Direction-Finding Arrays of Directional Sensors for
Randomly Located Sources

Correspondence

The problem of directional sensor placement and orientation is
considered when statistical information about the source direction of
arrival is available. We focus on two-sensor arrays and form a cost
function based on the Cramér—Rao bound that depends on the
probability distribution of the coplanar source direction. Proper
positioning and orientation of the sensors enable the two-sensor
array to have an accuracy comparable to that of a three- or
four-sensor uniform circular array.

[.  INTRODUCTION

Direction-of-arrival (DOA) estimation is a major topic
of antenna-array signal processing, studied extensively
over decades [1]. Source parameters (range, polarization,
and, most notably, DOA) are extracted from the array
manifold with an accuracy that depends on the estimation
algorithm but also on the array geometry. The potential of
array-geometry adaptation has recently been demonstrated
[2-5] to reduce the Cramér—Rao bound (CRB) on the
DOA of deterministic/random far/near sources. For
instance, (near) optimum nontrivial antenna-array
geometries were found that improve DOA estimation
accuracy by 36% to 85%, depending on the a priori
information available about the source, compared to the
more regularly used uniform circular array (UCA) [4].

Similar to previous work [2-5], we continue to
consider narrowband sources. However, in this paper,
sensors are not omnidirectional, posing the problem of
sensor orientations in addition to positions. We continue to
refer to the CRB as our performance measure, because it is
both algorithm independent and achievable by a number
of popular techniques [6, 7]. The CRB is different from
one look direction to the other, so we use the expected
CRB (ECRB) to build a geometric cost function that also
depends on the probability density function (pdf) of the
source DOA [2, 4, 8]. Optimization of the analytically
intractable CRB-based cost function is achieved by means
of a systematic search, preferably to heuristic techniques
[2, 8, 9]. In order to reduce the computation burden, a
minimal number of two sensors is considered. This is
relevant to a number of applications that can
accommodate only short-aperture arrays, notably
autonomous underwater vehicles used in, for example,
adaptive sampling networks [10, 11].

We focus on DOA estimation accuracy and, for
instance, do not take array ambiguities into consideration.
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First, array ambiguities are less frequent when arrays of
directional sensors are used [12]. Second, they can be
avoided by an appropriate choice of the spacing between
adjacent sensors [12], which is allowed by the proposed
algorithm. We also assume a source in the array plane.
This is meaningful to a number of terrestrial applications
[12—-14] and amounts to prioritizing the azimuth angle.
With the azimuth as our unique parameter of interest, we
develop a scalar-valued performance measure and conduct
an optimization in this perspective.

When the response of the directional sensors is not
specified, the CRB has a noninterpretable expression [12].
It is only once we assume a specific type of sensor, as in
[12, 14], that performance analysis (and optimization) can
be conducted. In our tests, we consider cardioid-type
sensors for both the proposed geometry-optimized
two-sensor array and the reference larger-sized UCAs. In
the pessimistic case when there is no information about
the source DOA, a scenario studied in [12], we find that
sensors should be pointing in different directions, so that
the CRB is finite at every possible look direction and the
subsequent ECRB is finite as well. If the source DOA is
known with (moderate) uncertainty, the optimized
two-sensor array has a better accuracy than the
three-sensor UCA. The fact that we can achieve with two
sensors an accuracy normally achievable by (a UCA of)
three sensors implies significant reduction of the size,
weight, power, and cost of the system [12], since every
single sensor requires a separate receiver channel.

The paper is organized as follows. In Section II, we
introduce the observation model and develop expressions
of the CRB. In Section III, the CRB of the array of two
directional sensors is studied in detail and a subsequent
geometry optimization procedure is defined. In Section IV,
tests are conducted using cardioid-type sensors to compare
the optimized array to larger size UCAs. Finally, a
conclusion is given in Section V.

[I.  SIGNAL MODEL AND GENERAL RESULTS

A narrowband source is emitting a signal s(¢) of
wavelength A in the direction of an array of M coplanar
sensors. In the [O, x, y) plane, sensor m is placed at point
P,, with a distance OP,, = p,,A from the origin O and an
angle ¢,, between the [0, x) axis and [O, P,,). The far-field
source is seen at the antenna array under the DOA angle 6,
restricted to be in [—m, 7], with respect to the [O, x) axis.
All angles are measured counterclockwise. The array
output at time index ¢,

x(t)=a@)s()+n(),

t=1t,...,1n,

is a scaled and noise-corrupted replica of the
DOA-dependent array response vector (ARV) a(@). The
ARV is an extension of the array steering vector that
incorporates gains of the sensors [15]. Its mth component
is given by

[a(@)], = gm (B) exp [j27 pp cOS (O — @u)]. (1)
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where we have assumed that sensor m, not necessarily
omnidirectional, has a directional response described by
the function g,,(9).!

Snapshots (X(¢));=, ...+, are used to estimate the
parameter 6 using a variety of techniques. The CRB [16]
often serves as a benchmark to compare estimation
performance of the different estimation algorithms. It
represents the lowest mean square error achievable by any
unbiased estimator. The CRB is also of practical
importance [13] because (in the single-source case
considered here) it is achieved (asymptotically, as the
number of snapshots increases) by both the high-resolution
MUSIC algorithm [6] and the low-resolution
beam-forming techniques [7]. The following statistical
properties are often assumed about s(f) and n(?):

1) They are independent.
zero-mean circular Gaussian distributed with covariance
E[n(#)n"()] = 61, I being the M x M identity matrix.

3) The values (s(t));=y,,....., are assumed to be either
deterministic unknown parameters (the so-called
conditional or deterministic model) or independent
zero-mean circular Gaussian distributed with variance o
(the so-called unconditional or stochastic model). These
conditions, while of common use in performance analysis
(see, e.g., [16]), do not account for some practical aspects
(spatially or temporally correlated noise, mutual coupling,
etc.) whose impact is to be evaluated empirically, rather
than analytically, which is beyond the scope of this study.
The CRBs associated with both models have been proved
in [5] to be proportional (one to the other).? For instance,
the CRB associated with the first model is given by

2

CRB(0) = 525 F~' (0). )

s

where, given a’'(0) al da(9)/d0, the scalar-valued

a"@a @)

F©) =|a®)| la@®)]>

3)
is a convenient design criterion because it is independent
from the noise/signal power and the number of snapshots.
Consequently, we will be referring to these expressions
throughout the paper.

lll. THEORETICAL DEVELOPMENT
A. Optimization Criterion
The array is made of two directional sensors [17]. One

is placed at the origin, but the position of the other one,

characterized by distance p £ p2 and angle ¢ L ¢7, 1S tO
be determined, along with the orientation of each sensor.

lSimilarly to [12], the sensor response g;,(0) is a voltage or current gain,
different from the sensor power response g,zn ©).
2They are equal if [|a(9)[|>02 > o?2.
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Fig. 1. Positions and orientations of two directional sensors for
arbitrarily shaped sensor response g(6). Lines show individual responses
for each sensor.

Given the expression

; T
a(0)=[g1), @) explj2nrpcos (@ — P, (&)

of the ARV, we prove in Appendix A that
[1/ ©)] + 472 p2h% (0) sin? (6 — )

1+ h% () » ©)

F©) =g} ®)

where h(0) -l 22(0)/g1(0), assuming none of the sensors
has a strictly zero gain at any direction. Here, //(6) can be
interpreted as a measure of the mismatch between the two
sensors’ directivity patterns. Based on (5), we can make
the following two remarks:

1) If the two sensors are identical and pointing in the
same direction, g(0) = g1(0) = g2(0), then F(0) =
2m2g%(0)p?sin®(6 — ¢) is zero when the source is at the
array end-fire direction (i.e., 8 = ¢), regardless of how the
sensors are directed.

2) In contrast, if the two sensors have different
directivity patterns, F(6) can be made arbitrarily high
provided that 4'(9) is large enough, including for 6 = ¢. In
other words, sources that are in the array end-fire direction
can be precisely identified only if we use different or
differently oriented sensors.

In practice, we are likely to use identical sensors
pointing at different directions—i.e.,

g (0) 2 g0 — ),

As illustrated in Fig. 1, the array configuration is now
parameterized by geometrical parameters p, ¢, ¥, and
Y, in function of which F(0) is expressed as

m=1,2.

2
Oy _ g O—) 2 2o
[——— + 472 p%sin’ (6 — @)
«G—v) g(e—vm]
F0) = : : ()
PRy B )

This function is to be interpreted as the ability of the
antenna array to accurately localize a source with the
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specific DOA 6. Since the source DOA cannot be (exactly)
known in advance, the overall array performance is more
suitably measured in terms of the ECRB [2, 4, 8], defined

as ECRB = E[CRB(6)]. By adopting the ECRB as a
performance criterion, we implicitly allow the CRB to be
high at directions where the source is less likely to show
up. The a priori information about the source DOA is
available in the form of a pdf f(#), leading to

2 T 2]
ECRB = _» SO 4.
2No2 |, F )

Minimizing the ECRB for fixed powers o2 and 02 and
number N of snapshots is tantamount to minimizing

2 T
2st ECRB = / IO 4o, %)
. _F®

n —

B. Optimization Procedure

Intersensor spacing p is assumed to be fixed based on
considerations other than estimation accuracy (e.g.,
coupling and ambiguity considerations), independently
from ¥, V5, and ¢, which remain to be determined by
minimization of the ECRB criterion. This is to be
achieved by means of a 3-D systematic search. It will be
possible to reduce the search area thanks to some
properties of the cost function. In fact, (6) is unchanged if
¢ is replaced by ¢ + 1 or (Y1, ) is replaced by (7,
¥ 1). Consequently, the systematic search can be restricted
to ¢ in [—n/2, w/2], ¥y in [—m, ], ¥, in [—m, 7], and
Y1 < ¥r,. Notice that, for the sake of numerical stability,
configurations where 1| = 1, are not tested, because then
the function 1/F(0) is divergent (at 6 = ¢), as is the ECRB.

Further simplification is possible if both the sensor
response and the DOA pdf are even—i.e., respectively,
g(—0) = g(#) and f{—0) = f(#). Under these assumptions,
we have

2No?
2S ECRB
Gn
x Lo,
_ / 20— | £
- 2
/9_ /0_ .
O [T =
o+
- O+ g(ijtjl))z o 7636,
8'O+y) _ g0+vn 212 qin2
[g<9+w1> g<e+wz>] +am*p®sin® (¢ + ¢)

so that the ECRB is unchanged if ¥1, ¥», and ¢ are
replaced, respectively, by —i;, —v», and —¢. It follows
that, for such a case, we can further restrict ¢ to be in

[0, /2].
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V. OPTIMIZATION RESULTS

The proposed array (which we refer to as CAM?) is
compared to larger size UCA arrays. In all examples, an
intersensor spacing of half a wavelength is assumed, in
order to avoid (first-order) array ambiguities [18, 19]. The
optimization problem depends on the type of sensors
(assumed in Section IV-B to be cardioid) and the
distribution of the source azimuth angle (assumed in
Sections IV-C and I'V-D to be uniform and normal,
respectively, to describe worst-case and realistic
scenarios). The resolution of the systematic search grid is
set to 2 deg. We start by presenting some results about the
reference UCA.

A. The Reference UCA

We test our geometry-optimized two-sensor array
simultaneously with the commonly used UCA, made of
M =3,4,5, ... directional sensors. For the UCA, sensors
are placed uniformly along the circle—i.e., at angles ¢,, =
27 (m — 1)/IM, m =1, ..., M. The circle radius is R\
where R = p/[2sin(;t /M)] ensures an intersensor spacing
equal to p. As pointed out in [12], one can avoid array
ambiguities in a UCA by appropriately choosing the
intersensor spacing p. The directional sensors are pointed
in the same direction as the sensors—i.e., g,,(0) = g(0 —
¢m)—a fixed-geometry design previously proposed in [12,
14, 20]. The UCA geometry is special in that it verifies,
for all k£ not a multiple of M,

M
> exp (k) =0, ®)

m=1

which will be useful to obtain the compact CRB
expressions (10) and (13)—(16).

Isotropy is a desired feature of antenna arrays that is
fulfilled by UCAs when they are composed of
omnidirectional sensors [3]. Interestingly enough, we
prove that UCA isotropy may be preserved even when the
constituent sensors are not isotropic. We focus our
attention on sensors with an arbitrary but symmetrical
(even) pattern g(6), which are widely encountered in
practice. For such sensors, we can write

K
2(0) =g [1 + Y Brcos (k@} , ©)
k=1
where (B =1,k satisfy 1 + Y 1, fi cos(k) > O for all
f,and B; >0, ..., Bx—1 =0, Bk > 0, hence ensuring a
maximum gain in the (0-deg) look direction. Coefficients
B, k=1, ..., K, can be easily computed by means of a

(truncated) Fourier cosine expansion of g(6), whether g(6)
is available in analytical or numerical form.

We prove in Appendix B that if the directional sensor
has a symmetric response g(0) as in (9), then the UCA

3S0 named in reference to the chameleon, whose eyes can rotate and
move independently from each other.
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made of M such sensors is isotropic if M > 2(K + 1), and
it then verifies

Mg? [ &
Fo) = =50 [Z K2BE + m*R* (4 + BT — 4B28k =1

2
k=1
K K—2
+2 (Z ,31?) Sk>1—2 (Z ﬂkﬂk+2> 8K>2):| ;
k=2 k=1
(10)

where 64 = 1 if condition A is satisfied and O otherwise.

Before we interpret this result, we first mention that
there is no direct relationship between directivities of the
sensors—defined as D = [maxyg2(9)]/[(1/27) J7 g% (©)de]
—and isotropy of the UCA, except for specific families of
patterns. For example, consider sensors from [12] with
response g(6) = go[1 + cos(8)]X, whose directivity,
which is proved in Section IV-C to be equal to

K 2AK—0)

p=2% [} % (11)
= @Y 2K —0)!
increases with K (D = 1, 2.66, 3.66, 4.43, and 5.68,
respectively, for K =0, 1, 2, 3, and 4). By application of
(10), a minimum of 1 + 2(K + 1) such sensors is needed
to make the UCA an isotropic one. The result in (10)
contrasts with the UCA of omnidirectional sensors that is
isotropic if M > 2 [21]. It proves that a UCA with
directional sensors (regardless of how much directional
they are) can still be isotropic if the number of sensors is
sufficiently large.

Of special interest are cardioid sensors, of frequent use
in acoustic systems [22]. They are characterized by a
directional response of the form [23]

g () =go[l+ Bcos(¥)],

parameterized by constants gy and 8. Application of (10)
implies that the UCA is isotropic if populated with five or
more such sensors. Then it verifies

(12)

2
F(0) = @ (> +72R* (4 + B%)],

consistent with [21] for omnidirectional sensors (8 = 0).
For completeness, in order to also address a nonisotropic
UCA of cardioid sensors, we prove in Appendix D the
following expressions for an arbitrarily sized UCA of
cardioid sensors:

2F ()
2 —

4sin® (0) {B* + cos® (0) [ p* (4 + B?)
8o
2 /32 + 47T2p2

—F 1 + B2 cos? (6)

]} M=2 (13)

=x’p* |4+ 8> —4 30 M 382

_np|:+/3—ﬂCOS( ) — 1 B :|+ B,
M=3 (14

=48% +4n’p’ 2+ B*sin* (20)], M =4 (15)
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B. Sensors

In our tests, we consider cardioid-type sensors as
defined in (12), parameterized by constants gy and, more
importantly, 8, which controls the sensor directivity D.
Directivity D has been found to be equal to
(1 + B)? /1 + B2/2), which increases from 0 to 2.66 when
B increases from 0 to 1. Substituting (12) into (6) leads to
the following update of F(9):

F (©0)
8t

,32 sin@—y1)
1+B cos(6—y1)

sin(9—»)
T+ cos(0— 1)

> +

2
] + 4rn2p%in (6 — o)

’

1 1
[1+8 cos(0—v1)] [+ cos(@—y)T*

(17)

where the right-hand side, advantageously, depends
on B only, as long as the sensor is concerned. Hence,
we adapt the initial criterion (7) to minimize, instead,
(2g3No? /o2)ECRB given by the -dependent

c

1 1
([l-~-56f>s(9—¢'|)]2 + [l+f3€05(9—¢/z)]2> /)

sin(0—y1) sin(0—2)

- do.
- 'Bz[lJrﬁcus(H*l//]) - l+ﬂcos(971//2)i| +47T2’0281n2 (9 - ¢)

\:t ||>

C. No A Priori

We consider the case of a source DOA uniformly
distributed over [—mr, 7r]. There is actually an infinity of
equivalent solutions. In fact, because 1/F(6) is being
integrated over one period, it can be shown that C is
unchanged by a translation of ¢. Hence, we assume ¢ = 0
within this section. A sample cost function C (for 8 = 0.8)
is presented in Fig. 2, showing that optimality is met at ¥,
= —1p, = /2, which is verified for all possible values of
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Fig. 3. Sensor orientations of CAMU and UCA?2 arrays in (x, y) plane.
Sensor positions, shown with circles, are same for both arrays. Lines
show individual responses for each sensor when g = 0.8.

B. In general, optimality is met with the two sensors
pointing in opposite directions, orthogonally to the axis
linking them. This axis, however, can be randomly
oriented. We denote with CAMU the two-sensor array
depicted in Fig. 3 and characterized by ¢ =0, ¥ = 7/2,
and ¥, = —m/2. It is optimal for a source with a
uniformly distributed DOA.

Contrary to the two-sensor UCA, the CAMU array
does not have an infinite CRB at any direction, as is clear
from Fig. 4. As a consequence, its accuracy (in terms of
the ECRB) is finite, of the same order as that of the
three-sensor UCA. Also, Fig. 4(a) shows that, as the § of
the constituent sensors increases, the CRB is reduced in
the end-fire direction and increased at broadside. A good
compromise seems to be attained for g values around 0.5,
where the CRB fluctuates the least and the CAMU is
closest to being isotropic. This would be the best design
for those applications requiring (more or less) the same
accuracy at all possible look directions.

As can be concluded from Fig. 5, the use of directional
sensors is more beneficial to CAMU than to UCA. With
this particular configuration of the CAMU array,
substituting ¢ =0, Y| = /2, and ¥, = —x/2 into (17)
results in

[ — B2sin2(0)

1+ B2sin2(9) ’

(18)

which is not zero in any direction as long as 8 is not 0.
Again, from Fig. 5, the best performance is obtained using
sensors with g values slightly larger than 0.5. As can be
concluded from Fig. 5, the optimally configured
two-sensor array is outperformed by the larger
three-sensor UCA. However, this is true only because,
disadvantageously, this pdf expresses no a priori about the
source DOA. As shown in the next section, the situation is
more profitable to our design if (more) information is
available about the source DOA.

F©®)  p*cos’(9)

= - + 72 p? sin® (0
22 1+ psin(e) P ©)
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Fig. 6. Performance (a) and shape (b) of optimized CAM array,
compared to nonadaptive fixed-geometry CAMU and UCA arrays, for
zero-mean normally distributed source DOA with standard deviation as

shown along horizontal axis.

D. Normal A Priori

In some realistic scenarios, the source DOA is
expected to appear in a given direction €2 that is assumed,
without loss of generality, to be 0. The DOA is modeled as
a centered normal random variable, and the optimal
two-sensor array is studied as function of the standard
deviation o. The geometry and performance of the optimal
CAM array are shown in Fig. 6 for ¢ < 40 deg, in order to
ensure that the pdf £(0) = (1/v/2m0)exp[—602/202)] is
almost zero for any 6 not in [—, 7 ]. Results shown in
Fig. 6(a) suggest that there is a range of o where the
optimized two-sensor array achieves a performance close
to (better and worse than) that of the three-sensor UCA. In
this case, the two sensors of the optimized array are placed
orthogonally (¢ = 7/2) to the expected source DOA and
are pointing into symmetric (with respect to the DOA)
directions (1| = —12). The larger the uncertainty o about
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2, the larger the offset ||| = ||, as shown in Fig. 6(b).
However, for an excessively large o (i.e., limited a priori
information), geometry optimization is less beneficial and
performance is not much better than that of the CAMU
array.

E. Arbitrary A Priori

A more general pdf model is that of a mixture of
Gaussian distributions with different means (that express
the different look directions) and variances (that express
the uncertainty about the look directions). Strictly
speaking, we let P be the number of look directions. We
let kp,, £2,,, and o, be the weight, mean, and standard
deviation relative to the pth distribution, so that for any 6
in[—m, ], Z§=1 kp, = 1. We assume —7 < Q, — 30,
and 2, + 30, < m for all p in order to have
Y1 (p/op/2) expl—(0 — 2,)° /(262)] = 0
for any 6 not in [—7, ]. In the simulations, we have
assumed equally likely look directions—i.e.,

k; = --- = kp = 1/P—and the same uncertainty
oy =:-=0p = IOdeg
P 2
K (9 - Qp)
©®) = P exp| —~—=2|.
/ ; op 27 P 207

In a first set of simulations, and in order to explore the
potential of the proposed optimized array for arbitrary
pdfs, we assume two possible look directions €2 and £2;.
Without loss of generality (and in order to obtain an even
pdf), we choose 21 = —£2,, ranging from 10 to 90 deg. As
illustrated in Fig. 7, we compare the performance of the
optimized two-sensor array (CAM) to those of the
non-optimized arrays (the two-sensor CAMU and UCAs
of three, four, and five sensors). We realize that, overall,
the optimized two-sensor array performs similarly to the
three-sensor UCA. The CAMU array, which has a
minimum size and a nonadaptive geometry, is distinctively
the one with the lowest performance.

To illustrate a more irregular pdf, we consider the
example where Q2; = 20, @2, = 50, and 23 = 80 deg. If
sensors with 8 = 0.8 are to be used, then it is found that
the source thus distributed is best localized using the
optimized two-sensor array characterized by ¢ = —40,
Y1 =48, and ¥, = 50 deg. Such an array achieves a
performance, in terms of C, equal to 0.092. Naturally, it
performs much better than the CAMU array, for which C
equals 1.2245. Interestingly, performance is in between
those of the three-sensor UCA (C = 0.1536) and the
four-sensor UCA (C = 0.0792).

V. CONCLUSION

We form an array of two directional sensors and use it
to estimate the DOA of a distant coplanar source. Sensors
are positioned and oriented in order to benefit from
the a priori information about the DOA angle and,
subsequently, reduce the estimation error. If no a priori is
available, a default (CAMU) geometry has the advantage
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Fig. 7. Performance of optimal array, compared to nonadaptive CAMU
and UCA arrays, for source pdf characterized by two look directions
+ @, with Q = 10, 20, .. ., 90 deg. Sensors are such that 8 = 0.4 in (a)
and 0.8 in (b).

of having a finite precision in every direction. If some
(normal) a priori is available, the optimal array geometry
(calculated off-line) delivers an accuracy comparable to
that of a three- or four-sensor UCA.

APPENDIX A.  PROOF OF (5)

Derivation of the ARV, as expressed in (4), leads
to a'(0) = [g1(0), g5(0) expl2jmp cos(6 — ¢)]
— 2(0)2jmp sin(6 — ¢p)exp[2jmp cos( — P, so
that we obtain ||a(9)|*> = g%(@) + g%(@) and ||a'(0)]]> =
[g1(O))* + [5(0)]* + g3(6)4m? p? sin*(6 — ). Also,
a"(0)a(0) = £1(6)g[(6) + £2(0)gy(0) + 2j7pg3(6)
sin(6 — ¢) results in |2 (0)a(0)|> = g2(O)[g} ()1
+ g3(0)[g5(O)])* + 281(6)g(0)g2(0)g5() + 472 p? g3(6)
sin(6 — ¢). After substitution into (3), we update
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la(6)||>F (#) as follows:
(57 (©) + g3 ()] F (9)
=2 O[O+ @ [5®]
+83(0) g3 (0)4np? sin> (6 — ¢) + g3 0) [g] O]
+830) [ O] + 83 (0) 4n>p*sin® (6 — )
~&O[s1®) - 82O [8 )]
—2g1 () 81(0)82 (9) 85 (6) —4m*p’g3 () sin*(6 — @)
=[g1©) 8,0 — 820 g} ®)]
+4m2p%g1 (0) g3 (0)sin (0 — ¢),
which is equivalent to

g7 () + g3 (0)
gt (©)
2 2g2( ) .

B g2<9>“2 A
_{[gm(a) T )"

and so to (5).

F@®)

n’ (0 — ¢)

APPENDIX B. PROOF OF (10)

For the considered UCA, the ARV (1) given by

[a(0)lm = g(6 — ¢pu) explj27 RAcos(6 — ¢,)] =
gm exp(j t,) results in (3) being transformed into

F(9>—Zg +Zg2 .

2
(ZnAle gmg;n) + (Znﬁf 1831 r/n)
Znﬂle gm ‘

Using (8), we prove the following identities:
M sin[k(6 — )] =0 for M > k > 1,
M sin[k(0 — @)l cos[l(@ — )] = 0 for M > k + 1
> 2, and Z —1 Sin(0 — ¢y,) cos[k(0 — ¢p)]
cos[l(0 — ¢)] =0forM > 1 + k + [ > 3. In turn, this

allows us to prove, after simple algebraic manipulations,
that for M > 2K + 1,

2

(égmg;,y (ng ) =

Now, using

M
D _sin[k @ = gu)]sinll € — b))

m=1

M
=Y cos[k (O — @)l cos[l (6 — pn)]

m=1
B M/2 forM >k+1>2, k=1
~]o for M >k+1>2,k#1
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M
Z cos[2(8 — ¢p)]lcos [k (O — dm)]

. M/2 forM >k+2>3, k=2
o for M >k+2>3, k#2

M
Z cos [2(6 — @m)] cos [k (0 — ¢m)] cos [[ (6 — Pm)]

m=1
M/4 forM>k+1+2>4k=1=1
M/4 forM>k+14+2>4, lk—I=2
0 for M >k+1+2>4, k—1]#2,
14 1,k#1

we can reach the final result in (10).

APPENDIX C. PROOF OF (11)

First, maxgg2(1 + cos(6))*X = 2*K g2. By applying
the binomial equality twice to (1 4+ cos(9))*X =
(12252 + (e/? + e779)]?X, we obtain

(1 + cos (9))*K

2Kk
1 wk—k 2K\ (kN e
i |22 () (5|
k=0 £=0

Using the Euler relationship (8),

2

1 2K _ 2(K—n) 2K 2n
= (1 + cos (0))*Xdo = 2K22 o I

with
a
b

concludes the proof.

a!
b!(a —b)!

>

APPENDIX D. PROOFS OF (13)—(16)

By extensive use of (8), we can prove, after tedious
manipulations, that

lla (6)]* 1 4 81,2 cos (20)

=14+ B2
Mg% p 2
H@)a o
0RO,
80
3 2 .
=]§7TR,3 sin(3), M =3

=B(B+4jmR)sin(20), M =2

/ 2 2 2
_||aM(91}| = % +7’R? (2 + %) , M=>5
80

2
— % + 2 R*[2 4 p*sin” (20)]

M=4
2 2
= %—i—anz[ +% —2/300S(36):| M=3

= B*sin’ (0) +7°R* (4 + B?) sin® (20), M =2,
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where §;; = 1if i = j, and O otherwise. This can be used to

calculate the exact CRB of the UCA, as expressed by (2)
and (3), leading to expressions (13)—(16).
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