(
∑
k

wH
3s(f−

k

T
)g3(f− k

T
))

(
∑
`

wH
3s(−f−

`

T
)g3(−f− `

T
))df

])

− πb

[∫
∆

∑
k

wH
3s(f−

k

T
)g3(f− k

T
)df

]2

(131)

PMUI =
πb
2T

(∫
∆

|
∑
k

wH
3s(f−

k

T
)g1,3(f− k

T
)|2df

+ Re

[∫
∆

(
∑
k

wH
3s(f−

k

T
)g1,3(f− k

T
))

(
∑
`

wH
3s(−f−

`

T
)g1,3(−f− `

T
))df

])
(132)

PBN =
1

2

(∑
α∈A

∫
wH

3s(f+
α

2
)Rα

ε3(f)w3s(f−
α

2
)

+
∑
β∈B

∫
wH

3s(f+
β

2
)Cβ

ε3(f)w∗3s(−f+
β

2
)

 (133)

where A def
= {1/T, 0,+1/T} and B def

= {−1/T, 0}. Includ-
ing the filter w3s(f) (30) in (130)-(133) allows us to derive

after cumbersome algebraic manipulations:

PR,SOI=
c2

πb
ε2s

(
3− |αs,1|

2ε1
1 + ε1

− 4|αs,1|2ε1 cos2 φs,1
1 + 2ε1

)2

(134)

PR,ISI = 0 (135)

PR,MUI =
c2

πb
|αs,1|2εsε1 cos2 φs,1

(
4

(1 + 2ε1)2

+
1

(1 + ε1)2
+

4

(1 + ε1)(1 + 2ε1)

)
(136)

PR,BN =
c2

πb

εs
2

(
9 + |αs,1|2ε1

(
ε1

(1 + ε1)2

− 6

1 + ε1
− 8(2ε21 + 6ε1 + 3)

(1+2ε1)2)(1+ε1)
cos2 φs,1

)
(137)

with

c
def
= πb

(
1 + εs

(
3− |αs,1|

2ε1
1 + ε1

− 4|αs,1|2ε1 cos2 φs,1
1 + 2ε1

))−1

(138)
for R signals and

PQR,SOI = πb

(
1− 1

2πb
(c1 + c2)

)2

=
ε2

4πb

[
c1

(
3− |αs,1|

2ε1
1 + ε1

− 4|αs,1|2ε1 cos2 ζs,1
1 + 2ε1

)
+ c2

(
3− |αs,1|

2ε1
1 + ε1

− 4|αs,1|2ε1 cos2 ψs,1
1 + 2ε1

)]2

(139)

PQR,ISI=
ε2

2πb

[
c1

(
3− |αs,1|

2ε1
1 + ε1

− 4|αs,1|2ε1 cos2 ζs,1
1 + 2ε1

)
− c2

(
3− |αs,1|

2ε1
1 + ε1

− 4|αs,1|2ε1 cos2 ψs,1
1 + 2ε1

)]2

(140)

PQR,MUI =
c21

2πb
|αs,1|2εsε1 cos2 ζs,1

(
4

(1 + 2ε1)2
(141)

+
1

(1 + ε1)2
+

4

(1 + ε1)(1 + 2ε1)

)

+
c22

2πb
|αs,1|2εsε1 cos2 ψs,1

(
4

(1 + 2ε1)2
(142)

+
1

(1 + ε1)2
+

4

(1 + ε1)(1 + 2ε1)

)
(143)

PQR,BN =
c21
πb

εs
4

(
9 + |αs,1|2ε1

(
ε1

(1 + ε1)2

− 6

1 + ε1
− 8(2ε21 + 6ε1 + 3)

(1 + 2ε1)2)(1 + ε1)
cos2 ζs,1

))
+

c22
πb

εs
4

(
9 + |αs,1|2ε1

(
ε1

(1 + ε1)2

− 6

1 + ε1
− 8(2ε21 + 6ε1 + 3)

(1 + 2ε1)2)(1 + ε1)
cos2 ψs,1

))
(144)
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with

c1
def
= πb

(
1+εs

(
3− |αs,1|

2ε1
1 + ε1

− 4|αs,1|2ε1 cos2 ζs,1
1 + 2ε1

))−1

(145)

c2
def
= πb

(
1+εs

(
3− |αs,1|

2ε1
1 + ε1

− 4|αs,1|2ε1 cos2 ψs,1
1 + 2ε1

))−1

(146)

for QR signals. From the expressions (134)-(146), we see
that for τ1 = 0, cos2 ψs,1 = cos2 ζs,1, which implies c1 =
c2 = c and thus the powers of the different components of
z3s(k) for R and QR signals are equal and the associated
SINR are equal.

E. Proofs related to the SER derivation

1) Proofs of the expressions of σ2
εMg

: For the o
and s receivers with M = 1, 2 inputs, σ2

εMg
=

MN0

2

∫
‖wMg

(f)‖2df and for the sc receiver σ2
εMsc

=
MN0

2

∫
|v(f)|2‖wMsc(f)‖2df for R signals and σ2

εMsc
=

MN0

2

∫
|v(f+4/T )|2‖wMsc(f)‖2df for QR signals. For the

three-input receiver σ2
ε3s

is given by (133) where Rα
ε3(f)

and Cβ
ε3(f) come from (52) and (53), respectively.
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