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Detailed proofs of paper [1]
Slepian-Bangs formula and Cramér Rao bound for

circular and non-circular complex elliptical
symmetric distributions

Habti Abeida and Jean-Pierre Delmas

I. USEFUL RELATIONS AND LEMMA

A. Useful relations

We will make use of the following well known relations which hold for any conformable matrices A, B, C
and D.

vec(ABC) = (CT ⊗A)vec(B), (1)

(A⊗B)(C⊗D) = AC⊗BD, (2)

Tr(AB) = vecH(AH)vec(B), (3)

Tr(ABCD) = vecH(AH)(DT ⊗B)vec(C), (4)

Tr(A⊗B) = Tr(A)Tr(B), (5)

Tr[K(A⊗B)] = Tr(AB), (6)

where K is the vec-permutation matrix which transforms vec(C) to vec(CT ) for any square matrix C,

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1, (7)

where A, C and C−1 + DA−1B are assumed invertible.

B. Useful lemma for the proof of Result 2

Lemma 1: Let Ã =

(
A1 A2

A∗2 A∗1

)
and B̃ =

(
B1 B2

B∗2 B∗1

)
be two 2M × 2M partitioned matrices with A1

and B1 are M ×M Hermitian matrices, A2 and B2 are M ×M complex symmetric matrices, and suppose
that y ∼ CNM (0, I). Then

E[(ỹHÃỹ)(ỹHB̃ỹ)] = Tr(Ã)Tr(B̃) + 2Tr(ÃB̃), (8)

where ỹ
def
= (yT ,yH)T .

Proof:
We get from (4) then (2)

E[(ỹHÃỹ)(ỹHB̃ỹ)] = Tr[(ÃT ⊗ B̃)E(ỹ∗ỹT ⊗ ỹỹH)], (9)

where from e.g. [2, Appendix B]

E(ỹ∗ỹT ⊗ ỹỹH) = I⊗ I + K(J′ ⊗ J′)(I⊗ I) + vec(I)vecT (I), (10)
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where J′
def
=

(
0 I
I 0

)
. Plugging (10) in (9), we get:

E[(ỹHÃỹ)(ỹHB̃ỹ)] = Tr[(ÃT ⊗ B̃)(I⊗ I)] + Tr[(ÃT ⊗ B̃)K(J′ ⊗ J′)(I⊗ I)]

+ Tr[(ÃT ⊗ B̃)vec(I)vecT (I)], (11)

where we have successively
Tr[(ÃT ⊗ B̃)(I⊗ I)] = Tr(Ã)Tr(B̃)

from (2) and (5),
Tr[(ÃT ⊗ B̃)K(J′ ⊗ J′)(I⊗ I)] = Tr(ÃB̃)

from (2), (6) and J′ÃTJ′ = Ã, and

Tr[(ÃT ⊗ B̃)vec(I)vecT (I)] = Tr(ÃB̃)

from (4). Plugging these three expressions in (11), (8) follows.

II. PROOF OF RESULT 1 AND EQ. (5) OF [1]

Since a linear transform in R2M is tantamount to R-linear transform in CM , the definition of GCES given
in [3] is equivalent to saying that1

z = µ+ Ψz0 + Φz∗0, (12)

where Ψ and Φ are M ×M fixed complex-valued matrices and z0 is a complex spherical distributed r.v. with
stochastic representation z0 =d Ru [4, th. 3]. Since E(uuH) = 1

M I and E(uuT ) = 0 [4, lemma 1b], we get
if E(R2) <∞,

Σ = AAH =
E(R2)

Nσc

(
ΨΨH + ΦΦH

)
and Ω = A∆κA

T =
E(R2)

Nσc

(
ΨΦT + ΨΦT

)
, (13)

where σc is defined by E[(z−µ)(z−µ)H ] = σcΣ and E[(z−µ)(z−µ)T ] = σcΩ whose value is E(R2)/N [4,
(14)]. Consequently (13) reduces to

AAH = ΨΨH + ΦΦH and A∆κA
T = ΨΦT + ΨΦT . (14)

By the one to one change of variable (because A is nonsingular): Ψ′ = AΨ and Φ′ = AΦ, (14) is equivalent
to:

I = Ψ′Ψ
′H + ΦΦ

′H and ∆κ = Ψ′Φ
′T + Ψ′Φ

′T . (15)

It is clear that the solution of (15) is not unique, but we can look for solutions in real-valued diagonal form
(Ψ,Φ) = (∆1,∆2) with

I = ∆2
1 + ∆2

2 and ∆κ = 2∆1∆2, (16)

whose solutions are ∆1 = ∆++∆−
2 and ∆2 = ∆+−∆−

2 where ∆+
def
=
√

I + ∆κ and ∆−
def
=
√

I−∆κ.
Consequently

z =d µ+R[Ψu + Φu∗] = µ+RA[∆1u + ∆2u
∗]. (17)

If E(R2) is not finite, the scatter and pseudo-scatter matrices of z given by (17) are also Σ = AAH and
Ω = A∆κA

T , respectively.

From the eigenvalue decomposition
(

I ∆κ

∆κ I

)
=

[
1√
2

(
I I
I −I

)](
I + ∆κ 0

0 I + ∆κ

)[
1√
2

(
I I
I −I

)]
, we

deduce from Γ̃ =

(
A 0
0 A∗

)(
I ∆κ

∆κ I

)(
AH 0
0 AT

)
that Γ̃1/2 =

(
A 0
0 A∗

)(
∆1 ∆2

∆2 ∆1

)
. Consequently,

1Note that if Φ = 0, z is C-CES distributed.
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the stochastic representation z =d µ+RAv is equivalent to

z̃ =d µ̃+RΓ̃1/2ũ (18)

with ũ
def
= (uT ,uH)T . It follows directly 1

2(z̃− µ̃)
HΓ̃−1(z̃− µ̃) =d

1
2R

2‖ũ‖2 = Q.

III. PROOF OF RESULT 2

To prove this result, we follows the different steps of [5, sec. 3]. First, we cheek that the p.d.f. p(z;α)
satisfies the ”regularity” condition

E

(
∂ log p(z;α)

∂αk

)
= 0. (19)

Taking the derivative of the p.d.f. [1, (1)] w.r.t. αk, yields

∂ log p(z;α)

∂αk
= −1

2
Tr(Γ̃−1Γ̃k) + φ(η̃)

∂η̃

∂αk
. (20)

It follows from the definition of η̃ that

∂η̃

∂αk
= −Re

(
µ̃Hk Γ̃−1(z̃− µ̃)

)
− 1

2
(z̃− µ̃)HΓ̃−1Γ̃kΓ̃

−1(z̃− µ̃), (21)

where µ̃k
def
= ∂µ̃

∂αk
and Γ̃k

def
= ∂Γ̃

∂αk
. Making use of the extended stochastic representation (18), the second term

of (21) is given by
1

2
(z̃− µ̃)HΓ̃−1Γ̃kΓ̃

−1(z̃− µ̃) =d
1

2
QũHH̃kũ (22)

where H̃k
def
= Γ̃−1/2Γ̃kΓ̃

−1/2. Thus using η̃ =d Q [1, (5)], we get:

E

(
φ(η̃)

∂η̃

∂αk

)
= −E

(
Q1/2φ(Q)Re(µ̃Hk Γ̃−1/2ũ)

)
− 1

2
E[Qφ(Q)ũHH̃kũ]. (23)

Since Q and u are independent, Q and ũ are also independent. It follows then from E(ũ) = 0, E(ũũH) = 1
M I

and E(Qφ(Q)) = −M [5, (11)] that

E
(
Q1/2φ(Q)Re(µ̃Hk Γ̃−1/2ũ)

)
= 0

and
E[Qφ(Q)ũHH̃kũ] = E[Qφ(Q)]Tr[H̃kE(ũũH)] = −Tr(H̃k) = −Tr(Γ̃−1Γ̃k).

Thus
E

(
φ(η̃)

∂η̃

∂αk

)
=

1

2
Tr(Γ̃−1Γ̃k), (24)

which proves (19).
Now, we evaluate the elements of the FIM. It follows from (20), using (24), that

[INC
CES]k,l = E

(
∂ log p(z;α)

∂αk

∂ log p(z;α)

∂αl

)
= −1

4
Tr(Γ̃−1Γ̃k)Tr(Γ̃

−1Γ̃l) + E

(
φ2(η̃)

∂η̃

∂αk

∂η̃

∂αl

)
. (25)

It follows from (18) that Γ̃−1/2(z̃− µ̃) =d

√
Q ũ and hence from (21) we get

φ2(η̃)
∂η̃

∂αk

∂η̃

∂αl
=d Qφ2(Q)Re

(
µ̃Hk Γ̃−1/2ũ

)
Re
(
µ̃Hl Γ̃−1/2ũ

)
+

1

2
Q3/2φ2(Q)Re

(
µ̃Hl Γ̃−1/2ũ

)
[ũHH̃kũ] +

1

2
Q3/2φ2(Q)Re

(
µ̃Hk Γ̃−1/2ũ

)
[ũHH̃lũ]

+
1

4
Q2φ2(Q)[ũHH̃kũ][ũ

HH̃lũ]. (26)
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The first term of (26) can be further simplified as

Re
(
µ̃Hk Γ̃−1/2ũ

)
Re
(
µ̃Hl Γ̃−1/2ũ

)
=

1

2
Re
(
µ̃Hk Γ̃−1/2ũũHΓ̃−1/2µ̃l

)
+

1

2
Re
(
µ̃Tk Γ̃−∗1/2ũ∗ũHΓ̃−1/2µ̃l

)
,

and thanks to the independence between Q and ũ, the expected value of the first term of (26) is given by

E[Qφ2(Q)]E
(
Re
(
µ̃Hk Γ̃−1/2ũ

)
Re
(
µ̃Hl Γ̃−1/2ũ

))
=

E[Qφ2(Q)]
2M

Re
(
µ̃Hk Γ̃−1µ̃l

)
+

E[Qφ2(Q)]
2M

Re
(
µ̃Tk Γ̃−∗J′µ̃l

)
=

E[Qφ2(Q)]
M

Re
(
µ̃Hk Γ̃−1µ̃l

)
, (27)

using E(ũũH) = 1
M I and E(ũ∗ũH) = 1

M J, Γ̃−∗1/2J′Γ̃−1/2 = Γ̃−∗J′ and J′µ̃l = µ̃∗l . The expected value of
the second and third terms of (26) are zero because the third-order moments of u are zero. Because y =d ‖y‖u,
where ‖y‖ and u are independent when y ∼ CNM (0, I), we get

E[(ũHH̃kũ)(ũ
HH̃lũ)] =

1

E(‖y‖4)
E[(ỹHH̃kỹ)(ỹ

HH̃lỹ)].

Noting that H̃k and H̃l are structured as Ã and B̃ of the Lemma 1, this lemma applies to the couples
(H̃k, H̃l) and (I, I) giving E[(ỹHH̃kỹ)(ỹ

HH̃lỹ)] = Tr(H̃k)Tr(H̃l)+2Tr(H̃kH̃l) and E[‖ỹ‖4] = 4M(M+1).
Consequently the expected value of the last term of (26) is given by

E

(
1

4
Q2φ2(Q)[ũHH̃kũ][ũ

HH̃lũ]

)
=

E(Q2φ2(Q))
4M(M + 1)

(
Tr(H̃k)Tr(H̃l) + 2Tr(H̃kH̃l)

)
=

E(Q2φ2(Q))
4M(M + 1)

(
Tr(Γ̃kΓ̃

−1)Tr(Γ̃lΓ̃
−1) + 2Tr(Γ̃kΓ̃

−1Γ̃lΓ̃
−1)
)
.(28)

Gathering (27) (28) in (25) concludes the proof.

IV. PROOF OF EQ. (9) OF [1]

Using that [1, (4)] is a p.d.f. with
∫∞
0 δ−1M,gQ

M−1
t g(Qt)dQt = 1 and that E(Q) = E(R2) <∞, we get

E(Qφ(Q)) =
∫ ∞
0

δ−1M,gQ
Mg′(Q)dQ =

[
δ−1M,gQ

Mg(Q)
]∞
0
−M

∫ ∞
0

δ−1M,gQ
M−1g(Q)dQ = −M. (29)

It follows from Cauchy-Schwarz inequality that

M2 = (E(Qφ(Q)))2 ≤ E(Q)E(Qφ2(Q)) = E(Q)Mξ1. (30)

Next, note that

E(Q) =
∫ ∞
0

δ−1M,gQ
Mg(Q)dQ = δ−1M,gδM+1,g

∫ ∞
0

δ−1M+1,gQ
Mg(Q)dQ = δ−1M,gδM+1,g =M. (31)

Plugging (31) in (30) proves Eq. (9) of [1].

V. PROOF OF RESULT 4

Because ξ2 = 1 for Gaussian distributions, we get for NC-CES distributions:

INC
CES(α2)− INC

CN(α2) =
ξ2 − 1

2

(
dvec(Γ̃)

dαT2

)H (
(Γ̃−T ⊗ Γ̃−1) +

1

2
vec(Γ̃−1)vecH(Γ̃−1)

)
dvec(Γ̃)

dαT2
(32)

where (Γ̃−T ⊗ Γ̃−1) + 1
2vec(Γ̃

−1)vecH(Γ̃−1) is positive definite. Replacing Γ̃ by Γ, the proof is identical for
C-CES distributions.
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VI. PROOF OF RESULT 5

We note first that the general expressions of the SCRB proved here is valid for arbitrary parameterization
of Aθ if the real-valued parameter of interest θ ∈ RL is characterized by the subspace generated by the
columns of the full column rank M ×K matrix Aθ with K < M . It can be applied for example to near or
far-field DOA modeling with scalar or vector-sensors for an arbitrary number of parameters per source st,k
(with st

def
= (st,1, .., st,K)T and many other modelings as the SIMO and MIMO modelings. Let us start with

the circular case for which Ω = 0 and thus Γ̃ = Diag(Σ,Σ∗) where Σ = AθRsA
H
θ + σ2nI. The SCRB form

for this case can be then written through the compact expression of the general FIM given in Result 2, using
(1) and (2), as follows:

1

T
SCRB−1CES(α) =

(
dvec(Σ)

dαT

)H (
ξ2(Σ

−T ⊗Σ−1) + (ξ2−1)vec(Σ−1)vecH(Σ−1)
)(dvec(Σ)

dαT

)
. (33)

The SCRB of θ alone can be deduced from (33) as follows:
1

T
SCRB−1CES(θ) = GHΠ⊥∆G, (34)

with G
def
= T

1/2
i (Σ−T/2 ⊗Σ−1/2)∂vec(Σ)

∂θT
and ∆

def
= T

1/2
i (Σ−T/2 ⊗Σ−1/2)∂vec(Σ)

∂αTn
where

Ti
def
= ξ2I + (ξ2 − 1)vec(I)vecT (I). (35)

Let’s further partition the matrix ∆ as ∆ = T
1/2
i (Σ−T/2 ⊗ Σ−1/2)

[
∂vec(Σ)
∂ρT | ∂vec(Σ)

∂σ2
n

]
def
= [V | un]. In the

sequel, the proofs presented here follow the lines of the proof presented in [6] for circular Gaussian distributed
observations. It follows from [6, rel. (14)] that

Π⊥∆ = Π⊥V −
Π⊥Vunu

H
n Π⊥V

uHn Π⊥Vun
. (36)

Using ∂vec(Σ)
∂σ2

n
= vec(I), we obtain

un = T
1/2
i vec(Σ−1). (37)

Consequently using (34) and (36), if gk denotes the kth column of G, the (k, l) element of SCRB−1CES(α) can
be written elementwise as

1

T

[
SCRB−1CES(θ)

]
k,l

= gHk Π⊥Vgl −
gHk Π⊥Vunu

H
n Π⊥Vgl

uHn Π⊥Vun
. (38)

Let us proceed now to determine the expression of gk. Letting A′θk
def
= ∂Aθ

∂θk
, we get

∂Σ

∂θk
= A′θkRsA

H
θ + AθRsA

′H
θk , (39)

Hence, using (1), the kth column of G in (38) is given by

gk = T
1/2
i vec(Zk + ZHk ) where Zk

def
= Σ−1/2AθRsA

′H
θk Σ−1/2. (40)

Next, we determine V and then Π⊥V. Since Rs is a Hermitian matrix, it can be then factorized as

vec(Rs) = Jρ (41)

where J is a K2 ×K2 constant nonsingular matrix. It follows, using (1), that V can be be expressed as

V = T
1/2
i (Σ−T/2A∗θ ⊗Σ−1/2Aθ)J

def
= T

1/2
i WJ.
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Note from (38) that the SCRB depends on V only via Π⊥V, that can be expressed as

Π⊥V = I−V(VHV)−1VH = I−T
1/2
i W(WHTiW)−1WHT

1/2
i . (42)

After some algebraic manducation, using (1) and (2), we obtain

WHTiW = ξ2(U
∗ ⊗U) + (ξ2 − 1)vec(U)vecH(U),

where U
def
= AH

θ Σ−1Aθ is a K × K Hermitian nonsingular matrix. It follows from matrix inverse lemma
(given by (7)), that its inverse can be expressed as

(WHTiW)−1 =
1

ξ2
(U−∗ ⊗U−1)− ηvec(U−1)vecH(U−1)

where η def
= ξ2−1

ξ22(1+
ξ2−1

ξ2
vecH(Ũ)(Ũ−∗⊗Ũ−1)vec(Ũ))

can be simplified, using (4), as η def
= ξ2−1

ξ22(1+
ξ2−1

ξ2
K)

. Thus, using

(1) and (2), we obtain

W(WHTiW)−1WH =
1

ξ2
(H∗1 ⊗H1)− ηvec(H1)vec

H(H1)
def
= B, (43)

where H1
def
= Σ−1/2AθU

−1AH
θ Σ−1/2. Therefore, (42) becomes

Π⊥V = I−T
1/2
i BT

1/2
i . (44)

Now let us show that uHn Π⊥Vgk = 0. It follows from (37) and (40), using (44), that

uHn Π⊥Vgk = vecH(Σ−1)Tivec(Zk + ZHk )− vecH(Σ−1)TiBTivec(Zk + ZHk ). (45)

It follows, after some algebraic manipulation, using (1), (3) and (43) that

TiBTi = ξ2(H
∗
1 ⊗H1)− ξ22ηvec(H1)vec

H(H1)

+ (ξ2 − 1)(1−Kηξ2)
(
vec(I)vecH(H1) + vec(H1)vec

T (I)
)

+
(ξ2 − 1)2K

ξ2
(1−Kηξ2)vec(I)vecT (I), (46)

using H2
1 = H1 and Tr(H1) = K. Using the definition (35) for Ti and (3), the first term of (45) can be

expressed as

vecH(Σ−1)Tivec(Zk + ZHk )=ξ2Tr(Σ
−1(Zk + ZHk )) + (ξ2 − 1)Tr(Σ−1)Tr(Zk + ZHk )

=2ξ2Re(Tr(Σ
−2AθRsA

′H
θk ))+2(ξ2−1)Tr(Σ−1)Re(Tr(Σ−1AθRsA

′H
θk ))(47)

using Tr(Σ−1(Zk + ZHk )) = 2Re(Tr(Σ−2AθRsA
′H
θk
)) and Tr(Zk + ZHk ) = 2Re(Tr(Σ−1AθRsA

′H
θk
)). After

simple algebraic manipulations, using (46), (1) and (3), and that Tr(Zk + ZHk ) = Tr((Zk + ZHk )H1) =
Tr(H1(Zk + ZHk )H1) = 2Re(Tr(Σ−1AθRsA

′H
θk
)) and Tr(Σ−1H2

1) = Tr(Σ−1H1), the second term of (45)
can be simplified as

vecH(Σ−1)TiBTivec(Zk + ZHk )

= ξ2Tr(Σ
−1H1(Zk + ZHk )H1) + (ξ2 − 1)Tr(Σ−1)Tr(Zk + ZHk )

= 2ξ2Re(Tr(Σ
−1AθU

−1AH
θ Σ−2AθRsA

′H
θk )) + 2(ξ2 − 1)Tr(Σ−1)Re(Tr(Σ−1AθRsA

′H
θk ))

= 2ξ2Re(Tr(Σ
−2AθRsA

′H
θk )) + 2(ξ2 − 1)Tr(Σ−1)Re(Tr(Σ−1AθRsA

′H
θk )), (48)

where the first term in the last line is obtained using AθU
−1AH

θ Σ−2Aθ = Σ−1Aθ. It follows, therefore, from
(45), (47) and (48) that

uHn Π⊥Vgk = 0.
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This identity together with (40) and (44) allows us to rewrite the individual elements of (38) as

1

T

[
SCRB−1CES(θ)

]
k,l

= gHk Π⊥Vgl

= vecH(Zk + ZHk )Tivec(Zl + ZHl )− vecH(Zk + ZHk )TiBTivec(Zl + ZHl ). (49)

After simple algebraic manipulations, using the definition (35) for Ti, (1) and (3), the first term in (49) can be
simplified as

vecH(Zk + ZHk )Tivec(Zl + ZHl ) = ξ2Tr((Zk + ZHk )(Zl + ZHl )) + (ξ2 − 1)Tr(Zk + ZHk )Tr(Zl + ZHl )

= 2ξ2

[
Re(Tr((Σ−1AθRsA

′H
θl )(Σ

−1AθRsA
′H
θk )))

+ Re(Tr((Σ−1A
′

θlRsAθ)(Σ
−1RsA

′H
θk )))

]
+ 4(ξ2 − 1)Re(Tr(Σ−1AθRsA

′H
θk ))Re(Tr(Σ

−1AθRsA
′H
θl )) (50)

Similarly, after some algebraic manipulations, using (46), (1) and (4), the second term in (49) can be simplified
as

vecH(Zk + ZHk )TiBTivec(Zl + ZHl ) = 2ξ2

[
Tr(Re((Σ−1AθRsA

′H
θl )(Σ

−1AθRsA
′H
θk )))

+ Tr(Re((Σ−1AU−1AHΣ−1A
′

θlRsA
H
θ )(Σ

−1AθRsA
′H
θk )))

]
+ 4(ξ2 − 1)Tr(Re(Σ−1AθRsA

′H
θk ))Tr(Re(Σ

−1AθRsA
′H
θl )). (51)

It follows then from (50) and (51) that (49) can be simplified as

1

T

[
SCRB−1CES(θ)

]
k,l

= 2ξ2Re
(
Tr
[
(Σ−1 −Σ−1AU−1AHΣ−1)(A

′

θlRsA
H
θ Σ−1AθRsA

′H
θk )
])

=
2ξ2
σ2n

Re
(
Tr
[
(Π⊥Aθ

)(A
′

θlRsA
H
θ Σ−1AθRsA

′H
θk )
])

=
2ξ2
σ2n

Re
(
Tr
[
Π⊥Aθ

A
′

θlHA
′H
θk

])
, (52)

where the second equality is obtained using Σ−1 −Σ−1AU−1AHΣ−1 = 1
σ2
n
Π⊥A thanks to AU−1AHΣ−1 =

A(AHA)−1AH . Using (4), we can write (52) in matrix form as is shown in Result 5.
In the noncircular case, the proof follows the similar above steps by replacing Ti by T̃i

def
= ξ2

2 I +
ξ2−1
4 vec(I)vecT (I), and Σ by Γ̃ where (39) is replaced by ∂Γ̃

∂θk
= Ã′θkRs̃Ã

H
θ + ÃθRs̃Ã

′H
θk

with Ãθ
def
=

Diag(Aθ,A
∗
θ) and Ã′θk

def
= ∂Ãθ

∂θk
.

VII. PROOF OF RESULT 6

The proof of this result follows similar steps as the proof of Result 5 based on [7, th. 1] by replacing Σ

by Γ̃ = ÃωRrÃ
H
ω + σ2nI, Aθ by Ãω =

(
Aθ∆φ

A∗θ∆
∗
φ

)
where ω def

= (θT ,φT )T with φ def
= (φ1, ..., φK)T , and

also by pointing out that Rr ∈ RK×K is symmetric which lead us to replace J in (41) by Dρ defined in
[7, th. 1] to get vec(Rr) = Dρρ. Thus, V becomes V = T̃

1/2
i WDρ with W = (Γ̃−T/2Ã∗ω ⊗ Γ̃−1/2Ãω).

Hence Π⊥V in [7, th. 1] takes here the following key form expression: Π⊥V = I − T̃
1/2
i BT̃

1/2
i with B =

2
ξ2

W(U−1 ⊗U−1)NKWH − η̃vec(H1)vec
H(H1) where U

def
= ÃH

ω Γ̃−1Ãω, NK is defined in [7, th. 1] and

η̃
def
= ξ2−1

ξ22(1+
ξ2−1

2ξ2
K)

. The rest of the proof follows the same lines of arguments as that of the proof of Result 5.
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