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I. USEFUL RELATIONS AND LEMMA
A. Useful relations

We will make use of the following well known relations which hold for any conformable matrices A, B, C
and D.

vec(ABC) = (CT @ A)vec(B), (1)
(A®B)(C®D)=AC®BD, 2)
Tr(AB) = vec (Af)vec(B), 3)
Tr(ABCD) = vec!’ (A7) (D" @ B)vec(C), 4)
Tr(A ® B) = Tr(A)Tr(B), )
Tr[K(A ® B)] = Tr(AB), (6)

where K is the vec-permutation matrix which transforms vec(C) to vec(C”) for any square matrix C,

(A+BCD)'=A"!'-A"'B(C!'+DA'B)'DA !, (7)
where A, C and C~! + DA !B are assumed invertible.

B. Useful lemma for the proof of Result 2
~ A, A ~ B, B . . .
Lemma 1: Let A = . . )Jand B = N . | be two 2M x 2M partitioned matrices with A,
Ay A] B; Bj
and By are M x M Hermitian matrices, Ay and By are M x M complex symmetric matrices, and suppose
that y ~ CN7(0,1). Then

E[(y"Ay)(¥"BY)] = Tr(A)Tr(B) + 2Tr(AB), ®)
where y o (" y™")T.
Proof:
We get from (4) then (2)
E[(y"Ay)("By)] = (AT © BIEFY @3], ©)

where from e.g. [2, Appendix B]
ETYy oyy") =101+ K(J' @I )IQ1I) + vec(I)vec (I), (10)



T ( o1 ) Plugging (10) in (9), we get:

E[(y7AY)(¥"BY)] = T[(ATeB)IaD)]+ (A" @ B)KI' @)1 1)

+ Tr[(AT @ B)vec(I)vec! (I)], (11)
where we have successively B B B B

Tr[(AT @ B)I®I)] = Tr(A)Tr(B)
from (2) and (5), B _ —

Tr[(AT @ BJK(J ® J)(I®1)] = Tr(AB)
from (2), (6) and J’ATJ' = A, and
Tr[(AT @ B)vec(I)vec! (I)] = Tr(AB)

from (4). Plugging these three expressions in (11), (8) follows. |

II. PROOF OF RESULT 1 AND EQ. (5) OF [1]
Since a linear transform in R?M is tantamount to R-linear transform in C, the definition of GCES given
in [3] is equivalent to saying that'

z = p+ ¥zy + Pz, (12)
where W and ® are M x M fixed complex-valued matrices and zg is a complex spherical distributed r.v. with
stochastic representation zg =4 Ru [4, th. 3]. Since E(uufl) = ﬁl and E(uu’) = 0 [4, lemma 1b], we get
if B(R?) < oo,

E(R?) E(R?)
No, No,
where o is defined by E[(z—pu)(z—p)"] = 0.% and E[(z—u)(z—p)’] = 0.2 whose value is E(R?)/N [4,

(14)]. Consequently (13) reduces to

AAT — 9ol + 8" and AAAT =0T + UHT. (14)

> = AAH =

(e + ") and Q=AA AT = (e’ + wa’), (13)

By the one to one change of variable (because A is nonsingular): ¥/ = AW and &' = AP, (14) is equivalent
to:
I=0'07 1" and A, =0T + &7, (15)

It is clear that the solution of (15) is not unique, but we can look for solutions in real-valued diagonal form
(T, ®) = (A1, Ay) with
I=A2+A2 and A, =2AA, (16)

whose solutions are A; = % and Ay = AJEA‘ where A def I+ A, and A_ def VI—AL.
Consequently
z=g p+R[Pu+ Pu’]=p+RA[Aju+ Asu’]. (17)

If E(R?) is not finite, the scatter and pseudo-scatter matrices of z given by (17) are also X = AA' and
Q= AA,AT, respectively.

|
I A\ |1 (T 1 I+A, 0 1 (1T 1
From the eigenvalue decomposition ( A, 1 ) = [ﬁ (I —I>] ( 0 I+A, ) [\/ﬁ <I —I)} , we
A
I

~ (A O I K =12 _ (A O A Ay
deduce from I' = ( 0 A* >< A, >< 0 AT> that '/ = 0 A* Ay A, . Consequently,

'Note that if ® = 0, z is C-CES distributed.



the stochastic representation z =4 p + RAvV is equivalent to

Z =4 ﬁ+R1~_‘1/21~1 (18)

d

with @ % (u?, uf)T. It follows directly 1(z — @)AT (2 — 1) =4 R2||T|? = Q. [

III. PROOF OF RESULT 2
To prove this result, we follows the different steps of [5, sec. 3]. First, we cheek that the p.d.f. p(z; )

satisfies the “regularity” condition

1 .

o (Lestiz) w
60%

Taking the derivative of the p.d.f. [1, (1)] w.r.t. oy, yields

Dlogp(za) _ Ly iag o) 2

1
—_—. 20
ooy, 2 Oay, 0
It follows from the definition of 7} that
on CHE 1/~ o~ 1. == =1~ -
T~ _Re (NkHF l(z—u)) — -z - pTT, 0z - o), (1)
day, 2

~ def 9p =~ def Hf . . .
where = 887,2 and T, = 5971;. Making use of the extended stochastic representation (18), the second term

of (21) is given by . )
5@ — W) T (2 — ) =g 5 Qu Hy (22)
where H,, % T-1/21, T-1/2, Thus using 71 =4 Q [1, (5)], we get:
on 1/~ 1 CH .
E <¢(ﬁ)(%?k> — _E (Q1/2¢(Q)Re(u£r 1/2u)> - SE[Q0(Q)a" Hya) (23)

Since Q and u are independent, Q and 1 are also independent. It follows then from E(a1) = 0, E(au”) = 41
and E(Q¢(Q)) = —M [5, (11)] that

B (Q20(Q)Re(AfT~"21)) = 0

and
E[Q¢(Q)u"H,] = E[Q¢(Q)|Tr[H E(an)] = —Tr(Hj) = —Tr(T~'Ty).
Thus N
E <¢(ﬁ)$> = %Tr(f”fw, (24)

which proves (19).
Now, we evaluate the elements of the FIM. It follows from (20), using (24), that

0logp(z; ) 0log p(z; ) 1~ =~ ~ i~ _. on on
NC _ _ L 1 1 2
Mol = b ( ERE I TR ) _ B R) + B () ) 09

It follows from (18) that T—Y/2(z — i) =4 +/Q 1 and hence from (21) we get

on on
2 (7)o L

T oo T ) e )

+ %Q:”/%Z(Q)Re (nﬁf*/?ﬁ) [ H,a) + %Q3/2¢2(Q)Re (ng’f*/?ﬁ) @l Byl

+ i Q*¢?(Q)[a" Hya)[a" Hya). (26)



The first term of (26) can be further simplified as
Re ( HF 1/25 ) (ﬂle\—l/Qﬁ) fRe ( HF 125 6HT-1/2; ) n Re ( Tr *1/25 Hf—l/Qﬂl) ,
and thanks to the independence between Q and u, the expected value of the first term of (26) is given by
E[Q4(Q)E <Re (ﬁkH f“l/Qﬁ) Re (ng f‘”%ﬁ)) -

E[Q¢* ()], (-~ mm-1- E[Q¢*(Q)] oy E[Q¢*(Q)] ~HT -1
S Re (BT ) + =S Re (BT ) = SR (T ) 27)
using E(@a’) = 41 and E(@*af) = LJ, T*1/23T-1/2 = T=*J and J'fi; = 1}. The expected value of
the second and third terms of (26) are zero because the third-order moments of u are zero. Because y =4 ||y||u,
where ||y|| and u are independent when y ~ CANj;(0,1), we get

E((a"H;a) (@ Hw)] = E((y"H:y) (v Hiy)].

1
E(lyll*)
Noting that H,, and H; are structured as A and B of the Lemma 1, this lemma apphes to the couples
(Hy, H)) and (I, 1) giving B[(¥7 Hy) (77 H,3)] = Tr(Hy) Tr(H;) + 2Tr(H,H,) and B[[[7]]4) = 4M (M +1).
Consequently the expected value of the last term of (26) is given by

~ ~ 2 42
E(ig?ab?(Q){ﬁHHkﬁHﬁHHzﬁ]) = ﬁ(]@if

)) (T (H,,) Tr(H)) +2Tr(HkHl))
)
)

_ E(@*¢*(Q) = =
= DD ( r(0, T~ Te(T, DY) + 2T(T, DT ))(28)
Gathering (27) (28) in (25) concludes the proof. |

IV. PROOF OF EQ. (9) oF [1]
Using that [1, (4)] is a p.d.f. with fo 5;4g (Qt)th =1 and that E(Q) = E(R?) < oo, we get
E(Q4(Q)) = / 03ty QMg (Q)dQ = [5&ngMg(Q)}ZO - M / 631, QMg(QdQ = ~ M. (29)
0 0
It follows from Cauchy-Schwarz inequality that
M? = (E(Q¢(Q)))* < E(QE(Q¢°(Q)) = E(QMé. (30)
Next, note that
/ 01,2 9(Q)dQ = 5M95M+1,g/ 1,2 9(Q)dQ = 6, Oy =M. (31
Plugging (31) in (30) proves Eq. (9) of [1]. |

V. PROOF OF RESULT 4

Because £ = 1 for Gaussian distributions, we get for NC-CES distributions:

& —1 (dvec(f‘)

2 dad

dvec(T)
dod

ItEs (o) — INK (o) = (32)

H
- - 1 o -
> ((1" Teor 1)+§vec(I‘ Dyvec (T 1))

where (T~7 ® T'=1) 4 Lvec(T~")vec! (T 1) is positive definite. Replacing T" by T, the proof is identical for
C-CES distributions. |



VI. PROOF OF RESULT 5

We note first that the general expressions of the SCRB proved here is valid for arbitrary parameterization
of Ay if the real-valued parameter of interest & € R¥ is characterized by the subspace generated by the
columns of the full column rank M x K matrix Ay with K < M. It can be applied for example to near or
far-field DOA modeling with scalar or vector-sensors for an arbitrary number of parameters per source s;
(with sy def (811, 5¢.)7 and many other modelings as the SIMO and MIMO modelings. Let us start with
the circular case for which € = 0 and thus I’ = Diag(%, £*) where & = A¢R Al + 621. The SCRB form
for this case can be then written through the compact expression of the general FIM given in Result 2, using
(1) and (2), as follows:

%SCRBEES(a) = <d\§Z(TE)>H (LETex ™)+ (fz—l)vec(E_l)vecH(E_l)) <dV;(CX(TE)> . (33
The SCRB of @ alone can be deduced from (33) as follows:
%SCRB@ES(B) = G'TI;G, (34)
with G € T;2(57/2 @ 571/2) 223 and A € T;/4(577/2 @ £71/2) 254 where
T; 9 &I + (& — 1)vee(I)vec” (). (35)
Let’s further partition the matrix A as A = Til/Q(E]_T/2 ® 2_1/2) QVSZ(TE) \ 8V§Z(ZE) def [V | u,]. In the

sequel, the proofs presented here follow the lines of the proof presented in [6] for circular Gaussian distributed
observations. It follows from [6, rel. (14)] that

me — s — g u,u, Iy (36)
v ul/ Tl u,
Using 8V§ZE%2) = vec(I), we obtain
u, = T} *vec(Z71). (37)

Consequently using (34) and (36), if g denotes the kth column of G, the (k,[) element of SCRB&ES(a) can
be written elementwise as

1 -1 Hypl g My, u// g
T [SCRBCES(O)]k,l =g Hye - UlnHH%;ln (38)
Let us proceed now to determine the expression of gj. Letting A/ek def %1;‘;, we get
ox )
—~ =A) RAJ + AyRAJ, (39)
agk k k
Hence, using (1), the kth column of G in (38) is given by
g, = T} *vec(Zy, + Zf) where Z; & 124, RA} 512, (40)
Next, we determine V and then H\L,. Since R is a Hermitian matrix, it can be then factorized as
vec(R;) =Jp (41)

where J is a K? x K? constant nonsingular matrix. It follows, using (1), that V can be be expressed as

V=T/A(2T2A; 0 512403 ¥ T/*WJ.



Note from (38) that the SCRB depends on V only via II5;, that can be expressed as
Iy =1- V(VAV) 'V = 1- T/ *W(WHAT,W)-'WHT}/? (42)

I
After some algebraic manducation, using (1) and (2), we obtain
WHT,W = £ (U* ® U) + (& — 1)vec(U)vec (U),
def

where U = Ag $7 1Ay is a K x K Hermitian nonsingular matrix. It follows from matrix inverse lemma
(given by (7)), that its inverse can be expressed as
1
(WHT,W)~! = é—(U‘* @ U™ — gvec(U)vec? (U
2
def Ea—1 T : def &1 :
where n = B0 E e (0)(0 50 vee(0)) can be simplified, using (4), as n = =yl Thus, using
(1) and (2), we obtain
1
W(WAT,W) "W = ¢ (Hi @ Hy) - nvec(H )vec” (H,;) % B, (43)
2

where H; def E_I/ZA(;U_IAEZ_I/Q. Therefore, (42) becomes
Iy =1- T/°BT,/%. (44)
Now let us show that ug H%,gk = 0. It follows from (37) and (40), using (44), that
uTIg g = vec! (BN Tyvec(Zy, + ZH) — vec! (7Y T BT vec(Zy, + Z1). (45)
It follows, after some algebraic manipulation, using (1), (3) and (43) that

T;BT; = &(H; ®Hy) — Envec(H,)vec (H))

+ (& —1)(1 - Kn&) (Vec(I)vecH(Hl) + VeC(Hl)VGCT(I>)
2
+ (52521)[{(1 — Knés)vee(I)vec! (I), (46)

using H% = H; and Tr(H;) = K. Using the definition (35) for T; and (3), the first term of (45) can be
expressed as
vec (BN Tyvec(Zy, + ZH) =& Tr(27Y(Zy, + ZH)) + (&2 — )Te(Z Y Te(Zy, + ZF)
=26Re(Tr(E?AgRAT)) +2(6& — 1) Tr(Z ) Re(Tr(Z ' AgR,AT))@47)
using Tr(27Y(Zy + Zf)) = 2Re(Tr(Z2AgRsA 7)) and Tr(Zy + Z]!) = 2Re(Tr(S7'AgR A ). After
simple algebraic manipulations, using (46), (1) and (3), and that Tr(Z; + ZkH) = Tr((Zy + Z;) ) H,) =
Tr(Hy(Zy, + Zf )H;) = 2Re(Tr(Z 7' AgR A7) and Tr(S7'H}) = Tr(X7'H,), the second term of (45)
can be simplified as
vec (BN T;BTvec(Zy, + Z11)
= 6T (ETH (2 + ZEDHHY) + (& - D)Te(ZHTe(Z) + 2
= 265Re(Tr(Z AU AT E2AGRAT)) +2(& — 1)Tr(ZHRe(Tr(T AR AY))
= 26Re(Tr(Z 2 AR AY)) +2(& — DTr(ZHRe(Tr(Z'AgRLA L)), (48)
where the first term in the last line is obtained using AgU_lAgf Y2Ay = X1 Ay. It follows, therefore, from

(45), (47) and (48) that
ugﬂ%,gk =0.



This identity together with (40) and (44) allows us to rewrite the individual elements of (38) as

~ [SCRBGs(0)],, = sfTig
= vec(Zy + ZE)Tivec(Zy + ZF) — vec® (Zy, + ZE)T;:BTivec(Zy + Z1). (49)
After simple algebraic manipulations, using the definition (35) for T;, (1) and (3), the first term in (49) can be
simplified as
vec! (Zy, + Zi ) Tivec(Zy + Zf') = &Tr((Zy+ Zi )(Zo + Z[")) + (&2 — V)'Te(Zy, + Z ) Te(Zy + Z{7)
= 26 |Re(Tr((S7'AgR AT (ST AR, AY))))
+ Re(Tr((Z7'A5R:A0)(Z7'RsAT)))
+ 4(& — DRe(Tr(Z AR AL ) Re(Tr (T AgR,AYT)) (50)

Similarly, after some algebraic manipulations, using (46), (1) and (4), the second term in (49) can be simplified
as

vecH (Zy + ZH)T; BT vec(Z) + ZH) = 26 [Tr(Re((z—lAeRsA;{f (S AGRAL)))
n Tr(Re((E_lAU_lAHE_lA;lRsAgl)(E_IAQRSAIQIIf)))}
+ 4(& - DTr(Re(Z'AgR,A ) Tr(Re(Z T AgRLA ). (51)
It follows then from (50) and (51) that (49) can be simplified as

% [SCRBGEs(8)],, = 26Re (Tr {(2*1 — =AU AT S (A R, AN S TIAGRA )])

252 ’ _ i
= SRe (Tr[(1%,)(Ap RAJ ST ARAY) )
n
_ 252 R 1 ’ 'H
= Z2Re (Tr [IT5, A5 HAG| ), (52)
n
where the second equality is obtained using X! — ZT!AUTA#®E"! = LTI thanks to AUTTAH S =
A(AH A)_IAH . Using (4), we can write (52) in matrix form as is shown in Result 5.
In the noncircular case, the proof follows the similar above steps by replacing T; by T; def %’I +
&Zl_lvec(I)vecT(I), and ¥ by T' where (39) is replaced by 371; = AgkRgAf + AgRgAIQII;I with Ay def

. . <, def gA
Diag(Ap, A}) and A’gk = %?k?.

VII. PROOF OF RESULT 6

The proof of this result follows similar steps as the proof of Result 5 based on [7, th. 1] by replacing X
~ . - ~ ApA
by I = A R, AH + 521, Ay by A, = < AL ) where w @ (87, )T with ¢ % (41, ..., 6)7, and

6=¢
also by pointing out that R, € RX*X is symmetric which lead us to replace J in (41) by D, defined in
[7, th. 1] to get vec(R,) = D,p. Thus, V becomes V = T/*WD, with W = (I-7/2A* ® T-1/2A,,).
Hence II3; in [7, th. 1] takes here the following key form expression: ITy; = I — Tg/ 2l’)’T;/ ? with B =
EW (U @ U )NgWH — jjvec(H) )vec” (Hy) where U ©F AHT-1A,,, Ny is defined in [7, th. 1] and
~ def £—1

1= aire—rn The rest of the proof follows the same lines of arguments as that of the proof of Result 5.
2V 2y
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