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Abstract—Many second-order approaches have been pro-
posed recently for blind FIR channel identification in a
single-input/multi-output context. In practical conditions,
the measured impulse responses usually possess “small” leading
and trailing terms, the second-order statistics are estimated
from finite sample size, and there is additive white noise. This
paper, based on a functional methodology, develops a statistical
performance analysis of any second-order approach under these
practical conditions. We study two channel models. In the first
model, the channel tails are considered to be deterministic. We
derive expressions for the asymptotic bias and covariance matrix
(when the sample size tends to ) of the th-order estimated
significant part of the impulse response. In the second model,
the tails are treated as zero mean Gaussian random variables.
Expressions for the asymptotic covariance matrix of the estimated
significant part of the impulse response are then derived when
the sample size tends to , and the variance of the tails tends
to 0. Furthermore, some asymptotic statistics are given for the
estimated zero-forcing equalizer, the combined channel-equalizer
impulse response, and some byproducts, such as the open eye
measure. This allows one to assess the influence of the limited
sample size and the size of the tails, respectively, on the per-
formance of identification and equalization of the algorithms
under study. Closed-form expressions of these statistics are given
for the least-squares, the subspace, the linear prediction, and
the outer-product decomposition (OPD) methods, as examples.
Finally, the accuracy of the asymptotic analysis is checked by
numerical simulations; the results are found to be valid in a very
large domain of the sample size and the size of the tails.

Index Terms—Asymptotic statistical analysis, blind equaliza-
tion, blind identification, channel undermodeling, second-order
methods.

I. INTRODUCTION

T HE RECENT development of second-order statistics
(SOS)-based blind identification/equalization methods

in a single-input/multi-output channel setting, derived either
from fractional sampling in the receiver or from the use of an
array of sensors, has been considered a major breakthrough
and has spawned intensive research in the area. When the order
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of the channel is known and the second-order statistics are
exact, the SOS-based blind identification methods are able
to identify the channel under the so-called length and zero
conditions. These same conditions ensure the existence of a
finite-length equalizer achieving perfect channel equalization
in the absence of noise. The behavior of these methods may
change dramatically, however, under practically inevitable
“less ideal” conditions that often occur together, such as

• second-order statistics estimated from finite sample obser-
vations;

• non-negligible additive channel noise;
• long tails of “small” leading and/or trailing impulse re-

sponse terms.

Physical microwave radio channel impulse responses often pos-
sess weak leading and/or trailing terms [1], [2]. This is because
the global impulse response models the transmitter shaping
filter, the propagation through the channel, and the receiver
filter, with each contributing to leading and/or trailing impulse
response terms. In this context, it often proves convenient to
partition the true channel impulse response into thesignificant
part and thetails. By significant part, we mean that part usually
found near the middle of the impulse response containing all
the “large terms” and possibly some “small” intermediate terms
as well; the “small” leading and trailing terms compose the
tails.

The robustness of SOS-based blind identification methods
with respect to the presence of tails has been studied in [3] and
[4], but assuming exact signal statistics are available and that
channel noise is negligible. In this context, each second-order
method attempts to fit a finite length (, say) impulse response
to the true channel impulse response whose actual length (in-
cluding the tails) is . Worst-case bounds are derived for
the channel estimation error and reveal that the successful ap-
plication of second-order methods hinges critically on matching
the assumed channel lengthto theeffectiveimpulse response
length, i.e., the length of the significant part. If the assumed
length exceeds the effective length, then the second-order
methods are tacitly attempting to identify parts of the tails; this
give rise to an ill-conditioned identification problem [3], [4] and
should thus be avoided. Similarly, choosingsmaller than the
effective length imposes a lower bound on the identification
error in terms of the norm of the significant terms of the true
impulse response that are excluded, irrespective of the method
employed [3], [4]. This underscores the relevance of efficient
methods for effective length detection [5], [6].
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Here, we pursue robustness aspects for any second-order
method with respect to finite sample size statistics and additive
white channel noise by developing a functional approach. We
assume, however, that the effective channel length is correctly
detected using, e.g., the method of [5] and [6]; otherwise, the
resulting length mismatch can result in such poor mean asymp-
totic performance as to render subsequent variance analyses of
little interest. Two channel models are considered. In the first
model, these channel tails are considered to be deterministic.
We derive the asymptotic bias and covariance of the estimated
significant part of the impulse response when the sample size
tends to infinity. The results show a similar flavor to the effect
of source number underestimation on MUSIC location esti-
mates studied in [7] in which the presence of weaker sources
exerts a bias on the estimated stronger sources. In the second
model, since the terms of the tails are much less stable than
the significant terms, they are modeled as zero mean Gaussian
random variables. We derive the asymptotic covariance of the
estimated significant part of the impulse response in the limit
as the sample size tends to infinity and the variance of the
tails tends to zero. These asymptotes are motivated by the fact
that the tails are often one or two orders of magnitude smaller
than the significant terms. General closed-form expressions are
given for these statistics and then derived for the least-squares
(LS) [8], the subspace [9], the linear prediction (LP) [10],
and the outer-product decomposition (OPD) [1] methods, as
examples. We note that our analysis does not fit the method
by Pozidis and Petropulu [11], which relies on a spectrum
estimation based on periodograms of the data, but that our
performance analysis encompasses the previous statistical
studies [12]–[15] if the channel impulse reponse has no tail.

The paper is organized as follows. In Section II, for conve-
nience of the reader and in order to fix notations, we review
the channel model and the main steps of the LS, SS, LP, and
OPD methods with exact second-order statistics and exact order
model. In Section III, a functional statistical analysis method-
ology is given for the two models of the tails. For notational sim-
plicity, the analysis is given in the real case, as it may be straight-
forwardly extended to the complex case. Using a functional ap-
proach, we give the asymptotic bias and covariance matrix of
the estimated th-order significant part of the channel impulse
response, the zero-forcing equalizer, and the combined channel-
equalizer impulse response for any second-order method. In
Section IV, we assess the performance of the LS, SS, LP, and
OPD methods by deriving the explicit formulas of the previous
asymptotic statistics, then analyze and compare with previous
results. Finally, in Section V, we present some simulations in
which the significant part of the channel impulse response has
either good or poor diversity. We examine the accuracy of the
expressions of the bias and the mean square error of our esti-
mators for the LS, SS, LP, and OPD methods. In addition, we
investigate the sample size and the tails size domains for which
our asymptotic results remain valid.

The following notations are used throughout the paper.
Matrices and vectors are represented by bold uppercase and
bold lower case characters, respectively. Vectors are by default
in column orientation, whereas, , , and stand for
transpose, transconjugate, conjugate, and Moore Penrose

Fig. 1. Noisy two-channel equalization setting.

pseudoinverse, respectively. is the th unit vector in .
and are, respectively, theth-order antidiagonal matrix

and the shift matrix with 1’s above the principal diagonal.
Cov Tr and denote the expectation, the

covariance, the trace, and the Frobenius matrix norm, re-
spectively. Vec is the “vectorization” operator that turns a
matrix into a vector by stacking the columns of the matrix one
below another. It is used in conjunction with the Kronecker
product as the block matrix whose block element
is with the vec-permutation matrix [16] , which
transforms Vec to Vec for any matrix and
with the following properties ( is any matrix in the third
relation):

Vec Vec (1.1)

(1.2)

(1.3)

II. SOME SECOND-ORDERMETHODS: EXACT ORDERCASE

For convenience of the reader and in order to fix notations, we
recall the basic steps of the LS, SS, LP, and OPD methods, based
on exact second-order statistics for the single-input/two-output
channel setting presented in Fig. 1. This setting is obtained by
channel oversampling by a factor of 2 or by using a two-sensor
receiver. We have chosen to treat only this setting because it is
both quite common in telecommunications, and it leads to very
simple results; in particular, for the LS and SS methods, there
is a simple relationship between the minimal covariance matrix
eigenvector and the estimated impulse response.

A. Two-Channel Model

If the true channel order is , the output of theth channel
for is given by

(2.1)

The input sequence is assumed to be i.i.d., zero mean,
and of unit variance; is the impulse response of theth
channel; ; and is additive zero mean Gaussian white
channel noise with power . We assume that the two channels
do not share common zeros, guaranteeing their identifiability.
By stacking the most recent samples of each channel, we
obtain the representation
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with , ,

, and where
is the Sylvester resultant matrix with

:

...
...

In the sequel, we recall briefly the second-order methods
under study, in the exact second-order statistics case, assuming
that the true channel is theth-order channel .

B. LS and SS Methods

The LS and SS estimates of , which coincide in the two-
channel case with [17], defined up to a constant scale

factor, are given by the relation , with

being the eigenvector associated

with the unique smallest eigenvalue of ,
i.e.,

(2.2)

where is the antisymmetric orthogonal matrix
.

C. LP Method

The basic steps of the LP method in the two-channel case are
sketched in the sequel. First, the coefficients of
a predictor filter are given by

with

and

Then, the rank-one innovation covariance matrix
is given by , with

. If and are, respectively, the nonzero eigenvalue of
the rank-one matrix and its associated eigenvector, then an

th order zero-forcing zero-delay equalizer1 is given by
, and the impulse response is

identified as

1We note that this equalizer has no reason to be minimum norm.

with

..
.

... . .
.

D. OPD Method

The OPD method [1] is based on the rank-one outer-product
matrix , which is shown to be equal to ,
where

(2.3)

The OPD estimate of , defined up to scale factor, is the eigen-
vector associated with the unique nonzero eigenvalue of

(2.4)

III. STATISTICAL ANALYSIS METHODOLOGY

A. th-Order Effective Channel Identification

We denote byeffective orderof the channel the order detected
by a suitable rank detection procedure (see, e.g., [5]).2 Our prin-
cipal concern in this section is deducing the asymptotic perfor-
mance of any second-order algorithm that assumes that the ef-
fective order of the impulse response is detected beforehand is

. We call these methods th-order SOS-based methods. To
this end, we partition the true impulse response into the
zero-padded th-order significant part and tails
as follows:

(3.1)

and as in the expression at the bottom of the page.
We denote the nonzero-padded vectorsand as fol-

lows:

Here, denotes the th-order significant part of the channel.
, where and denote, respectively, the

length of the leading and trailing parts of the channel impulse

2The procedure introduced in [5] gives as byproduct (through the existence
of a gap between two consecutive eigenvalues of the estimated covariance ma-
trix), which is an indication of the stability of the blind channel approximation
problem. In the stable case, existence of a significant part of orderm that gathers
most of energy is ensured.
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Fig. 2. Square magnitude of the real part of microwave radio channel, oversampled, by a factor of 2.

response . We note that this partitioning of remains valid
if the two significant parts of each subchannel are not aligned
because the size (“large” or “small”) is taken as the norm .
In addition, and are considered to be known for anal-
ysis purposes, but, of course, they are unknown from the algo-
rithmic point of view.

In Fig. 2, we plot the real part of thechan1.matoversampled,
by a factor of 2, complex-valued microwave radio channel,
which can be found at http://spib.rice.edu/spib/microwave.html.
Here, the “small” terms are about two orders of magnitude
smaller than the significant terms, but the partitioning of the
impulse response into the “large” and “small” terms is not
perfectly clear.

To study the performance of suchth-order SOS-based algo-
rithms, we introduce two spatio-temporal
covariance matrices. The first is the estimated spatio-temporal
covariance matrix of the data

whose expectation yields

The second is the spatio-temporal covariance associated with
the th-order significant part of the channel impulse response

(3.2)

To consider the asymptotic performance of anth-order
SOS-based algorithm, we adopt a functional approach that
consists of recognizing that the whole process of constructing
an estimate of is equivalent to defining a functional

relation linking the estimate to the sample statistics
from which it is inferred. This functional dependence is denoted

alg . Clearly, alg , and therefore, the
different algorithms alg constitute distinct extensions of the
mapping generated by (3.2) to any unstructured real

symmetric . We consider two models of tails.
1) Deterministic Model of Tails:In the deterministic model

of tails, the tails are considered to be deterministic, and we are
interested in the asymptotic bias and asymptotic covariance ma-

trix of when the sample number tends to . may be
considered to be a perturbation of :

(3.3)

where is the finite sample size error, verifying
and Cov [18, Sec. 7.3]. Because the map-

ping alg is sufficiently regular in a neighborhood of for
most algorithms (if necessary, regularization techniques are em-
ployed), we have, from (3.3)

alg (3.4)

where denotes the differential of the mapping
alg evaluated at point applied to . Taking expecta-
tions, we obtain

alg (3.5)

The matrix may be considered to be a perturbation of

(3.6)

where is due to the tails, i.e.,

(3.7)

The vectorization of yields

Vec

with

where

(3.8)

is defined from the linear relation linking and

( ) and where the vec-per-
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mutation matrix is defined in the Introduction and the
classical property (1.1) has been used. Let denote the
matrix associated with the differential at point ; pre-
cise expressions for each algorithm will be given in Section IV.
Using (3.6), the first-order perturbation analysis of anth-order
SOS-based algorithm acting on evaluated at point gives

alg alg

Vec

(3.9)

with . Therefore, from (3.5) and (3.9), the
following result holds:

Result 1: The asymptotic bias in the deterministic model of
tails is given by

(3.10)
and when and .

(3.11)

where is the largest singular value of , and
equality prevails for tails colinear with the right singular
vector of .

Then, from (3.4) and (3.5), the mapping alggives the de-
viation from the asymptotic mean

Vec (3.12)

It thus follows that

Cov

with Cov Vec
Vec Vec . In addition, since Vec is

asymptotically Gaussian (see Appendix A) i.e., Vec

Vec , we have, thanks to a conti-
nuity theorem [19, th. 6.2a, p. 387] applied to the differentiable
mapping alg , the following asymptotic distribution results.

Result 2: In the deterministic model of tails, is asymp-
totically Gaussian when :

(3.13)
where

Cov (3.14)

2) Statistical Model of Tails:In the statistical model of tails,
the components of are assumed to be independent, zero

mean, Gaussian with the same variance, and .
Here, is assumed to be independent fromand

. The matrix may be considered here to be a perturba-
tion of

with

where is the finite sample size error

A first-order perturbation analysis of anth-order SOS-

based algorithm acting on evaluated at point gives the
estimate

with

Vec

Vec

(3.15)

Therefore, when and

(3.16)

and since and are independent random variables,
the following result holds.

Result 3:

Cov

(3.17)

Tr

Tr

(3.18)

when and , where the expression of
Vec Vec is given in Appendix A.

Two particular cases can be deduced: 1) exact channel order
and finite sample size (no tails in the impulse response)3 and 2)
exact second-order statistics and tails in the impulse response,
where we have, respectively

when (3.19)

when (3.20)

Thus, the influence of 1) the finite sample size and 2) the
tails can be analyzed in the same framework. The identified
channel by any th-order SOS-based algorithm is close to the

3We note that in the absence of tails, the deterministic tail model givesRRR =

RRR . Therefore, the estimateŝhhh are asymptotically unbiased with asymptotic
distribution (3.13) identical to (3.19).
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th-order significant part of the impulse response . This
closeness depends on the diversity of, as will be seen in Sec-
tions IV and V as well as, depending on the case considered, on
the sample size or on the size of the tails measured by.
Upper bounds with a similar flavor have previously been ob-
tained in [3] and [4] for the LS/SS and LP methods, with respect
to the presence of tails.

B. Zero-Forcing Equalization

Having “identified” the th-order channel , we can
equalize it perfectly in the noiseless case by using the
zero-forcing equalizers of order , for delays

, given by

(3.21)

In the presence of additive channel noise, the output of
the equalizer is corrupted by additive noise of power

. Of course, is not a zero-forcing equalizer
for the true channel . To gauge the equalization error, we
introduce the combined channel-equalizer impulse response,
which is denoted ,
according to

(3.22)

Adopting the functional approach of Section III-A to
and , we have4

alg

However, since

we can extend the results of Section III-A to estimates
and . Naturally, this approach could be applied to any

th-order Wiener equalizer

1) Zero-Forcing Equalizer:The mapping
given by (3.21) is differentiable at with differential

(3.23)

where the commutativity of the convolution product has been
used in the third equality. Therefore, since

applying the chain differential rule to the deterministic model
of tails gives the asymptotic bias

4We note that this last mapping is defined only for analysis purposes ashhh

is unknown to the receiver.

with

Results 1–3 hold for upon using in place of

:

(3.24)

Furthermore, in the statistical model of tails, results
(3.16)–(3.20) hold, provided and are replaced,

respectively, by and with

2) Combined Channel-Equalizer:From (3.1), the combined
channel-equalizer impulse response (3.22) reads

(3.25)

The mapping given by (3.25) is differ-
entiable at with the differential function

(3.26)

thanks to
, where the first and the second equalities

come, respectively, from the differentiation of
and the commutativity of the convolution

product for the first term of (3.26) and thanks to (3.23) for its
second part. Because equalizes perfectly , we may
use the commutativity of the convolution product to obtain

Therefore, using Result 1, we have for the deterministic
model of tails the following asymptotic bias:

Results (3.12)–(3.14) hold for , provided

is replaced by
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In the statistical model of tails, (3.16)–(3.20) hold for
thanks to (3.26) and (3.15), provided and are,

respectively, replaced by and :

and

3) Open Eye Measure:Results concerning byproducts such
as the open eye measure (OEM) can be deduced. Following our
functional approach, the chain of operations

OEM

5allows the asymptotic statistics of OEM to be de-
duced. The mapping OEM is dif-
ferentiable to the second order at the point with a
zero first-order derivative and a second-order derivative

so that

OEM

Tr

Therefore, in the statistical model of tails, we have from

Vec

the asymptotic mean OEM when and :

Tr

Tr

IV. A PPLICATION TO THELS, SS, LP,AND OPD METHODS

We proceed with the derivation of the matrices
associated with the differential of the mappings algat point

as all other quantities defined in the previous section are
derived from it. In particular, the matrices are deduced

from by replacing, respectively, ,
and by ,

6 and . As

usual, the mapping
alg

is built by replacing, respec-

tively, and by and

(where is the eigenvector of associated with its

5We suppose here that the term̂f is the dominant term of the combined
channel-equalizer responsef̂ff

6where(:) denotes here the operation that consists of forcing to zero the
smallest eigenvalue of (.) and then inverting the truncated version of (.) in its
range space.

smallest eigenvalue) in the relations given in Sections II-B–D
relating to . In this section, is denoted as for
simplicity.

A. LS and SS Methods

Thanks to a perturbation result [20], concerning the eigen-
vector associated with the unique smallest eigenvalue of,
(2.2) gives the differential :

Vec

Vec

Thus

(4.1)

B. LP Method

After some modifications, [14, (33)] reads

Tr

(4.2)

From [4], it can be shown that

Tr (4.3)

The matrix is a linear function of the matrix

Vec Vec (4.4)

with

...

Since the differential is orthogonal to (be-
cause ), we have

Vec

Thus

Vec Vec (4.5)

with Vec .
Finally, putting together (4.2)–(4.5), we get

Vec with

(4.6)
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C. OPD Method

We note that the mapping is a composition of dif-
ferentiable mappings. This is differentiable at point despite

the pseudo-inverse being included in relation (2.3)

of the OPD algorithm because is singular with rank
, as with .

Thanks to a perturbation result [20], concerning the eigen-
vector associated with the unique biggest eigenvalueof ,
(2.4) gives the perturbation

Vec

Vec

(4.7)

with Vec Vec , where, from (2.3), is given
by

(4.8)

From (2.3), we get

(4.9)

with . Therefore, by vectorization, we
get

Vec Vec

Vec

Vec (4.10)

Finally, putting together (4.7), (4.10), (4.4) and (4.5), we get
Vec with

(4.11)

D. Analysis of the Results

As shown in Section III, the performance in terms of asymp-
totic bias and variance in the deterministic model of tails and
mean square errors in the statistical model of tails are directly
related to matrices and , but (4.1), (4.6), and
(4.11) are lacking engineering insight and, as such, are com-
plicated to analyze. However, we see in the following that these
performance depend on the significant part of the impulse

response through itsdiversityand on the sensitivity of this
diversity adapted to each algorithm.

Influence of Diversity:The significant part of the
impulse response acts upon through

for the SS/LS and the OPD algorithms and
through for the LP
algorithm if is normalized. In fact, the behaviors of the
terms and are
very close because they are, respectively, dominated by the
inverse of the square of the singular values

and

which are not orderable but practically very close to each
other. These singular values may be interpreted as a measure of
diversityof [3] as they measure, respectively, the distance
in the matrix 2-norm of and from the
matrices of rank and , thus violating the rank
assumptions. Therefore, the performance (asymptotic bias
in the deterministic model of tails and mean square error
in the statistical model of tails) of the algorithms degrade
when this diversity decreases. This diversity of the signif-
icant part of the impulse reponse acts on
as well because , and

. Thus, the variances of
the estimates given in the deterministic model of tails degrade
as well when this diversity decreases.

Influence of the Sensitivity of this Diversity Adapted to Each
Algorithm: Concerning the bias performance, can
be considered to be a better measure ofdiversity sensitivityof

adapted to each algorithm than and , which do not
depend on the algorithm used. We note that the bias norm upper
bound given in the Result 1 isattainable
for the worst-case tail (i.e., the tail that maximizes the
bias norm for fixed ), which is col-
inear with the right singular vector of associated with
its largest singular value. This worst-case tail is of the form
(proved in Appendix B for the LS/SS algorithm but only ob-
served by computer for the LP and OPD algorithms)

with

if

and

if (4.12)

and and do not depend on and
but depend on the algorithm, given . Thus, the “worst”

tail gathers on both sides of the significant part along a length
equal to the order of this significant part. Concerning the mean
square error in the statistical model of tails, the part

Tr , which is attributed to the tails in the
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Result 3, depends only on the tail energy per term if
. More precisely, it is proved in Appendix B for the LS/SS

algorithm, but observed by computer only for the LP and OPD
algorithms, that

(4.13)

Furthermore, it is shown by simulation that

is the dominant term of Tr

. Therefore can also
be interpretated as a measure ofdiversity sensitivityof the
algorithm with respect to the tails for the mean square error of

in the statistical model of tails.
Relation with Previous Works:The bias norm upper bound

given in the Result 1 to the first-order can be compared with the
upper bound of the errors of the estimates given in [3] and
[4] for the SS/LS and LP methods, respectively, in theh exact
statistics situation:

(4.14)

(4.15)

where is the first term of the significant part of . These
upper bounds are proportional to in the first order of

and are, respectively, inversely proportional toand
(when ), whereas the bounds (3.11) are dominated,

respectively, by the inverse of the square ofand for, re-
spectively, the SS/LS and the LP methods. The bounds (4.14)
and (4.15) are shown to be rather loose in the following Sec-
tion, as compared with the bound given by the Result 1.

V. SIMULATIONS

In this section, we examine through examples of the perfor-
mance of the LS/SS, LP, and OPD methods, the accuracy of the
expressions of the bias and the mean square error of our esti-
mators, and we investigate the sample size and the tails size do-
mains for which our asymptotic approach is valid. We consider
throughout this section an impulse responsewith ,
where the order of the significant part is . We present two
types of significant part with . One offers “great”
diversity

(5.1)

Fig. 3. MSE of ĥhh versus the sample size forhhh given by (5.1), a
signal-to-noise ratio of 17 dB, and forkddd k = 0:05.

Fig. 4. MSE ofĥhh versus the signal-to-noise ratio forN = 300 andhhh given
by (5.1) and forkddd k = 0:05.

with and and the
other “poor” diversity

(5.2)

with and . In all
the simulations, the order is correctly detected beforehand
by the procedure described in [5] and [6]. For each experiment,
1000 independent Monte Carlo simulations are performed. The
signal-to-noise ratio SNR is fixed to
17 dB, except in Figs. 4 and 6.

The first experiment presents the deterministic model of tails
and examines the performance of the different second-order al-
gorithms. Table I compares the theoretical asymptotic bias of

given by Result 1 with the estimated bias given by sim-
ulation for and and for two propor-
tional tails [for which
and ] and [for which

and ] for the
channel with significant part shown in (5.1). This table shows
a good agreement between theoretical and estimated values.
The difference between these values increases with increasing
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Fig. 5. MSE ofĥhh for no rails versus (a) the sample size and (b) for exact
statistics versus� = E(kddd k ).

Fig. 6. MSE of ĥhh for N = 300 and kddd k = 0:01 versus the
signal-to-noise ratio.

and decreases with increasing, which is explained
by the second-order term in and the first-order term in

. The numerical values of the attainable bounds (3.11) for
the LS/SS and LP algorithms (for ) are, respec-
tively, 0.2282 and 0.1917. Compared with upper bounds (4.14)
and (4.15) (1.1885 and 2.6809), these latter bounds are not very

TABLE I
THEORETICAL ASYMPTOTIC BIAS OF ĥhh , COMPARED WITH ESTIMATED

BIAS IN THE DETERMINISTIC MODEL OF TAILS FOR, RESPECTIVELY,
(a)N = 300, kddd k = 0:05; (b) N = 300, kddd k = 0:1; (c)

N = 1000, kddd k = 0:05

tight. Figs. 3 and 4 plot the theoretical mean square error (MSE)
of

bias Tr Cov

Tr

and the estimated MSE given by simulation versus the sample
size and the signal-to-noise ratio, respectively. (ranges from
30–1000 and the signal-to-noise ratio from 8–37 dB). We ob-
serve that the SS/LS algorithm outperforms the LP and OPD
algorithms. Furthermore, the LP and the OPD mean square er-
rors are almost equivalent with a slight superiority of the OPD
algorithm.

The second experiment presents the statistical model of tails
and examines the performance of the different second-order al-
gorithms. Fig. 5 exhibits the theoretical MSE (3.18) ofand
its estimated MSE obtained by simulation for a signal-to-noise
ratio of 17 dB in two situations: in no channel tail situation
versus the sample size and in exact statistics situation versus the
energy of the tails . We observe that if we separate
the effects of the tails and of the finite sample size, the three al-
gorithms under study are almost equivalent with respect to the
tail sensitivity, but the LS/SS algorithm outperforms the other
algorithms with respect to the finite sample size sensitivity. In
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Fig. 7. MSE of ĥhh , for N = 300 and SNR = 17 dB, versus� for
respectivelyhhh given by (5.1) (o)(—) and (5.2) (*- - -).

Figs. 6 and 7, the finite sample size and the tail contributions are
simultaneously present. The two figures compare the theoretical
MSE of and its estimated MSE obtained by simulation, for

, versus the signal-to-noise ratio for
fixed and versus the energy of the tails for a

signal-to-noise ratio fixed at 17 dB. The adequation between
the theoretical and the estimated MSE is good, except for the
LP algorithm, for which 300 samples is too small (see Fig. 8).
Furthermore, in Fig. 7, the two channels given by (5.1) and (5.2)
are exhibited. Naturally, these MSE’s increase when the diver-

sity decreases, but we note that unlike the LS/SS algorithm, the
LP and OPD algorithms are less sensitive to the diversity of the
significant part . Fig. 8 compares the theoretical MSE of the
estimated significant part , the estimated zero-forcing equal-
izer and the combined channel-equalizer , and the the-
oretical mean of OEM with the estimated MSE and esti-
mated mean obtained by simulation. We note good agreement
between the theoretical and estimated MSE and mean OEM for

. The performance of the LP and OPD algorithms are
equivalent, but the LS/SS algorithm outperforms the other al-
gorithms in presence of finite sample sizes and channel tails.
Naturally, the conclusions of these two simulations must be mit-
igated because a thorough comparison between the studied algo-
rithms would need a large quantity of scenarios (various chan-
nels, and SNR) but is beyond the scope of this paper.

To see that our analysis breaks down when a partition between
significant part and tails is ambiguous, we consider the popular
multipath transfer function in raised cosine. Unlike preceding
papers (e.g., [1]), we retain most of the terms of the infinite
length impulse response ( ). The so-computed impulse
reponse is inevitably ill conditioned. However, its effective
part is better conditioned, and consequently, it may be blindly
identified. We choose the three-ray multipath channel

with a roll-off
factor of 0.4. In this situation, the procedure given in [5] gives

, and by forcing the value of to 1, 2 3, 4, the theoretical
and estimated MSE of defined as

with given for the SS algorithm are shown in Table II.
We see that our analysis based on a deterministic model of tails
is valid for . We observe that a correct detection of the
significant order is critical. For , the diversity of
is very small; therefore, the estimated and theoretical variance
of degrades considerably. We note that the corresponding
theoretical values are large. In fact, from (4.1), (4.6), and (4.11),
the algorithms derivative involves the inversion of the channel
covariance matrix, which in this case is poorly conditionned.
Our first-order perturbation analysis is no longer valid. Only
the SS algorithm is able to identify the effective response of
our three-ray multipath channel for roll-off factor 0.4 thanks to
its better sensibility to the diversity of (see Section IV-D).
Furthermore, we note that for weaker roll-off factors, we are not
in the context of an effective response clearly distinct from small
tails.

VI. CONCLUSION

We built a general functional methodology for studying
the statistical performance of second-order methods for blind
channel identification/equalization in practical situations,
i.e., in the presence of estimated second-order statistics from
finite samples observation, non-negligible additive channel
noise, and long tails of “small” leading and/or trailing impulse
response terms. We proposed two models for the channel tails,
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Fig. 8. MSE ofĥhh , ĝgg , f̂ff and OEM(f̂ff ) for SNR= 17 dB, versus the sample size for� = 0:0111 andhhh given by (5.1).

TABLE II
THEORETICAL AND ESTIMATED MSE OF ĥhh GIVEN BY THE SS ALGORITHM,

WITH N = 300 AND A SIGNAL TO NOISE RATIO OF 17 dB FOR

DIFFERENTVALUES OFm

and we obtained general asymptotic statistics of the estimated
significant part of the channel, the zero-forcing equalizer, the
combined channel-equalizer impulse response, and the OEM.
These asymptotic statistics are valid in a large domain of
tail size and sample size. It is shown that these performance
measures are related to the diversity of the significant part
of the channel as well as to a diversity sensitivity of this
significant part adapted to each algorithm. Finally, we applied
our functional approach to the LS/SS, LP, and OPD algorithms
as examples.

APPENDIX A
ASYMPTOTIC NORMALITY OF

In this Appendix, and are denoted and for

simplicity and to specify the dependence onof . Since

, associated with the impulse response are
-dependent processes, we can apply the asymptotic normality

results of [21, th. 14, p. 228] and [18, ths. 6.4.2 and 7.2.1].
Adapting these results to the multivariate processand using
some properties of the vec-permutation matrix, the vec-oper-
ator, and Kronecker products given in [16], Vec is asymp-
totically Gaussian

Vec Vec

with the asymptotic covariance matrix given by
Cov Vec with

(A.1)

where

(A.2)

and

Vec Vec
(A.3)
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denotes the vector . is
the spectral density matrix of the 2-D vector process. From
(2.1), it is easily seen that

(A.4)
where is the cumulant cum . Naturally, the
asymptotic normality of is obtained in the same way by
replacing by in (A.2)–(A.4).

We note that the performance of the LS/SS method is insen-
sitive to the distribution of the input because the last term of
(A.1) does not affect the asymptotic covariance of the estimates
given by the LS/SS method. This is immediately shown because

Vec

Vec

Vec

The second equality uses (1.1) and the third equality is due to
the orthogonality of to the column space of .
This extends a result given in [15].

APPENDIX B
PROOF OFRELATIONS (4.12)AND (4.13)FOR THELS/SS

ALGORTIHM

For the SS algorithm, (4.12) and (4.13) are proved thanks
to the following simplification of defined in (3.9) by

Vec . From (3.7)

Vec

Vec

Vec

Then, thanks to (2.2), as is left orthogonal to the
Sylvester resultant matrix and, hence, to ,

Vec reduces to

Vec

Using the commutativity of the convolution product and the
selection matrix (3.8) that links to , it holds that

Proof of Relation (4.13):In , a priori

only depends
on and . First, consider . Because
any row of the Sylvester resultant matrix can be per-

muted to give [where and

are defined similarly as and , ], it holds that

(B.1)

where . Consequently,

the product of by a column of can be in-
terpreted, if entries of this column are regarded as input data, as
the output of the channel driven by this input. As columns

of are shifted versions of each other, the columns

of are also shifted versions of each other.
Therefore, each matrix has a Toeplitz structure, and an entry

and is the scalar
product between the -dimensional vectors

and

If , it is straightforward to prove that

where does not depend on . Then
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Using the definition of , (3.8), and property (1.3), it is
straightforwardly proved that

so that any of the blocks is given by
for . It

remains to see that each term of this sum does not depend on
. It is proven, as

Proof of Relation (4.12):Using (B.1) and (1.3) (which im-
plies ), we have

If and , then
, where

does not depend on and , and

Therefore

Consequently, , where

do not depend on and . Let

be a unit norm vector. It is uniquely
expressed as the sum of two orthogonal vectors ,
where

so that and

where . Conse-

quently, a unit norm vector that maximizes satis-

fies with , where

and are -dimensional vectors.
Furthermore

where does not depend on and . Its right sin-
gular vectors and singular values also do not depend on
and . is a right singular vector associated with the largest
singular value of iff is a
right singular vector associated with the largest singular value

of . Therefore, the right singular vector associated with
the largest singular value of does not depend on and

.
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