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On the Second-Order Statistics of the EVD of Sample
Covariance Matrices—Application to the Detection of
Noncircular Or/and NonGaussian Components

Jean Pierre Delmas and Yann Meurisse

Abstract—This correspondence presents an asymptotic analysis of
the eigenvalue decomposition (EVD) of the sample covariance matrix
associated with independent identically distributed (i.i.d.) non necessarily
circular and Gaussian data that extends the well known analysis presented
in the literature for circular and Gaussian data. Closed-form expressions
of the asymptotic bias and variance of the sample eigenvalues and eigen-
vectors are given. As an application of these extended expressions, the
statistical performance analysis of the widely used minimum description
length (MDL) criterion applied to the detection of the number of non-
circular or/and non-Gaussian sources impinging on an array of sensors
is considered with a particular attention paid to uncorrelated rectilinear
sources.

Index Terms—Asymptotic performance analysis, eigenvalue decomposi-
tion (EVD), eigenvalue, eigenvector, minimum description length (MDL),
noncircular, non-Gaussian, rectilinear sources, sample covariance matrix,
source detection.

1. INTRODUCTION

Eigenvalues and eigenvectors of sample covariance matrices are used
in the solution of a wide range of statistical signal processing problems,
in particular in spectral analysis and array processing among many
others. The first and second-order statistics of this EVD are needed to
assess the performance in terms of bias/variance of estimators or prob-
ability of events derived from these eigenvalues and eigenvectors. The
statistics of the sample eigenvalues and eigenvectors have been widely
studied in the statistical literature (e.g., [1] and [2]) and are quoted in
standard texts such as [3] and [4]. The tricky issue of the uniqueness
of the eigenvectors for complex-valued data has been considered in [5]
and then in [6]. To the best of our knowledge, however, all the published
results has been derived only under the assumption of real-valued or
circular complex-valued Gaussian distributions of the data.

The main aim of this correspondence is to extend these results to
arbitrary real or complex fourth-order distributions of the data, where
closed-form expressions of asymptotic bias and variance of the sample
eigenvalues and eigenvectors are derived. As an application of these ex-
tended expressions, the statistical performance analysis of the widely-
used MDL criterion introduced by Rissanen [7] and popularized by
Wax and Kailath [8], is considered to the detection of the number of
noncircular or/and non-Gaussian sources impinging on an array of sen-
sors. Note that optimal detection (in the sense of maximum likelihood
under the Gaussian assumption) of the number of circular and non-
circular sources has been recently studied in [9]. But naturally, these
extended expressions may find other applications in multivariate anal-
ysis. We focus here on the probability of underestimating the number
of sources in the case of a single or two sources under asymptotic
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conditions (with respect to the number of snapshots) and around the
threshold regions, following the approach proposed in [10] and [11]
and then recently improved in [12]. We show in particular that the nu-
merical values of this probability of underestimating the number of
sources given by the MDL detector derived from the standard sample
covariance matrix are not robust to the noncircularity and/or the non-
Gaussianity of the data. We prove that this probability decreases for
uncorrelated! rectilinear? sources when the MDL detector is derived
from the augmented sample covariance matrix of the data with respect
to the standard one. Furthermore, when the sources of fixed DOAs
are equipowered, this probability is minimized for in quadrature com-
plex envelopes of these sources. This extends to the detection, the well
known performance in terms of variance [14] and resolving power [15]
of the estimated directions of arrival (DOA) of uncorrelated rectilinear
sources.

The correspondence is organized as follows. In Section II, the
asymptotic statistics of the EVD of sample covariance matrices is
addressed with a particular attention paid to the determination of the
selected eigenvectors for complex-valued data. Section III applies the
closed-form expressions of the asymptotic bias and variance of the
sample eigenvalues to the performance analysis of the MDL detection
of the number of components of a linear model. Section IV special-
izes these results to the number of noncircular or/and non-Gaussian
sources impinging on an array of sensors and gives some numerical
illustrations compared to Monte Carlo experiments.

The following notations are used throughout the correspondence.
Matrices and vectors are represented by bold upper case and bold lower
case characters, respectively. Vectors are by default in column ori-
entation, while 7', H and * stand for transpose, conjugate transpose,
conjugate respectively. + = 1/—1 is the imaginary unit. vec(-) is the
“vectorization” operator that turns a matrix into a vector by stacking
the columns of the matrix one below another. The Kronecker product
A ® B is the block matrix whose (¢, j) block element is a; ;B and
the vec-permutation matrix K transforms vec(C) to vec(C™) for any
matrix C.

II. ASYMPTOTIC STATISTICS OF EVD OF SAMPLE
COVARIANCE MATRICES

Consider a sequence x;—1,..,7 € C" of i.i.d. zero-mean complex
multidimensional random variables (RV) with finite fourth-order
moments. The standard covariance matrix, the complementary
covariance matrix [16] and the quadrivariance matrix of x; are
respectively given by R def E(xx), R/ &ef E(x,x{) and
(Q)it(j—1)n,i+(k=1)n ef Cum(xe,i, 7 ;, ek, x7;) Where
%, = (@,1,242,--,%¢)" . The sample covariance estimate of
R is usually defined as R ef % Zf: L xxi = R 4 §R which
can be considered as a perturbation of R. To derive the asymptotic
distribution of the EVD of R, we need the following extension of an
identity derived under the circular Gaussian distribution of the data in

[4, p. 114].

IFor general complex-valued random variables (RVs), RVs are called uncor-
related if the real and imaginary parts of these RVs are uncorrelated [13]. A
necessary and sufficient condition to be uncorrelated is that both the associated
covariance and the complementary covariance matrices are diagonal.

2A scalar complex-valued RV is called rectilinear or maximally improper

(term used by other researchers), if the support of its distribution collapses to a
line in the complex plane.
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Lemma 1: For arbitrary vectors (a;)i=1,...4 € C" and distribu-
tions with finite fourth-order moment of x; not necessarily circular and
Gaussian, the following identity is proved in the Appendix.

‘ 1
E[(a} 6Ray)(a) $Ray)] = f{(a{’Ra4)(a§’Ra2)
+(al' R'a3)(a; R™as) + (a3 © ai)Q(a; © m)}. M

We assume that the eigenvalues (X;);=1,...» of R, ordered in de-
creasing order satisfy the condition A; > > A > Ay =
=\, = o2, Let (Vi)i=1,...,n be an arbitrary set of associated
orthonormal eigenvectors. We note that (v;);=,1,....» are defined up
to an arbitrary unitary transformation, in contrast to (Vi)i=1,...,
are defined up to multiplicative unit modulus complex number, but
which are arbitrarily fixed.3
Consider now for a “small enough” perturbation term 6R. of R, the

EVDof R = R + §R
RV, =5\i\’ri, t=1,...,n 2)

where (5\1')1':},,,,,,1 denotes the perturbation of A; that satisfies Mo>
A2 > -+ > A, and where (V;);=1 ., are the associated eigenvectors
uniquely determined from (v;);=1,...,» by

VvEvi=1.i=1,...,r 3)

We consider in the following the eigenvectors (V;);=1,... » defined by
v; = H Y ‘ ‘We note that in contrast to the determination of v; whichis
arbitrary fixed, the determination of V; must be related to the choice of
v; to consider bias, variance and covariance of (V;)i=1,... . in Result 1.
Note that an alternative solution would be to choose for both v; and v,
the MATLAB’s normalization. The second-order statistics associated
with this determination has been partially studied in [6], where very
complicated expressions of Cov (¥, ¥;) and Cov(V,, ¥} ) are given [6,

3For example, the Matlab’s svd function produces a set of singular vectors
(which can be used in lieu of eigenvectors for the Hermitian covariance matrix
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rels (37-38)] for zero-mean circular Gaussian distributions. We have
not opted for this determination because of its complexity.

We are now interested by the asymptotic distribution of
()\1, D WL ST ) with respect to the number T of data.
We adopt a functlonal analysis that consists of recognizing that the
whole process of constructing the estimate (5\1 e AV , V)
from R is equivalent to defining an inﬁnitely differentiable map-
ping [17] on a neighborhood of (A1y-ey Ay Vi, ..., V,) linking
(}\1 Yy A ye.., V) to the statrstics R from Wthh 1t is inferred:
R — (\,.. .,)\r,vl, R A g(R). Using the central limit
theorem applied to the i.i.d. RVs vec(x;x) = x; @ x;, we have?
VT (vec(lf{) - VeC(R)) —£5 Ne (0; Cr, Cl), where [18]

Cr=R OR)+KR @R*)+Qand Cr = CrK (4

and the standard theorem of continuity> (see, e.g., [19, p. 122]), allows
us to deduce that the estimates (5\1 s 5\7, Vi,...,V,) are likewise
asymptotically Gaussian distributed with the same convergence speed

The first and second-order statistics of this asymptotic distribution
are deduced from a second-order Taylor expansion of g(.) at point R,
where the remainder issue can be dealt with rigourously and conve-
niently [20]. This approach called delta method is used in practice from
a second-order perturbation analysis that is developed in the Appendix.
This allows us to prove the following result

Result 1: The asymptotic first and second-order statistics of the es-
timates (;\1./ N VIR ST ,¥,.) for arbitrary distributions with finite
fourth-order moment of x; not necessarily circular and Gaussian are
given by (5)-(10) at ]tI:e bottom of the page. fori,7 = 1,...r and

where Cov(z1,22) = E ((z1 — E(z1))(z2 — E(22))"), 6, is the
4L, means the convergence in distribution when 7' — oo, while

Ne(m,C,C’) denotes the complex Gaussian distribution whose mean,

covariance and complementary covariance are m, C and C’, respectively.

SWe state this theorem for the convenience of the readers. Sup-
pose that a vector complex-valued sequence xr satisfies VT(xy —
m) “£5 Ne(0;C,.,CL). Let yr = g(xz) be a differentiable func-

tion with a nonzero differential D = [ggl] . Then \/T (9(x7) —

R) that are orthonormal and have a real first entry. g(m)) % Ne(0;C,,C!) with C, = DC, D' and C/ =DC,D".
Sy, 1 A+ Akl 4 Nk 1
EQ) =X+ > - +o(z) )
1<k#i<n
1
Cov(Ai, Aj) = f big + 1Nl 4 Niisi) + o(F) (6)
. 2 S
E(‘A,T) — )\1>\lc + |\)\z,k|A +2)\L,lc,z,k v
1<k7ﬁz<n (Ai = Ax)
Ai kAT F Nijikyi Mg AT+ Aok 1
= _AvkAid T A ke . = 7
+T Z w2 T Z == | el T M
1<k#i<n 1<I#i<n X

L b, Xi Ak Ak AL Nk gkt 1
Cov s V3 =27 JRE i — > ) EARR R 8
ov(vi- %) 1<AZ- PSS WAL + 22 oy el ®)

<k#i<n 1<k¢z<n 1<l#5<n

e e (=) N ArgAT ;4 ik T 1

Cov(vi, Vi) = T TS wE Vv, 4 = 1<,§<, 1<§< RSNy _/\I)VL:VI +o T )
<k#i<n 1<I#£j<n
T | Xi kAT + Nisikg 1
C,()\ ()\z: V]) = T Z ()\J——A]‘ Vi ‘i‘ o T ’ (10)
1<k#j)<n
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Kronecker delta, A; ; f o R'viand A j i et (vi ovihQ(vi®
V[).

Remark 1: Naturally all the expressions of this result reduce to the
first and second-order statistics given in [4, Th. 9.2.4] (where the de-
termination of v; is not specified) and in [5] (where determination (3)
is used) for the circular Gaussian distribution of x; for which A; ; = 0
and )‘i,j,k,l = 0.

Remark 2: In contrast to the circular Gaussian distribution, the esti-
mated eigenvalues are no longer asymptotically independent between
each others (6) and the estimated eigenvalues and eigenvectors are
no longer asymptotically independent for arbitrary distributions of x¢
(10).

Remark 3: We note that the asymptotic distribution of the estimated
eigenvectors is sensitive to the noncircularity and non-Gaussiannity of
Xy, in contrast to the asymptotic distribution of the estimated principal
projector, II ef YR 2
of x; [21].

Remark 4: X; ;1,1 is generally complex-valued, but it is straightfor-
ward to prove from (4) that Q is Hermitian and that (a” @a)Q(b*®
b) is real-valued for arbitrary vectors a and b in C", so A; ;. ; and
Ai,i,;,; that appear in (5) and (6) are real-valued.

Remark 5: Note that Lemma 1 is still valid for real-valued data x;
and vectors (a; )i=1, .4 replacing R’ by R, in contrast to Result 1, for
which the different expressions of the first and second-order statistics
that can be derived using the same approach, are slightly different.

Remark 6: Note that in contrast to theoretical Result 1, which is
valid for arbitrary eigenvalues that satisfy Ay > --- A, > Ay =
, the approximations deduced from Result 1 must take into ac-
count the separation between two successive eigenvalues which cannot
be “too small”, as an example would be given in Section IV.

# that does not depend on the distribution

_0'

III. APPLICATION TO THE DETECTION OF NONCIRCULAR AND/OR
NON-GAUSSIAN COMPONENTS

The MDL criterion is one of the most successful information theo-
retic criteria for estimating the number » of components of
= AS[ + n, (11)

where s; = (St,1,...,5¢,r), E(stsf{) is not singular, A isann X r
full column rank matrix with » < n and s; and n; are uncorrelated
with E(n,;nf’) = ¢°I,,. Under the assumption that x, are independent
identically zero-mean complex circular Gaussian distributed RVs and

if no prior informatipn about A is used, the MDL estimator is based on
the eigenvalues of R and is given by the following minimizer [8]:

7= Arg {nnn \A} with Ay =T(n —k)In <(1k>

gk

+Zk(2n—k)InT (12)

l\)l»—t

. def . . def P
with d, = 7717,‘ Z?:kH i and g = I k1 /\( =) . The events

7 < 7 and 7 > r are called underestimation and overestimation,
respectively Since (Ak)y_o ., _y are functions of the eigenvalues
(Ai)i=1...» of R, the derivation of the probabilities P(# > )
and P(7 < 7) needs the joint exact or asymptotic distribution of
(Xi)i=1,...,n. Unfortunately, these two distributions are only available
for circular complex Gaussian distribution [1] and are furthermore too
complicated to be useful for the statistical analysis of the estimator 7.
Therefore, for simplifying the derivation of these probabilities, it has
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been argued [10], [11], and [22] by extended Monte Carlo experiments
(essentially for » = 1 and r» = 2) that

P(F>r) R P(f=r+1)~ P(Ars1 <A,)

and PP <r)x P(f=7r—-1)= P(A,—1 < A,).
As the probability of overestimation is concerned, exact and approx-
imate asymptotic upper bound of this probability has been derived in
[22] showing that generally P(# > r) < 1. Therefore, we concentrate
on the probability of underestimation for which (12) gives straightfor-
wardly (see [12] for » = 1 and 2)

P(A,—i <A,)=P (H,» <{\—7> < T,)
dr

e n—r41
where H, (z) d_fln< (1+n 7‘+1) )andTrdZ

2r 4+ 1)InT. Because H,(x) is an increasing function for x > 1 with
H,.(1)=0and T, > 0, (13) is given by

P(Ar_1 <A,)=P <\ < T;>
Ay

where T = H, (T, is the unique solution of the equation H, (z) =
T, forx > 1.
To proceed, we must know the distribution of the ratio

13)

7 (2n —

(14)

, which,
derived from the exact or asymptotic distribution of (/\Z )121,“,,” ,isalso
too complicated to give some insight. So we must resort to the approxi-
mation, used by all authors that have tackled this point, that the standard
deviation of @, can be considered as negligible with respect to E(a..).
Consequently @, ~ E(a,), where [12] has refined the approximation
E(a,) ~ o2 usedin [10], [11] by taking into account the bias of the es-
vr- Using E(ar) = 0® + 237 (/\i - E(\ ))
and (5), we have d, =~ m, with

def
my = o2 — E E
77,—7

=1 1<j#i<n

timates (5\1 )i=1

NG+ AP+ N
Ai = A

. (15)

Consequently 7= is approximately asymptotically Gaussian distributed

with mean p, = (A ) and variancea = M where from (5) and
(6)
1 1 Y L e
.= A+ — J J 2Ja g
" my + Z Ar = A
1<j#r<n
and
e A2+ [N + A (16)
r ’l’ll%T r r,r T, T, T, T

and the probability of underestimation is approximately asymptotically
given by

P(F<r)m1-Q (TU;”> , 17

2
with Q(z) < f:oo L o5 dt.

Var

IV. DOA ILLUSTRATIONS

To illustrate these general results, the detection of the number » = 1

or r = 2 of noncircular or/and non-Gaussian sources impinging on
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—Circ. Gauss. (th)
* Circ. Gauss. (est)
------ BPSK (th)
0 BPSK (est)
——-Impulse p=10 (th)
X Impulse p=10 (est)
(
(

— - -Impulse p=20 (th)
* Impulse p=20 (est)

Probability of underestimation

SNR (dB)

Fig. 1. P (# = 0/r = 1) as a function of the SNR for four distributions of the
source and two values of the number T" of snapshots.

an array of n sensors is now considered. The common model for the
received signal x, is given by

Xt = A(@)st + n;

where A(®) = (ai,...,a,) is the full column rank steering matrix
where each vector a; denotes the steering vector of the kth source
of DOA 0. n, is assumed circular complex Gaussian distributed,
but (S¢x)k=1,., that have finite fourth-order moments, are not
necessarily circular complex Gaussian distributed. E|sf_/k| = a?k,
E(afk) = ai_psk e2®sx and Cum(s x, Si ks Siks St L) = ajk K,
where p,, € [0,1], ¢5, € [0,7) and ks, € [—2,+00) denote the
noncircularity rate and phase and the kurtosis of s 1, respectively.

In all the numerical illustrations and Monte Carlo experiments, a uni-
form linear array of omni-directional n = 5 sensors and half-wave-
length spacing is used. Its centroid at the origin of the phase is used®
(i.e., a, = (67L27\' sin 0y, , et sin 0, \ 1’ el sin 0, \ 6L27T sin 0y, )T where
6 is the angle of DOA away from the broadside of the array). For each
point on the figures, I’ = 200 snapshots (except in Fig. 1) are taken
and 10 000 Monte Carlo runs are carried out to estimate the probabili-
ties of underestimating.

We first consider the robustness of the MDL criterion to the distri-
bution of the sources. For a single source (r = 1), it is straightforward
to derive from R, = o2 ajal + 0’L,, R}, = o2 p,, e %:1aia],
Q. =i ks, (af @Ay )(af @ af’), the values \; = ||a;||*c2, + 7,
)\1,]' = 61’]' ||a1 ||20':f1 Ps1 621¢31 and )\17J’71)j = (51,]’ ||a1 “40'31 Ksy that
give from (15) and (16), the expressions

2 1 0'2
my =0 |1—- |14+ —5—
' ( T < a1 202, ))

(Tf-l la ”2 n i 14 n—1 a? (19)
mi ! o2, T |ai|]?e2,

(18)

H1 =
4 . 2
2 _ llaill*os, o’ T2
] = ——— 1 _— s vs N 20
o Tm? * lla:||202, T 20)

that specify the probability of underestimation P (:i?) (17). Conse-

quently this probability of underestimation has the following behavior:

6For rectilinear sources, the DOA 6, and phase ¢;, of noncircularity param-
eters are coupled [15] and as the performance depends on A¢ = ¢ — ¢, the
centroid of the array must be specified for fixing the performance.
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2

P (:f?) = % for the value SNR 1 of the signal-to-noise-ratio 1 so-
= 3 fed

lution of 7§ = s that does not depend on the distribution of the source.
With respect to the circular Gaussian distribution, the probability of un-
derestimation is larger (respectively, smaller) for SNR > SNR 1 (re-
spectively, for SNR < SNR 1 ) for noncircular or/and non-Gaussian

distributions such that pil + ks, > 0. The opposite behavior happens
for distributions such that p?, + ks, < 0.

This behavior is illustrated in Fig. 1 for the following three dis-
tributions: circular Gaussian (p,, = ks, = 0), binary phase shift
keying (BPSK) (ps; = 1 and k,, = —2) and impulsive that takes the
values {—1,0,+1} with P(s;; = —1) = P(s;; = +1) = 5~ and
P(s;1 =0)=1-— % for which p,, = 1 and k5, = p — 3. We see
from this figure that the probability of underestimation is sensitive to
the distribution of the source, particularly for sources of large kurtosis
k5, and for weak values of the number 7" of snapshots as it is explained
by (20).

For two sources, the expressions of 72, po and JS can be derived as
well, showing their dependence on physical parameters such as number
of observed snapshots, number of sensors, signal and noise powers, cor-
relations, noncircularity rates, kurtosis and angular separation of the
sources (see, e.g., the expressions of the eigenvalues of R.. for the cir-
cular Gaussian distributions in [23, Sec. 5.4]). Such expressions are too
complicated to analyze, but their numerical computations show that the
probability of underestimation P (7 < 2 = 2) is sensitive to the dis-
tribution of the sources particularly for large kurtosis.

Remark 7: We note that this property of sensitivity of the probability
of underestimation given by the MDL criterion contrasts with the per-
formance in terms of variance [14] and resolving power [15] derived
from subspace algorithms issued from R, that are robust to noncir-
cular or/and non-Gaussian distributions of the sources.

For possibly noncircular signals x;, it is well known that the DOA
estimation may be improved in terms of accuracy [14] and resolving
power [15] if the standard covariance matrix R, = E(x:x]") is re-
placed by the augmented covariance matrix Rz = E(%x,%{) with
% (<7, xM)T . More precisely, it is proved in [14] and [15] that
these performance are drastically improved only for rectilinear uncor-
related sources for which?

r
2 b2 2
R, = E o, aka, +o I, and
k=1

.
2~ ~H 2
R;: = E o aray +0 I,

k=1

2

with ay, o (az, e~ 2 PhaiT Noting that both Result 1 and the
approximate probability of underestimation (17) are also valid for
R: which is the covariance of X;, we can compare the probability
of underestimation given by the MDL criterion associated with R,
and R; whose eigenvalues are denoted (S\i)i:1,___72n. For a single
rectilinear source the gap between X1 and o2 increases because now
A= 2llai|?o?, + o against to Ay = ||ai]|?0Z, + o2 and thus
the detection performance ought to improve. This is proved by the
comparison of the new expressions of m, 1, and o deduced from
R, ¥ Exx]) =0 aial + o> <IO IO" )
and

Qi =03,k (A © &1)(&] 0 &)

def y ~ ~ Nk~
where (Qi)i#»(jfl)Zn.,H»(kfl)Zn = CUIH((Xt)i, (Xz)]-/ (Xt)k,

(%¢)7), that are given by (18)—(20) where ||a;||*> is replaced by

TWe note that if the sources are nonrectilinear or/and correlated, the number
of components (i.e., the rank of Rz — 215,,) of X; is generally 2r.
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— BPSK (th)
O BPSK (est)
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Q |

-8 \

& 0.3
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SNR (dB)

Fig.2. P(# = 0/r = 1) given by the MDL criterion associated with R, and
R as a function of the SNR for BPSK and impulsive (p = 20) distributions
of the source.

2||a;]|*. We obtain similar behaviors of the probability of under-
estimation that for the MDL criterion associated with R, but the
performance is improved as it is shown in Fig. 2 for which the MDL
criterion associated with Rz outperforms this criterion associated with
R.. by about 1.5 dB.

For two sources, the rank of Rz — 021y, of X, is r = 4 except for
singularity cases. In particular for uncorrelated rectilinear sources this
rank is 2. Intensive numerical computations and Monte Carlo experi-
ments of P (# < —%;) given by the MDL criterion associated with R
for two correlated or/and nonrectilinear sources show that this MDL
criterion is largely outperformed by the MDL criterion associated with
R... This is explained by the smaller eigenvalue spread of the free noise
augmented covariance matrix w.r.t. the covariance matrix. This implies
that the gap between X4 and o2 is smaller than the one between A, and
0. Consequently, we concentrate now on two uncorrelated rectilinear
sources.

Figs. 3 and 4 show the probability of underestimation given by the
MDL criterion for two equipowered BPSK uncorrelated rectilinear

sources where the SNR is defined by the ratio — —4-. The probabilities
of underestimation given by the MDL crlterlon associated with R
and Rz are compared in Fig. 3 as a function of the SNR for two DOA
separations. We see that the MDL criterion associated with Rz largely
outperforms those based on R, by about 1.5 dB.

Fig. 4 shows the probability of underestimation of the MDL criterion
associated with R for two sources as a function of A¢ def &2 — ¢ for
three SNR. We see that A¢ = 7 optimizes the capability of detection.
This property is similar with the performance in terms of variance [14]
and resolving power [15] that are likewise optimized for A¢ = %

Fig. 5 illustrates that the MDL criterion associated with Rz can also
detect two uncorrelated rectilinear sources of common DOA but with
different phases of noncircularity. We see that naturally the probability
of underestimating decreases when A¢ increases.

Finally we note that our asymptotic theoretical analysis allows us
to perfectly predict the threshold region in all the scenarios we have
considered. Furthermore, the different probabilities of underestimating
estimated by Monte Carlo experiments, fit the asymptotic theoretical
ones for relatively small number of snapshots 7" = 200, except for the

particular scenarios for which some of the eigenvalues (Xg)izl,,,,r are
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—— standard R (th)
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1A |
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Fig.3. P(# < 2/r = 2) given by the MDL criterion associated with R, and
R ; as a function of the SNR for two DOA separations A8 (with §; = —6, =
%) for two uncorrelated BPSK sources.
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Fig. 4. P (# < 2/r = 2) given by the MDL criterion associated with Rz as

a function of A¢ Lef ¢1 — ¢ for two uncorrelated BPSK sources with A§ =

ldeg for three SNR.

very closed or X is very closed to o2. For example, in the case of two
equipowered uncorrelated rectilinear sources impinging on a uniform
linear array, the eigenvalues (\;);—1 2 are given by

o = 2ljauo?,
X (l +(=1)" cos ((I\l - l)% - A(D) i S

This happens in particular for Af =2 0 in two cases : A¢ approaches
g for which :\1 ~ :\2 and very weak A¢ for which a; and a» get very
closed and 2\2 ~ 2. In these two cases, the asymptotic theoretical
value of E(sz) derived from (5) is no longer valid because 7' = 200
or equivalently the SNR is not large enough. The following table gives
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Fig.5. P (# < 2/r = 2) given by the MDL criterion associated with Rz as a

function of A¢ def $1 — ¢ for two uncorrelated BPSK sources of same DOA
for three SNR.

TABLE I

A¢ i AND A FOR TWO UNCORRELATED BPSK
SOURCES WITH A# = Odeg

T

200 10% 10°
A¢p min max min max min max
SNR= —5dB | 0.30rd | 1.50rd | 0.07rd | 1.56rd | 0.04rd | 1.56rd
SNR= 0dB | 0.15rd | 1.54rd | 0.05rd | 1.56rd | 0.02rd | 1.56rd
SNR= +5dB | 0.07rd | 1.54rd | 0.02rd | 1.56rd | 0.01rd | 1.56rd

the minimum and maximum value of A¢ for which our asymptotic
approximation is valid for Af = 0. We clearly see from this table that

the domain of validity of our asymptotic approximation enlarges when
T or the SNR increases.

APPENDIX
Proof of Lemma 1: From the independence of the samples
(X¢)i=1,...,7, we straightforwardly have
E[(al’ sRay)(al 6Ray))
1
= T{ [(afx/)(xas)(ad x,)(x}"ay)] «(al’ Ray)(a} Ra4)}

(22)
Applying the following identity for arbitrary zero-mean RVs
(Zk)k:l,,,,A

E(z1202324) = E(2122)E(2324) + E(2123)E(2224)

4+E(z124)E(2023) + Cum(z1, 22, 23, 24 )
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to the expectation of the right-hand side of (22), then using the multi-

linearity of the cumulant (see the equation at the bottom of the page).

Lemma 1 is proved. |

Proof of Result 1: We follow here the Wilkinson’s approach
[3, p. 68], carried on by Kaveh et al. [5], that we restate for the benefit
of the reader. Define R = R + §R. in terms of a random perturbation
A to R with a perturbation factor €. Thus, SR = €A, where A
characterizes the direction of the zero-mean random perturbation term
SR.
Let v; denote the unnormalized eigenvector of R specified by (2),
(3). It is given by a perturbation expansion [3, p. 68]

e 3 (S0

(23)
1<j#:<n
which gives to the second order
= f1-l s pope ),
vl T
+ 3 (e ) v+ ol @4
1<j#i<n
Using Rv; = \ivy, quRVj = 6;,;A; and (23), we obtain
N=\+ e(vf{Av,;) + € Z tgi)j(vf{Av‘,’) +o(e®) (25)
1<5#i<n
and for k # 1,
| H . ) H N(vH .
tgz)k — vy Av; and tgt)k - _ (Vz AVZ)(V;‘, Avt)
A= A : (i = Ap)?
4 Z (VIUAVJ’)(VJUAV'?)
T (A = AN =)

Because E(R) = R, eE(tg L) = 0 and using Lemma 1, we obtain
(where we note that e E(t( L) =0in[S])fork #iand! # j

(t( 8 t(]) y=2 1 (Nidedi 50k1 4+ X e+ Aik 1)
Lk T (A = A)(Aj — )
9 () L)y LG8 k6 Nk AT 4 Nikag)
E(t; ¢t —
€ ( 1,k ,l) T ()\7 _ /\]‘)(/\7 _ )\l>
T (Aik AT+ Nijikyi)
() = = L Oudhi o)

T (Ni — Ap)?

n l > (Ni ATk + A;'.,k,j,z‘).
(A = X (A = Ax)

1<i#i<n

Plugging these four expectations in the expectations and covariances of

v, and A; given in (24) and (25) respectively, straightforwardly proves
Result 1. |

n n n n
H H H H_ \ _ *
Cum(a; x¢, Xy az, a3 X;, Xy a4) = aj ;az

i=1 j=1 k=1 1=1

n n n n

S HH P

i=1 j=1 k=1 I=1

* C * *
@3 k@ 1CUM (00, Tt s T, T 1)

o
ar )it (—1)n (Q)itGi—t1)mi4(i—1)n (83 @ A4) 14 (b1}
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Design of Radar Receive Filters Optimized
According to L,-Norm Based Criteria

Antonio De Maio, Yongwei Huang, Marco Piezzo,
Shuzhong Zhang, and Alfonso Farina

Abstract—This correspondence deals with the design of radar receive fil-
ters for pulse compression which optimize either the L ,-norm of the vector
containing the filter sidelobe energies or the inverse signal-to-noise power
ratio (ISNR) under an upper-bound constraint on the previously mentioned
L ,-norm. In both the cases, we prove that the filter design can be formu-
lated as a convex optimization second-order cone programming (SOCP)
problem which can be efficiently solved with a polynomial time computa-
tional complexity resorting to interior point methods. At the analysis stage,
we assess the performance of the receive filters in correspondence of dif-
ferent values of the parameter p highlighting the performance compro-
mises between the integrated sidelobe level (ISL), the peak sidelobe level
(PSL), and the ISNR. Finally, we study the effects of the filter length on the
performance as well as the Doppler tolerance of the devised filters. The re-
sults show that the proposed technique leads to satisfactory performance
levels and good Doppler tolerances.

Index Terms—Mismatched filter design, radar receive filter design,
second order cone programming.

1. INTRODUCTION

The design of optimized low sidelobe receive filters for pulse com-
pression radar systems is a hot research topic among the radar signal
processing community since 1960s [1], [2]. It is of fundamental interest
for many radar applications including ground-based surveillance, air
traffic control (ATC), anti-wind shear, and radar metereology.

Some early studies can be dated back to 1967-1968 [3], [4], with
reference to the IEEE journals, while to 1970 [5], [6], in the context of
Russian literature. In [7], a literary survey and a selected reference list
on this interesting problem is provided together with some new con-
tributions concerning issues related to the filter length and the choice
of the design criterion. According to [7], the receiving filters proposed
over the years can be classified into two main categories. The former,
data independent class, does not require any prior knowledge about
the surrounding environment, whereas the latter, data dependent class,
depends on the assumed (possibly estimated) parameters of the envi-
ronment. With reference to the former class, we quote [6], [8], and
[9] where the minimum Integrated sidelobe level (ISL) filter [6] and
the minimum peak sidelobe level (PSL) filter [8], [9] are respectively
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