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Statistical Analysis of Some Second-Order Methods
for Blind Channel Identification/Equalization with
Respect to Channel Undermodeling
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Abstract—Many second-order approaches have been pro- of the channel is known and the second-order statistics are
posed recently for blind FIR channel identification in a exact, the SOS-based blind identification methods are able
single-input/multi-output context. In practical conditions, to identify the channel under the so-called length and zero

the measured impulse responses usually possess “small” leading diti Th diti th ist f
and trailing terms, the second-order statistics are estimated conaitions. ese same condilions ensure the existence of a

from finite sample size, and there is additive white noise. This finite-length equalizer achieving perfect channel equalization
paper, based on a functional methodology, develops a statistical in the absence of noise. The behavior of these methods may
performance analysis of any second-order approach under these change dramatically, however, under practically inevitable

practical conditions. We study two channel models. In the first “less ideal” conditions that often occur together, such as
model, the channel tails are considered to be deterministic. We '

derive expressions for the asymptotic bias and covariance matrix ~ ® second-order statistics estimated from finite sample obser-
(when the sample size tends tax) of the mth-order estimated vations;

significant part of the impulse response. In the second model, « non-negligible additive channel noise;

the tails are treated as zero mean Gaussian random variables. long tails of “small” leading and/or trailing impulse re-
Expressions for the asymptotic covariance matrix of the estimated
significant part of the impulse response are then derived when sponse terms.

the sample size tends tao, and the variance of the tails tends Physical microwave radio channel impulse responses often pos-
to 0. Furthermore, some asymptotic statistics are given for the gags weak leading and/or trailing terms [1], [2]. This is because

estimated zero-forcing equalizer, the combined channel-equalizer . . .
impulse response, and some byproducts, such as the open ey(%he global impulse response models the transmitter shaping

measure. This allows one to assess the influence of the limitedfilter, the propagation through the channel, and the receiver
sample size and the size of the tails, respectively, on the per-filter, with each contributing to leading and/or trailing impulse
formance of identification and equalization of the algorithms response terms. In this context, it often proves convenient to
under study. Closed-form expressions of these statistics are given partition the true channel impulse response intosigeificant

for the least-squares, the subspace, the linear prediction, and . L
the outer-prodgct decompositior? (OPD) methodsl,o as examples. partand thetails. By significant part, we mean that part usually

Finally, the accuracy of the asymptotic analysis is checked by found near the middle of _the impulse response coqtaining all
numerical simulations; the results are found to be valid in a very the “large terms” and possibly some “small” intermediate terms
large domain of the sample size and the size of the tails. as well; the “small” leading and trailing terms compose the
Index Terms—Asymptotic statistical analysis, blind equaliza- tails. o o
tion, blind identification, channel undermodeling, second-order The robustness of SOS-based blind identification methods
methods. with respect to the presence of tails has been studied in [3] and
[4], but assuming exact signal statistics are available and that
channel noise is negligible. In this context, each second-order
~method attempts to fit a finite lengtin( say) impulse response
I HE RECENT development of second-order statistiag the true channel impulse response whose actual length (in-
1 (SOS)-based blind identification/equalization methodguding the tails) isM > m. Worst-case bounds are derived for
in a single-input/multi-output channel setting, derived eithgfe channel estimation error and reveal that the successful ap-
from fractional sampling in the receiver or from the use of agjication of second-order methods hinges critically on matching
array of sensors, has been considered a major breakthroyghassumed channel lengthto theeffectiveimpulse response
and has spawned intensive research in the area. When the ofgigiith, i.e., the length of the significant part. If the assumed
length m exceeds the effective length, then the second-order
methods are tacitly attempting to identify parts of the tails; this
Manuscript received October 27, 1998; revised January 29, 2000. The aggive rise to an ill-conditioned identification problem [3], [4] and
ciate editor coordinating the review of this paper and approving it for publicatiggh ould thus be avoided Similarly, choosimgsmaller than the
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delmas@int-evry.). _ o impulse response that are excluded, irrespective of the method
A. P. Liavas is with the Department of Computer Science, University of loan- . ..
nina, loannina, Greece. employed [3], [4]. _Thls underscorgs the relevance of efficient
Publisher Item Identifier S 1053-587X(00)04954-0. methods for effective length detection [5], [6].

. INTRODUCTION

1053-587X/00$10.00 © 2000 IEEE



DELMAS et al: STATISTICAL ANALYSIS OF SOME SECOND-ORDER METHODS 1985

Here, we pursue robustness aspects for any second-order )
method with respect to finite sample size statistics and additive
white channel noise by developing a functional approach. We > ) g,,(,'_),
assume, however, that the effective channel length is correctly Sk S
detected using, e.g., the method of [5] and [6]; otherwise, the ™
resulting length mismatch can result in such poor mean asymp- - 2 @
totic performance as to render subsequent variance analyses of M B!
little interest. Two channel models are considered. In the first n?
model, these channel tails are considered to be deterministic.

We derive the asymptotic bias and covariance of the estimated Fig. 1. Noisy two-channel equalization setting.
significant part of the impulse response when the sample size

tends to infinity. The results show a similar flavor to the effegiseudoinverse, respectively, ; is theith unit vector inR¥.

of source number underestimation on MUSIC location estf, andZz, are, respectively, thith-order antidiagonal matrix
mates studied in [7] in which the presence of weaker sourcgsd the shift matrix with 1's above the principal diagonal.
exerts a bias on the estimated stronger sources. In the secgnd Cov(-), Tr(-) and || - ||r. denote the expectation, the
mOdel, since the terms of the tails are much less stable thﬁﬂlariance' the trace, and the Frobenius matrix norm, re-
the significant terms, they are modeled as zero mean GaussjpBctively. Ve¢) is the “vectorization” operator that turns a
random variables. We derive the asymptotic covariance of thetrix into a vector by stacking the columns of the matrix one
estimated significant part of the impulse response in the linejow another. It is used in conjunction with the Kronecker
as the sample size tends to infinity and the variance of thgoductA @ B as the block matrix whosg, 5) block element
tails tends to zero. These asymptotes are motivated by the &CL; ;B with the vec-permutation matrix [16K,. ., which
that the tails are often one or two orders of magnitude Smalh?é_nsforms Ve(:A) to VquT) for anyr x s matrix A and

than the significant terms. General closed-form expressions gjigh the following propertiesB is anyp x ¢ matrix in the third
given for these statistics and then derived for the least-squayggtion):

(LS) [8], the subspace [9], the linear prediction (LP) [10], T
and the outer-product decomposition (OPD) [1] methods, as Ve(ABC) =(C" ® A4)VedB) (1.1)
examples. We note that our analysis does not fit the method (A@B)(CeD)=AC®BD 1.2)
by Pozidis and Petropulu [11], which relies on a spectrum K, (A®B)K, ., =B A (1.3)
estimation based on periodograms of the data, but that our
performance analysis encompasses the previous statistiCﬂI
studies [12]-[15] if the channel impulse reponse has no tail.
The paper is organized as follows. In Section I, for conve- For convenience of the reader and in order to fix notations, we
nience of the reader and in order to fix notations, we revietfFcall the basic steps ofthe LS, SS, LP, and OPD methods, based

the channel model and the main steps of the LS, SS, LP, fyexact second-order statistics for the single-input/two-output
OPD methods with exact second-order statistics and exact or@gRnnel setting presented in Fig. 1. This setting is obtained by
model. In Section Ill, a functional statistical analysis methodhannel oversampling by a factor of 2 or by using a two-sensor
ology is given for the two models of the tails. For notational sinf€ceiver. We have chosen to treat only this setting because it is
plicity, the analysis is given in the real case, as it may be straighth guite common in telecommunications, and it leads to very

forwardly extended to the complex case. Using a functional apMPle results; in particular, for the LS and SS methods, there
proach, we give the asymptotic bias and covariance matrix i8¢ simple relationship t_)etween the minimal covariance matrix

the estimatedrth-order significant part of the channel impulsé€igenvector and the estimated impulse response.

response, the zero-forcing equalizer, and the combined chan el'Two-ChanneI Model
equalizer impulse response for any second-order method." In

Section IV, we assess the performance of the LS, SS, LP, andf the true channel order 87, the output of theth channel

OPD methods by deriving the explicit formulas of the previous;,” for ¢ = 1, 2 is given by

SOME SECOND-ORDER METHODS EXACT ORDER CASE

asymptotic statistics, then analyze and compare with previous ‘ M ‘
results. Finally, in Section V, we present some simulations in x,@ = Z h}”)sk_l + ngf). (2.1)
which the significant part of the channel impulse response has 1=0

either good or poor diversity. We examine the accuracy of theThe input sequence;, is assumed to be i.i.d., zero mean,
expressions of the bias and the mean square error of our esfid of unit variancehgj) is the impulse response of thith
mators for the LS, SS, LP, and OPD methods. In addition, Wiannel; = 1, 2; andn." is additive zero mean Gaussian white

investigate the sample size and the tails size domains for whighannel noise with power2. We assume that the two channels
- . . n"
our asymptotic results remain valid. do not share common zeros, guaranteeing their identifiability.

The following notations are used throughout the papesy stacking thel, + 1 most recent samples of each channel, we
Matrices and vectors are represented by bold uppercase gRghin the representation

bold lower case characters, respectively. Vectors are by default def

. . . €l T T T

in column orientation, wherea®, H, x, and (-)* stand for zr(k)= (z, - T_r)
transpose, transconjugate, conjugate, and Moore Penrose =Tr(hnr)spm (k) +np(k)
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with 2, (2, 2T ha SR - Bl m Y, with /

e T T Tm
N, sr g (B) S (s -+, sir—ar)T and whereTr, (har) o
isthe2(L + 1) x (L + M + 1) Sylvester resultant matrix with g et | TL T2
hay D, BT " S

hoy - - han T'm 2(m—+1) x2(m—+1)

Tr(hy) = : _
D. OPD Method
hoy - - han

The OPD method [1] is based on the rank-one outer-product

In the sequel, we recall briefly the second-order metho%mxh AT which is shown to be equal 9"~ D, — D,
under study, in the exact second-order statistics case, assunjipgre

that the true channel is theth-order channek,,,.
D, =S,R,'S T—[X X}
miAlm m - X

B. LS and SS Methods D,
/

The LS and SS estimates bf,, which coincide in the two- D, = [ D,  Oo, 2} . (2.3)
channel case witlh. = m [17], deflned up to a constant scale Oz,2m  O2,2
factor, are given by the relat|Qn(2>] _ [ <1>] With v 1 1) = The OPD estimate df,,,, defined up to scale factor, is the eigen-

L y L vectorv associated with the unique nonzero eigenvaluP f
(v(() ), vé ), e, fn), v )T belng the elgenvector associated B 24
with the unique smallest eigenvalue®f, ™ E(z,, (k)xZ, (k)), m =Y (2.4)
ie.,

IlIl. STATISTICAL ANALYSIS METHODOLOGY
hrn = rnUQ(rn-i—l) (22) . e .
A. mth-Order Effective Channel Identification

\[’Vgege T, is the antisymmetric orthogonal matrik,,, @ We denote byffective ordeof the channel the order detected

-1 ol by a suitable rank detection procedure (see, e.g.2[61r prin-
cipal concern in this section is deducing the asymptotic perfor-
C. LP Method
mance of any second-order algorithm that assumes that the ef-
The basic steps of the LP method in the two-channel case ftgiive order of the impulse response is detected beforehand is
sketched in the sequel. First, the coefficiefs, -- -, A of 1, we call these methodsth-order SOS-based methods. To
a2 x 2m predictor filter are given by this end, we partition the true impulse respoisg into the

A Al : (R, ) zero-paddednth-order significant park;,, ,, and tailsd;, ,,
1, °"y Am| = —|T1, - Tm m—1 ’ ’

as follows:
with har = B + i s (3.2)
R, E By 1 (k)zh_ (k) — 02 Lam and as in the expression at the bottom of the page.
and We denote the nonzero-padded vectorsandd,,, s as fol-
r,defE(:ck:ck D, i=1 . m. lows: .
O LR

Then, the rank-one innovation covariance malix= h(o)h%)
is given byD = r{ + > i, Awri L, with ) = E(zxi) — d,
o21,. If X andwv are, respectively, the nonzero eigenvalue of ’

the rank-one matri¥) and its associated eigenvector, then aklere,k,, denotes thenth-order significant part of the channel.
mth order zero-forcing zero-delay equalizés given byg, = M = mi+m+m2, wherem; andm, denote, respectively, the
(1/\/X)[127 Ay, -+, A]Tv, and the impulse responsg, is length of the leading and trailing parts of the channel impulse
identified as

T
[h(o) Ao 1) Ry gty h(]\l):|

2The procedure introduced in [5] gives as byproduct (through the existence
of a gap between two consecutive eigenvalues of the estimated covariance ma-

h, = Smgm trix), which is an indication of the stability of the blind channel approximation
problem. In the stable case, existence of a significant part of eidbat gathers
Iwe note that this equalizer has no reason to be minimum norm. most of energy is ensured.
T T
SIS Y| L YA YA o7 ...0” S YN 0707 h% . Y
m, M~ [ 7 (rnl) (mi+m) Y m, M — 0)° (m1—1)7 < /) (rnl+rn+l) (M)
S— ~~
my mo m—+1

m,-l— 1 mi mo
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Fig. 2. Square magnitude of the real part of microwave radio channel, oversampled, by a factor of 2.

responsé ;. We note that this partitioning éfy, remains valid  trix of A,,, when the sample numbg¥ tends toxc. Rﬁf may be
if the two significant parts of each subchannel are not aligne@nsidered to be a perturbation Bf :
because the size (“large” or “small”) is taken as the niphi, |-

~ M
In addition,M, m, andm, are considered to be known for anal- R, =R} +6R]] (3.3)
ysis purposes, but, of course, they are unknown from the algPrares RM is the finite sample size error verifyidg(éRM) _

rithmic point of view. O and CosRM) = O(1/N) [18, Sec. 7.3]. Because the map-
In Fig. 2, we plot the real part of thethanl.mabversampled, ping alg-) is sufficiently regular in a neighborhood Rﬁ‘,f for

by a factor of 2, complex-valued microwave radio chann€l, st aigorithms (if necessary, regularization techniques are em-
which can be found at http://spib.rice.edu/spib/microwave.ht loyed), we have, from (3.3)

Here, the “small” terms are about two orders of magnitude u u
smaller than the significant terms, but the partitioning of the hm = alg(R,;;) + (Dayg; 0R,;,)

impulse response into the “large” and “small” terms is nov%here(Dalg, §RM)| e denotes the differential of the mapping
perfectly clear. &4

H M : M H
To study the performance of sugkth-order SOS-based algo-?lg(') evalustte_d at poini,, applied 108R,,, . Taking expecta-
rithms, we introduce tw@(m + 1) x 2(m + 1) spatio-temporal lons, we obtain
covariance matrices. The first is the estimated spatio-temporal P M 1
E(h,,) =algR ol=1. 3.5
covariance matrix of the data (k) AR, )+ <N (3-5)

ru + O(|6R)|1)  (3.4)

N i PM ; :
o Maer 1 The matrix R,’ may be considered to be a perturbation of
RV L ST o (el (k) . . MY P
N k=1 R,
N M _ pm
1 R, =R, +6R, (3.6)
= N Z[(Tm(hM)San(k) + '"'m(k)][']T ) o
h=1 wheredR, is due to the tails, i.e.,
. . del z 1z 2

whose expectation yields SRy Tl a) T i, a1) + T )

of ., oM z

R CER,,) = Tu(hat) T, (har) + 07 Lgn)- T (B 1) + Olldn, ). (3.7)
The second is the spatio-temporal covariance associated witfl he vectorization o R, yields
themth-order significant part of the channel impulse response Ved(6Ry) = Cdy 11 + O(||dm. 11]1%)
mdel )
R, = Tm(hm),];rq;(hm) + 0—72112(771-1—1)' (3.2) with
To consider the_ asymptotic performan(_:e of wauth-order Cl“éf [K2(m+1),2(m+1) +I4(m+1)2]
SOS-based algorithm, we adopt a functional approach that o
. o . N [Krn-l—l, 2@ Z?l(hrn J\l)]

consists of recognizing that the whole process of constructing ' t
an estimateh,, of h,, is equivalent to defining a functi%nal 1, ® < I )
relation linking the estimaté,,, to the sample statistic&,, 2@ Omt1, 7-m Ko, pm—m
from which itis inferred. This functional dependence is denoted I

~

h,, = aIg(Rﬁf). Clearly, h,,, = alg(R},), and therefore, the where
different algorithms aly) constitute distinct extensions of the I, . O, .
mappingR,, — h,,, generated by (3.2) to any unstructured real o Jlrl N o +11 N (3.8)

symmetricR, , . We consider two models of tails.
1) Deterministic Model of Tails:In the deterministic model _ _ o
of tails, the tails are considered to be deterministic, and we afedefined from the linear relation linking;, ,, andd, »

interested in the asymptotic bias and asymptotic covariance r(df;% a defy jde? M= 1 @ I2)d,, ) and where the vec-per-

Ornz, my Irnz,rnz
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mutation matrixK,. . is defined in the Introduction and thewith
classical property (1 1) has been used. JA%’? ™ denote the SR SR™ + 6Ry + O(||dm. a1])?) + O(||6R™||?)

matrix associated with the differentiél,;, at pomtRm, pre- + O(|6R™ dyn. 21]])
cise expressions for each algorithm will be given in Section IV SR is the fi " |
Using (3.6), the first-order perturbation analysis otaitih-order ere s t e: inite sample size error
SOS-based algorithm acting &)’ evaluated at poink” gives —r A (T (B )5om () + o (BT — R
m T AT m\ftm )S2m o " — Ay
alg(R;,)) =alg(R;) + (Daig, 6R) ry + Olldn, na]|) N
=h,, + A?ngRmVec(éRd) + O(|dn, ml?) A first-order perturbatiAoJQ analysis of amth-order SOS-
—h, +Bh Rmdrn at + O(ldom. 112) (3.9) bas_ed algorithm acting aR,,, evaluated at poink;; gives the
estimate
with lengdefAzlngcl. Therefore, from (3.5) and (3.9), the W wsh
following result holds: m = fim & 0fim
Result 1: The asymptotic bias in the deterministic model ofyith
tails is given by Sh, :A?ngRmVec(éR) + O(||6R|1?)
7 alg 2 1 1 1
E(hn) = b = By, “din, a1 + O[[dn, m|7) + O | = 45 V(O R, + B pcdi, 11 + O(|[6R).
(3.10) (3.15)
and whenv: — OOAandem’ ulf =0, Therefore, whemlV — oo ando? — 0
E hrn - hrn a. 7
Pl = el <o (B5,) G B(bn) =ho + B(O(ISEI?)
||dm Ml 9 1
whereoy (Bj'%,..) is the largest singular value @;.%,.., and =hm +O([ldn, 1) + O <N> (3.16)
equality prevaﬂ’éfortaﬂslm M colinear with the rlght singular and sinced,.,, »; and6R™ are independent random variables,
vector of B, ng- the following result holds.

Then, from (3.4) and (3.5), the mapping @lggives the de-  Resylt 3:

viation from the asymptotic mea#i(h,,,) Covth,) = A?ngRmCRm (AZIng)T

ilnl - E(’Alrn)
M M |2 1 U—ZBalg B ‘ O(||d, 4
= (Da1g7 6an) R + O(H&an || ) +0 N +2(M — m) R b, R + (H rn,]\l” )
alg " 1 +0 1 L0 ||drn,]\l||2 (3 17)
= A% VedSR,) + O(I6RLT|1%) + ) 312 —N :
It thus follows that E||hm — h]?
. 7 a alg T T
im N Cov(hn) = AilgRM Cry (AilR“) ~ N Tr <A21ng Crr (Ailng) )
with CRI\I = limy oo NCOV(VeC(R )) = limy_oo NE N ol o ( e (Balg )T
(Ve SRV \Weo(SRM)T). In addition, since VE@RY) is 2(M — m) ho B\ h, R
asymptotlcally Gaussian (see Appendix A) i.e/N(Vec (3.18)

(R,,) — Veo R ) 5N (0, Cryr ), we have, thanks to a conti-when N — oo ando? — 0, where the expression @ g =

nuity theorem [19, th. 6.2a, p. 387] applied to the differentiablgy NE(Ved§R™)Ved6R™)T) is givenin Append|xA

mapping alg-), the following asymptotic distribution results.  Two particular cases can be deduced: 1) exact channel order
Result 2: In the deterministic model of tailgs,,, is asymp- and finite sample size (no tails in the impulse respchaajl 2)

totically Gaussian whetN — oo: exact second-order statistics and tails in the impulse response,

T where we have, respectivel
V(b — E(hn)) SN <0 A Cry (A5 2 R ,
m 7 al, al,
3.13) VN(hm —hn)=N < A} S Cry: (Athm) )

where whenN — oo (3.19)

T
hln NCOV( ) A?lgR”CR% (AIIRV) ) (314) i(’Alrn - hnl)iN <0’ L B?lng (leng)T>

2) Statlstlcal Model of Tails:In the statistical model of tails, ~ “¢ 22(M —m) e AR
the components df,,, s are assumed to be independent, zero whenay — 0. (3.20)
mean, Gaussian with the same variance, Bfid,,,, M||2d§f0-2_ Thus, the influence of 1) the finite sample size and 2) the

tails can be analyzed in the same framework. The identified

Hered,, uis assumed to be independent fregrandn ) =
M P Hanan, channel by anynth-order SOS-based algorithm is close to the
1, 2. The matan , may be considered here to be a perturba—

tion of R, 3We note that in the absence of tails, the deterministic tail model gdj¢s=

M R?*. Therefore, the estimatés,. are asymptotically unbiased with asymptotic
R, =R +6R distribution (3.13) identical to (3.19).
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mth-order significant pat,,, of the impulse respongg,;. This  with

closeness depends on the diversitigf, as will be seen in Sec- alg  def -1 (ho)TE (g%F ‘)Balg
tions IV and V as well as, depending on the case considered, on gi: R m—1 ) Em m—1, )50, Ry
the sample size&V or on the size of the tails measured &Y. Results 1-3 hold foggf_lyi upon USinQAZ}gRM in place of
Upper bounds with a similar flavor have previously been obzalz . e
tained in [3] and [4] for the LS/SS and LP methods, with respect &%’
i a def _ a,
to the presence of tails. Ang% lef _ Zrzfl(h"l)j;rz;(ggf—l,i)Ah{gR%' (3.24)
B. Zero-Forcing Equalization Furthermore, in the statistical model of tails, results

: al al,
Having “identified” the mth-order channelh,,, we can (3.16)~(3.20) hold, prowdeelh?ng andB fung are replaced,

. al al H
equalize it perfectly in the noiseless case by using tfgspectively, byA ® ... andBy®p.. with
zero-forcing equalizers of order — 1, for delaysi = 0, .- -, alg  def T T, 7F alg
Im — 1, given by Agi,Rm - lzrrnfl(h"l),];n (grn—l,i)Ah, R
. 2) Combined Channel-Equalizef-rom (3.1), the combined
~7ZF o T—T (h )C . (3 21) . .
Gm—1,4 m—1\tm JC2m, i+1- . channel-equalizer impulse response (3.22) reads
In the presence of additive channel noise, the output ¢f =77 (k] 8% |+ T2 (di v)Go 1

the equalizers,_; is corrupted by additive noise of power

g7, ;|I>s2. Of courseg?_, , is not a zero-forcing equalizer _ g (,?m)th I (&
for the true channek,;. To gauge the equalization error, we Tt o N B N
introduce the combined channel-equalizer impulse response, e
. . - def, 2 2 T (3.25)
which is denoted f,, s 1 ;= (fo,i, = s fmrm—1,0)", o R _ o
according to The mapping,, — f,,4a—1,; given by (3.25) is differ-
N entiable ath,,, with the differential function
fm,—l—l\/l—l,i = Z;T—1(hM)!A}§zF—1,7‘,- (3-22) 0,,,
Adopting the functional approach of Section I1I-AggF; §f;=— | TE(Go 1 )0k | — T_1(d5 ar)
andf,, 1, ;, we have U
alg - R ) Zr?fl (hm)Tn:f(y%,,F_l,i)éhm (3.26)
B =l == i fonar.i thanks t072_, (b )69, = ~T1_,(Shn)gil, ; = —T.F
However, since (9741 ;)0h., where the first and the second equalities
. alg . come, respectively, from the differe_zn_tiation d[;f_l(hm)_
R —hy — g1 i— T, 9%F |, = e2m,i41 and the commutativity of the convolution
= Zrz;—l(hfw)ggf—l,i # Cont M, pritl product for the first term of (3.26) and thanks to (3.23) for its

second part. Becaugg, , ; equalizes perfectly,,, we may

we can extend the results of Section IlI-A to estimgi#s ; ; use the commutativity of the convolution product to obtain

and}'m rm—1.4- Naturally, this approach could be applied to any T . 7F T - 7
Lth-or(j—er V\}i’ener equalizer Foavic1,i =T a (B an)gm—1i + T ( ™, M) Gm—1,i

AW M. -
!)Ei =(Ry) 17’L(hm)62(r1+1),71+1-

1) Zero-Forcing Equalizer:The mappingh,,, — 9
given by (3.21) is differentiable dt,, with differential

o T, 7F =
=em+M, my+i+l T Z\l (grn—l, i)drn, M

T/, ZF
=€t M, mi4itl T Ty (gm—l, i)Iidm, M-

Therefore, using Result 1, we have for the deterministic
model of tails the following asymptotic bias:

8g; = — T, 2\ (B )Ty () T, 2 (B J€am, i1 E(}-m+1\471,i) — Cm M, mytitl
= - Zr:fl (h"l)lz;rz;—l(éhnl)ggf—l,i 0771,1
= T (h)TE (67F L )R (3.23) = | ZE@E L I~ | TEGE ) | B
Ornz
where the commutativity of the convolution product has been 1
used in the third equality. Therefore, since dp v +O|d, m||? +O <N> .
~ZF

_7F 2 .
Im—1,5 = 1,0+ 89; + Ol Results (3.12)~(3.14) hold fgf,,, ,,_; ;, providedA™

T, Rf;\y/f
applying the chain differential rule to the deterministic modgg replaced bwlalg .
of tails gives the asymptotic bias Fir B

0771,1
E(gF | ) —4¢7F |, alg T( o ZF T 2 -T
(@ni—1,3) = G A = = [ | TR ) | + T 0Ty ()
1 2 1 ' 0
= By r + Ol ) +0 ()
T/ ZF alg
4We note that this last mapping is defined only for analysis purposksas -1, (Qm—l, i) Ah7 RM "

is unknown to the receiver.
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In the statistical model of tails, (3.16)—(3.20) hold ffy, ;
and B3¢

: lg
thanks to (3.26) and (3.15), prowde‘lf h, m A€,
respectively, replaced baﬁjﬁlg R andBjtlg Rm:
Ornl i
lg  def 1
Ajfme = - 7;:{(9%5—1,1) A}ab,ng
L mo
and
_ 0, i,
al def al
Bfme = - TT(!}m 1, z) Bh,ng.
Ornz i

3) Open Eye MeasureResults concerning byproducts such
as the open eye measure (OEM) can be deduced. Following our

functional approach, the chain of operations

> fR

~ M defl k#i
an — frn-l—]\l 1,2 L— OEM(frn-H\l 1, z) )

2,1
5allows the asymptotlc statistics of OEM,, A1, ;) to be de-

duced. The mapplnngrM 1,i— OEM(ferM 1,4) is dif-
ferentiable to the second order at the PGiRL A, i+1 With a
zero first-order derivative and a second-order derivative=

2(Irn+1\l — Cm+4M, rnl+i+le£l+]\47 rnl—l—i-l—l) so that
OEM(}-m-i—IW—l,i) =040+ % SfT ASS, + ol|6f,|17
=S Tr(5F,0F1 A) +ol|5Fi|1*-
Therefore, in the statistical model of tails, we have from
8f; = A}E g VEC(6RY) + B} pudon, s + O||6R)|>
the asymptotic mean OEM whe¥ — oo anda? — 0:
SO,
ki

=
2
i,

1 alg alg T
~ 5T (5 LAY Cy (475, ) A
Jd alg alg T
* 2(M —m) Tr <2Bf R (BfuR*”) A) :

IV. APPLICATION TO THELS, SS, LPAND OPD METHODS

We proceed with the derivation of the matriceﬁ;{gR
associated with the differential of the mappings(gl@t point

R as all other quantities defined in the previous section are
gRM are deduced

derived from it. In particular, the matricetl;i1

from AZ{ng by replacing, respectivel\S,,,(h.,), (Zp(hm)
an;(hm))t and (anl(h )7;77; 1(hm))_1 by Sm(hM)v

(Ton(har)TE(han))e and  (T1(har)TE_ i (Bar)) ™t As

~ v al
usual, the mapping{ »——g>hm is built by replacmg, respec-

tively, RM and o2 by RM and 62 = vQ(m +1)Rm D2(mt1)

(wherewy(,,,41) is the eigenvector oRm associated with its

5We suppose here that the terfn ; is the dominant term of the combined

channel-equalizer respongg, . ,,_; ;

6where(.)! denotes here the operation that consists of forcing to zero the
smallest eigenvalue of (.) and then inverting the truncated version of (.) in its

range space.
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smallest eigenvalue) in the relations given in Sections 1I-B-D
relating R,,, to k. In this section R}, is denoted asR,,, for
simplicity.

A. LS and SS Methods

Thanks to a perturbation result [20], concerning the eigen-
vector associated with the unique smallest eigenvaluR,of
(2.2) gives the differentiath,,,:

Shy = — TR SR 03ms1) + O([|5Ron]|?)
k
= = Ty (V]is) © B}, ) Vedl6R,)
+ O(||I6Rm1?)
= - Tm(hrz;sz @ [Tm(hm),];rq:(
Ved(6R,) + O(||6R,y,||%).

b))

Thus
A‘]SL,SRm = _Tm(hSLTm @ [Zrl(hnl),];rz;(hnl)]t)- (4.1)
B. LP Method
After some modifications, [14, (33)] reads
Shy, =689, — %Tr(évaT)hm
S {g R’—IO,,,,_J B
+ Ol %) (4.2)
From [4], it can be shown that
Tr(6Dvv") = \gL 6R. . g,,.. (4.3)
The matrixS,, is a linear function of the matriR,,,
Vec(S,,) = CaVed R,,) (4.9
with
L® (Z?n 1 mt1)
c,e O2(m+1)2, 2(m+1)m 120 (Zm.+lJm+l) @ 1,.

12 @ (ZZ;-f—lJnH—l)
Since the differentiadvs(,,, 1) is orthogonal ta, ;.41 (be-
caus€l|va(m41)l| = 1), we have

602 =6 (vg(m_i_l)Rva(m_,_l))
=301 1) 0Rm2(mt1) + O([|I6R 1)
= (8ms1) © VEpr) ) VeSO R) + O([I6 Bon ).

Thus

Veo(R,,,)
with 03_14(""1'1)2 - VeC(IQ("H'l)(vQ(nH-l) @ v?(rn—l—l))
Finally, putting together (4.2)—(4.5), we geth,, =
Ay g VC(SR,y,) + O||6 R,y ||* with
h,R™ — <(g£z & IQ(rn,—l—l)) C2 - <g£z & |:% hrngZz

O O

s )

0 (Zn—l(hm)lz;rz;—l(hm)) ! ®

(4.6)

= C3VedR,»,) (4.5)
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C. OPD Method responsér,, through itsdiversityand on the sensitivity of this

We note that the mappinG.. °~5#,,, is a composition of dif- diversity adapted to ea.ch. algorithm.
ferentiable mappings. This is differentiable at pait, despite Influence of Diversity: The s;ggmflcant parti/;,,t of the
the pseudo-invergd,, —521]* being included in relation (2.3) impulse responséy acts upond;, . thioughR,,,” = (7,

. M ) (hp)Z,E (h,,)]" for the SS/LS and the OPD algorithms and
of the OPD algorithm becaud®, — 51 is singular with rank th ?;R’ 1t W VIT (B! for the LP
el UG I~ = [, T (0 )] for the
Thanks to a perturbation result [20], concerning the eige

P‘I_gorithm if h,, IS normalized. In fact, the behaviors of the
T 1 T —1

vector associated with the unique biggest eigenvalo¢ D3, 1erms [Ty (b ) 7y, (b)) a0 [Ty () 7, (B )]~ are

(2.4) gives the perturbatiott,,,

m—1

very close because they are, respectively, dominated by the
inverse of the square of the singular values

Shy = — (hhE — I(,1)) 6 Dsh,,, + O(||6D3)|? .
( v m 2; +1)) 3 t + (H 3” ) 6nlcl:fo_2nl+l(,z;n(hnl))
= - (hrn ® (h’"lhrn - 12(771-1-1)) )VeC(&Dg) and
+ O(||6Ds||? e
('1|“| 3” ) T B (%ndzfo—?rn(lz;n—l(hrn))
= - (hrn @ (hnlhrn - I?(rn-l—l)) )C4V€C(6D1)
+ O(||6Ds])*) (4.7) Which are not orderable but practically very close to each

other. These singular values may be interpreted as a measure of
with Vec(6D3) = C4Vec(6D1 ), where, from (2.3)C, is given  diversityof h,, [3] as they measure, respectively, the distance
by in the matrix 2-norm ofZ,,(h,,) and Z,,_1(h,,) from the
matrices of rank2m and 2m — 1, thus violating the rank
04‘1§f14(m+1)2 — (Zg1 © 12) @ (Zopyr @ I2). (4.8) assumptions. Therefore, the performance (asymptotic bias
in the deterministic model of tails and mean square error

From (2.3), we get in the statistical model of tails) of the algorithms degrade
when this diversity decreases. This diversity of the signif-
6D, =68,,R., ltsfl +S.R, ltgsfl icant parth,, of the impulse reponsé,, acts onAZIgRM
+SméR/ tST +O(||6Rm||2) (49) as well because'gnl+1(7;n(h]\4)) ~ O—an—l—l(lz;n(hrn))' and

oam(Tm—1(hpr)) = o2 (Tp—1(hy,)). Thus, the variances of
the estimates given in the deterministic model of tails degrade
as well when this diversity decreases.

Influence of the Sensitivity of this Diversity Adalpted to Each

_ St Algorithm: Concerning the bias performaneg(B; %) can
Ved(6D,) = (S mi, © IQ("‘“)) Vea(d5.m) be considered to be a better measureivérsity sensitivityof
! X ) .

+ (12(m+1) @SR, )K2(m+1),2(m+1) h,, adapted to each algorithm thap, andé’,, which do not

with SR, " = —R. "6R’ R’ . Therefore, by vectorization, we
get

m?

depend on the algorithm used. We note that the bias norm upper
-Ved(68,,) — (SmR;nt ® SmR;nt) boundoy (BZ{ng)Hdm, m|| given in the Result 1 isttainable
for the worst-case tai, (i.e., the tail that maximizes the
. / 2 /¢ m, M '
VedS Ry, ) + O([|6Bm 7). (4.10) bias norm||E(h,,) — h.,|| for fixed ||d.. ar||), which is col-
. . : . alis : :
Finally, putting together (4.7), (4.10), (4.4) and (4.5), we gérgear with the right singular v_ector (Bh:Rm as_so_mated with
St = APTL VeC(6R,,) + O||6R,||2 with its largest singular value. This worst-case tail is of the form
" o B ' ' (proved in Appendix B for the LS/SS algorithm but only ob-
served by computer for the LP and OPD algorithig) »s =
AR = = (Rl @ (b, = Lgmin)*) C (2, d¥ )T with
N (((Snr[,];n(hnr),];f(hnr)]t ®12(rn+l))
+ (IQ(rn-l—l) & Snl[%l(hnl)%{(hnl)]t)
Ko(mi1),2(m+1)) C2C3
—(8nR,, ® SR, )C3) . (4.11) and

T
d, = 0707, dllT---dl:l] if my >m

mp—m

m?

T
. dpy, = |7 &0 07 08| ifmy >m (4.12)
D. Analysis of the Results —

mo—m

As shown in Section lll, the performance in terms of asymp-
totic bias and variance in the deterministic model of tails arahd d., - - -, d*,, anddy, - - -, d%, do not depend omn; and
mean square errors in the statistical model of tails are directly. but depend on the algorithm, givés,. Thus, the “worst”
related to matricesA;'%,.. and A%, but (4.1), (4.6), and tail gathers on both sides of the significant part along a length
(4.11) are lacking engineering insight and, as such, are cogual to the order of this significant part. Concerning the mean
plicated to analyze. However, we see in the following that thesguare error in the statistical model of tails, the faf/2(AM —

performance depend on the significant piagt of the impulse m))Tr(B,a:ng (BZ{ng)T), which is attributed to the tails in the
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Result 3, depends only on the tail energy per termiif mo >
m. More precisely, it is proved in Appendix B for the LS/SE 10%..
algorithm, but observed by computer only for the LP and OP '
algorithms, that

(R, m, ma), my >m 105

Balg Balg T
h, R h, R

¥
Y(h,,, mi, m), mo > m
U (h,,, m, m), ™my, Mo > M.

(4.13)

Furthermore, it is shown by simulation thaﬁ(BZ{ng)

is the dominant term of TB%,.(B%,..)7) = 5 = e 0
SIAT™ 62(BYE,..). Therefore o1(B3%,..) can also Sample Size

be interpretated as a measure diversity sensitivityof the Fig. 3. MSE of 4, versus the sample size fdr. given by (5.1), a
algorithm with respect to the tails for the mean square error ifnal-to-noise ratio of 17 dB, and fijtlz, 12|| = 0.05.

~alg . .. .
h,.. in the statistical model of tails. ; ! , ! , :

m

Relation with Previous WorksThe bias norm upper bound | . SO SR L SRR 9 o ssnsi
given in the Result 1 to the first-order can be compared with tl ” ; ’ = ° © om

upper bound of the errors of the estimalgs given in [3] and 1= Ne
[4] for the SS/LS and LP methods, respectively, in theh exa '
statistics situation:

MSE

lim £ (il,,sns) —h,,

N—oo
dp
< 2y/2(m+ 1)”6—71”|| + |, 2] (4.14) o
lim F (il,ilp ) —h,, 2
N—oo
drn, M drn, M 1 : ’ . :
S \/m+1||6/7||+(2m+3)||h—|| 1+ ;2 1|0 1‘5 2'0 25 30 35
m || (771,1)|| 67” SNR (dB)
(4.15)

Fig.4. MSE ofk. versus the signal-to-noise ratio fdf = 300 andh, given
by (5.1) and foi|ds, 12|| = 0.05.

whereh,, ) is the first term of the significant part &f,;. These

upper bounds are proportional f{d,., /|| in the first order of with o5(72(hs)) = 0.4157 andoy(71(hs)) = 0.4165 and the

ld..., a]] @and are, respectively, inversely proportionadtpand other “poor” diversity

! ! H

oL, (whgném < 1), vyhereas the bounds (3.11) arfa dominated, hy = [0.6804 0.5902; 0.1770 —0.2656

respectively, by the inverse of the squaresgfandé;,, for, re-

spectively, the SS/LS and the LP methods. The bounds (4.14) —0.0902 —0.2803]" (5.2)

and (4.15) are shown to be rather loose in the following Segith o5(Ta(hs)) = 0.2369 andoy(7;(h2)) = 0.2354. In all

tion, as compared with the bound given by the Result 1. he simulations, the order is correctly detected beforehand

by the procedure described in [5] and [6]. For each experiment,

V. SIMULATIONS 1000 independent Monte Carlo simulations are performed. The

. . _ signal-to-noise ratio SNR= 10 log (||hys||?/202) is fixed to
In this section, we examine through examples of the perf g 08 ([[Feal|*/207)

mance of the LS/SS, LP, and OPD methods, the accuracy of t /48, exceptin Figs. 4 and 6.

: f the bi dth f She first experiment presents the deterministic model of tails
eXpressions of the bias and the mean square error ot our & Ha examines the performance of the different second-order al-
mators, and we investigate the sample size and the tails size

Srithms. Table | the theoretical totic bias of
mains for which our asymptotic approach is valid. We consid ENms. 1ab'e | comparss the Meoretica’ asymplotic bias o

r . . . . . .
) . . . en by Result 1 with the estimated bias given by sim-
throughout this section an impulse respohggwith M = 12, ufat?é\; forg\f = u300 ;Ar/:dN = 10|00 and flor t\?vlr\al progor-I
where the order of the significant parbis= 2. We presenttwo o) 1aiig |, 1,[| = 0.05 [for which os(Ta(hi2)) = 0.4195
types pf significant park> with [|A2||* = 1. One offers “great and o4(7i (h1s)) = 0.4220] and ||ds. 1o]| = 0.1 [for which
diversity 05(Ta(hiz)) = 0.4253 and o4(7;(hy2)) = 0.4300] for the
channel with significant paft; shownin (5.1). This table shows
hy = [-0.6804 0.4281; 0.1770 —0.2446 a good agreement between theoretical and estimated values.
—0.0902 —0.5043]" (5.1) The difference between these values increases with increasing
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TABLE |
THEORETICAL ASYMPTOTIC BIAS OF h>, COMPARED WITH ESTIMATED
BIAS IN THE DETERMINISTIC MODEL OF TAILS FOR, RESPECTIVELY,
(@ N = 300, ||dz2,12]| = 0.05; (b) N = 300, ||dz2, 12]| = 0.1; (c)
N = 1000, ||dz2,12]| = 0.05

Theoretical bias components | Estimated bias components
SS/LS LP OPD SS/LS LpP OPD
0.0006 | 0.0045 0.0067 0.0007 | 0.0142 | 0.0093
-0.0086 | -0.0103 { -0.0099 | -0.0083 | -0.0165 | -0.0126
) 0.0010 | 0.0106 0.0119 | -0.0002 | 0.0074 | 0.0122
(d) -0.0079 | -0.0294 { -0.0261 | -0.0088 | -0.0253 | -0.0257
-0.0114 | -0.0030 | -0.0032 | -0.0121 | -0.0019 | -0.0066
-0.0052 | -0.0038 | -0.0001 | -0.0048 | -0.0016 | 0.0019
Theoretical bias norm Estimated bias norm
0.0172 [0.0336 [ 0.0312 [ 0.0178 [ 0.0343 | 0.0332

MSE

Sample Size Theoretical bias components | Estimated bias components
B SS/LS LP OPD SS/LS LP OPD
0.0013 | 0.0090 0.0134 0.0008 | 0.0195 | 0.0173
-0.0172 | -0.0206 | -0.0199 | -0.0158 | -0.0297 | -0.0260
() 0.0020 | 0.0212 0.0237 | -0.0018 | 0.0192 | 0.0245
-0.0157 | -0.0588 | -0.0522 | -0.0195 | -0.0549 | -0.0507
-0.0229 | -0.0059 | -0.0065 | -0.0259 | -0.0039 | -0.0070
-0.0104 | -0.0076 | -0.0002 | -0.0083 | -0.0080 | 0.0002
Theoretical bias norm Estimated bias norm
0.0343 [ 0.0671 T 0.0625 0.0370 ] 0.0688 [ 0.0647

Theoretical bias components | Estimated bias components
SS/LS LP OPD SS/LS LP OoPD
0.0006 | 0.0045 | 0.0067 | 0.0004 | 0.0074 | 0.0074
-0.0086 | -0.0103 | -0.0099 | -0.0080 | -0.0128 | -0.0113
] 0.0010 | 0.0106 | 0.0119 | 0.0000 | 0.0098 | 0.0119
(c) -0.0079 | -0.0294 | -0.0261 | -0.0087 | -0.0281 | -0.0254
10° -0.0114 | -0.0030 | -0.0032 | -0.0122 | -0.0030 | -0.0035
Eliamif -0.0052 { -0.0038 | -0.0001 | -0.0046 | -0.0032 | 0.0003

5 Lo H : :
10
107 107 10

Theoretical bias norm Estimated bias norm
0.0172 | 0.0336 | 0.0312 0.0176 | 0.0335 | 0.0314

Fig. 5. MSE ofh., for no rails versus (a) the sample size and (b) for exact
statistics versus? = E(||d2, 12]|?).

o tight. Figs. 3 and 4 plot the theoretical mean square error (MSE)
LT -] ssis| ofh2

]

OPD

o0no

Ellhz — ho||* = ||biag(he)|* + Tr(Covhs) ~ || B} %y dim, a1 1°

1 al al T
+ N Tr (Ah,gR;‘,{ CR;‘;{ Ah,gR;‘;{ )

and the estimated MSE given by simulation versus the sample
size and the signal-to-noise ratio, respectively.ranges from
30-1000 and the signal-to-noise ratio from 8-37 dB). We ob-
serve that the SS/LS algorithm outperforms the LP and OPD
algorithms. Furthermore, the LP and the OPD mean square er-
; : rors are almost equivalent with a slight superiority of the OPD
- . . . ; . . algorithm.
SNR (@8) The second experiment presents the statistical model of tails
i and examines the performance of the different second-order al-
Fig. 6. MSE ofh, for N = 300 and ||d.,.2[|* = 0.01 versus the gorithms. Fig. 5 exhibits the theoretical MSE (3.18)efand
signal-to-noise ratio. its estimated MSE obtained by simulation for a signal-to-noise
ratio of 17 dB in two situations: in no channel tail situation
ld2, 12]| and decreases with increasing which is explained versus the sample size and in exact statistics situation versus the
by the second-order term |f> 12| and the first-order term in energy of the tail&(||d», 12||?). We observe that if we separate
1/N. The numerical values of the attainable bounds (3.11) ftire effects of the tails and of the finite sample size, the three al-
the LS/SS and LP algorithms (fel, 12|| = 0.1) are, respec- gorithms under study are almost equivalent with respect to the
tively, 0.2282 and 0.1917. Compared with upper bounds (4.1t4)l sensitivity, but the LS/SS algorithm outperforms the other
and (4.15) (1.1885 and 2.6809), these latter bounds are not velgorithms with respect to the finite sample size sensitivity. In
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E(lidmi?)

E(lidmif?)

E(ligmti®)

Fig. 7. MSE ofh,, for N = 300 and SNR = 17 dB, versusc? for
respectivelyiz, given by (5.1) (0)(—) and (5.2) (*- - -).
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sity decreases, but we note that unlike the LS/SS algorithm, the
LP and OPD algorithms are less sensitive to the diversity of the
significant part.,,. Fig. 8 compares the theoretical MSE of the
estimated significant paft;, the estimated zero-forcing equal-
izerg5", and the combined channel-equaligr,, and the the-
oretical mean of OEI(/IJA"Q’Q) with the estimated MSE and esti-
mated mean obtained by simulation. We note good agreement
between the theoretical and estimated MSE and mean OEM for
N > 300. The performance of the LP and OPD algorithms are
equivalent, but the LS/SS algorithm outperforms the other al-
gorithms in presence of finite sample sizes and channel tails.
Naturally, the conclusions of these two simulations must be mit-
igated because a thorough comparison between the studied algo-
rithms would need a large quantity of scenarios (various chan-
nels,m, M, N and SNR) but is beyond the scope of this paper.
To see that our analysis breaks down when a partition between
significant part and tails is ambiguous, we consider the popular
multipath transfer function in raised cosine. Unlike preceding
papers (e.g., [1]), we retain most of the terms of the infinite
length impulse responsé{ = 40). The so-computed impulse
reponsehy; is inevitably ill conditioned. However, its effective
part is better conditioned, and consequently, it may be blindly
identified. We choose the three-ray multipath charuiel =
8(t) + 0.438(¢t — 0.417) + 0.416(t — 0.897") with a roll-off
factor of 0.4. In this situation, the procedure given in [5] gives
m = 2, and by forcing the value ofi to 1, 2 3, 4, the theoretical
and estimated MSE (ffm defined as

L < min I3

mi+mo=M—m
2
- [02(771—1—1), 2meq s IQ(rn—l—l)v 02(771—1—1), 27712] h]\l” )

with ||k || = 1 given for the SS algorithm are shown in Table Il.
We see that our analysis based on a deterministic model of tails
is valid form = 2. We observe that a correct detection of the
significant ordern is critical. Form > 2, the diversity ofh,,,

is very small; therefore, the estimated and theoretical variance
of Ay, degrades considerably. We note that the corresponding
theoretical values are large. In fact, from (4.1), (4.6), and (4.11),
the algorithms derivative involves the inversion of the channel
covariance matrix, which in this case is poorly conditionned.
Our first-order perturbation analysis is no longer valid. Only
the SS algorithm is able to identify the effective response of
our three-ray multipath channel for roll-off factor 0.4 thanks to
its better sensibility to the diversity df,,, (see Section IV-D).
Furthermore, we note that for weaker roll-off factors, we are not
in the context of an effective response clearly distinct from small
tails.

Figs. 6 and 7, the finite sample size and the tail contributions are

simultaneously present. The two figures compare the theoretical
MSE of ke and its estimated MSE obtained by simulation, for

N = 300, versus the signal-to-noise ratio féf||dz, 12||*> =

VI. CONCLUSION
We built a general functional methodology for studying

0.01 fixed and versus the energy of the tali$|d, 12||> for a the statistical performance of second-order methods for blind
signal-to-noise ratio fixed at 17 dB. The adequation betweehannel identification/equalization in practical situations,
the theoretical and the estimated MSE is good, except for the., in the presence of estimated second-order statistics from
LP algorithm, for which 300 samples is too small (see Fig. 8fjnite samples observation, non-negligible additive channel
Furthermore, in Fig. 7, the two channels given by (5.1) and (5.89ise, and long tails of “small” leading and/or trailing impulse
are exhibited. Naturally, these MSE’s increase when the diveesponse terms. We proposed two models for the channel tails,
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Channel response MSE

Sample Size

Combined response MSE
Mean Open Eye Measure

Sample Size Sample Size

Fig. 8. MSE ofhs, §2%,, f, » and OEMf, ,) for SNR= 17 dB, versus the sample size fof = 0.0111 andh, given by (5.1).

TABLE I zi, i = 1,2 associated with the impulse resporisg are
THEORETICAL AND ESTIMATED MSE OF h,,, GIVEN BY THE SS ALGORITHM, _ ; ;
WITH N = 300 AND A SIONAL 70 NOWSE RAHO OF 17 dB For M -dependent processes, we can apply the asymptotic normality
DIFFERENTVALUES OF m reSU|tS Of [21, th 14, p 228] and [18, thS 642 and 721]
Adapting these results to the multivariate processnd using
1 1 . . .
m |1 EHE 4 some properties of the vec—pe.rmut.atlon matrix, .the vec-oper-
Treoretcal MSE | 0063 | 0043 | 146107 6.00.0F ator, and Kronecker products given in [16], ‘«R}\r) IS asymp-
Estimucd MSE | 0300 | 0.008 [ 0518 : 11549 totically Gaussian
- c
and we obtained general asymptotic statistics of the estimated VN(Vec(Ry) — Ve R))=N (0, Cr)

significant part of the channel, the zero-forcing equalizer, thgy the asymptotic covariance matrix given Wy =
combined channel-equalizer impulse response, and the OElMW_)C><> NCov(Vec(RN)) with
These asymptotic statistics are valid in a large domain of

S . . +1/2 +1/2
tail size and sample size. It is shown that these performance,y _ *
. . . g CR — Em(f) ®Em(f)df +
measures are related to the diversity of the significant part —1/2 —1/2
of the channel as well as to a diversity sensitivity of this (B ()" © En(HIK 2ima1), 20mr1) Af + £Q,
significant part adapted to each algorithm. Finally, we applied ’ (A1)
our functional approach to the LS/SS, LP, and OPD algorithms '
as examples. where
def
APPENDIX A En(f)=em(Hen(f) @ S(f) (A.2)

~ M
ASYMPTOTIC NORMALITY OF R, and

i .M M > def,
In this Appendix 2, and &, are denotediy andR for @, “ed(T,, ()T, (har))Vec” (T (k) T, (k).
simplicity and to specify the dependence &nof R,,. Since (A.3)
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—i27 —i27Tm H T
en(f) denotes the vectdt, e=27/, .. e~ )T S(f) is Proof of Relation (4.13):In B} .. (B,L Rm) , a priori
the spectral density matrix of the 2-D vector procggsFrom ) -
(2.1), it is easily seen that only 7. (h7, 2) T3 (0 ) IF T Toy (v )TE (R, 5,) depends

onmy andmg. First, consideﬂ’m(h;n?M)TJ@(vm) Because

M M "
4 4 any row of the Sylvester resultant matlﬂ(au) can be per-
_ —i2wkf —i2wkf 2
S(f) = <Z hqe ) <Z hye ) +onls muted to giveZ;(a,) = Ky, Q[T( (2))] [wherea,, anda'”

(A-4)  are defined similarly ah,,, andh®

. ¢ =1, 2], it holds that
where x is the cumulant cufs;, sk, si, si). Naturally, the

asymptotic normality ofR: is obtained in the same way by L
replacinghs by k., in (A.2)—(A.4). T (hE,. ) TE W) =K1, 2 T ( n(12>]\4)
We note that the performance of the LS/SS method is insen- | 7o ( :fn M)
sitive to the distribution of the input;, because the last term of ) [TT( (VT T (4 } K
(A.1) does not affect the asymptotic covariance of the estimates 3V} Tar (v 2, M+l
given by the LS/SS method. This is immediately shown because def Koo Uu Uu} Koy (B.1)
A e QA
= (Tm(h,TnTm @ [Ton(har)LE (har)[F) whereU;; < T,,,( :f,(;>M)TJ\7}(vnl)) i, 7 = 1, 2. Consequently,
20 ) .
T the product ofZ;,,(h;, ";) by a column ofZ (v;;,’) can be in-
Voo (fa) T, (hM))) ) terpreted, if entries of th|s column are regarded as input data, as
= (TmVed([Tn (har) T,k (har)]* the output of the chann&f, ,, driven by this input. As columns
T (bar) Tk () Trnhin)) (7 of T,\E(v%)) are shifted versions of each other, the columns
= (T Vec([Tr (har) T2 (hat)]* of Z,.( f,(%)M)T,\E(v%)) are also shifted versions of each other.
-%l(hM)Zf(hM)vg(mH)) )T =o0. Therefore, each matrié{;; has a Toeplitz structure, and an entry

Wijav,a=1,---, m+landb =1, ---, M+1isthe scalar
The second equality uses (1.1) and the third equality is duettoduct between thew + A + 1-dimensional vectors
the orthogonality ok, (;,,+1) to the column space A, (hy;).

This extends a result given in [15]. T
0.0 h-.h® 0.0
APPENDIX B e aari
PROOF OFRELATIONS (4.12) AND (4.13)FOR THELS/SS ! ’
ALGORTIHM and
For the SS algorithm, (4.12) and (4.13) are proved thanks r
to the following simplification of B3> . g defined in (3.9) by o) '
A5 VeO(5Ry) = B dn. 11 + O, wi]]?). From (3.7) 0.0v" v 0.0 .
b—1 M+41-b

Ah, R Ve(6Rq)

If m1 = m +m) > m, itis straightforward to prove that
=~ (B Ty @[ Ton (b )T.E (B )] ) Ve !

(Tom(hs, )T (d oo ar) T Tm(dy, J\l)Tq;(hfn, M) Uiy = b
0 . . Oul, w?, . . mtl o 0
+O(||d"l, JWH O:J 171 Us, 5
:T"lvec([lz;n( "l)TT( )]t [T ( m, Al)TT( m, ]\4) i . ) +J
+7;n( m, J\l)TT( m, J\l)] Tnlhnl) 0O . . 0 o0 . 0 U’zl,j
O(|ldu, uall?)- — g
+ O([ldm, a1 o "

Then, thanks to (2.2), asT,.h,, is left orthogonal to the

Sylvester resultant matri%,, (h..) and, hence, t@.,(h;, /) whereU’ does not depend am,. Then
Ah RmVec(éRd) reduces to

z T :I: :I:T T 1.2
A VOOSR) = — Ton[Tonln) T () T (B 1) P s (O )L T 0T B, 30
r 5 . 11 12 I
T (dy a)Um + O(lldm, a7 =Kpmy1,2 {U(A UQJ Koyt
Using the commutativity of the convolution product and the K vt Ui K
. o . . _ Ky | gt gt 2, m41
selection matrixd* (3.8) thatllnksdm’ m tody, a, itholds that 12 22

U, U,
. Krn ot K m
Bh R = _Tm[Tm(hm)Z?;( m)] Tm(h, m, M),TJ\E(”m)Ii- +h2 |:U3 U4:| At
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Using the definition ofI*, (3.8), and property (1.3), it is whered = |

straightforwardly proved that

T
K M+1Ij;1j; Ky,
I

Tn]

_ Irn

IQ ® defI ®I+

Orn—l—l
I’nlz

vt

so that any of the blockffij is given by U, 1112

Ui ITUL,, for iy, i, 1, g2, b, b, 1, Do
remains to see that each term of this sum does not depen
my. Itis proven, as

+

192

+ 77T def + Orn ,m+1
U 11121 l]jljz [Orn-l—l m} 1122]1 |: ljllT
Jijz
I’rn T
/ /
= Uiliz O"H'l Ujljz
I’nlz

Proof of Relation (4.12):Using (B.1) and (1.3) (which im-
pIieSK27 ]\4+1I:|: = (12 I )K27 ]\4+1), we have

Toa(Bey 0) T (w) TF
vt oIt

:Krn
2 [UmlJr UQQIT

} K rvrta-

If my = m+m{ > mandmy = m + m), > m, then
Uid! = [Omis,m Uy O, g )T = UL, whereU?,
does not depend am; andms, and

I, O., Orn, m,
Orn+1, m Orn+1, m Orn+1, m,
Orn Irn Om,, m/,

2

m, m/

+del o

1 et Orn+1, rn’l
Orn,, mf

Therefore
T (B 21T (0, I

'
U’y

'
U’

7
U's

U122:| (I @ ITM)Ky .

= m+1,2 |:

SST

ConsequentlyB;’g.. = B} pn

B,SLSLM do not depend onn; andms,. Letd =

) (2)
) dnn +mo dnn “+mo

expressed as the sum of two orthogonal vecibts d, + d,
where

(Io ® I"™)K> a1, Where

a0

def [o1 A1) (2) W 4@ or 1"
d,= |:027n’ drn —I—Idrn 41 drn +27ndrn +2n102nl :|
def 1 2 1 2 1 2
db = |:d§ )dé ) o d( l) d( )04771 dgn?-l—rn—l—l dgnz +m4+1"""

T
&) (2)
drn,] +mso dnn —|—rn,2:|
so thatI**d{” = 0 and

.I.
BISL,SRmd = B]SL,SRm (L @I K5 yi1da

1 d

(@I [ (2)

1* be a unit norm vector. It is uniquely

1997
OSL dsl) +1° dSl) +27n rn ]T = 1 2. Conse-
quently, a unit norm vectod that maX|m|ze$|B ~d|| satis-
fiesd = d, with d = [Ofl;dﬁ d" of, 1%, i =1, 2, where
df) andd( arem-dimensional vectors.

Furthermore
- 1) -
"
Orn-l—l
dL
o SST (s
dB R d - Bh, Rm (2)
d;
07n+1
d?
d"
Irn Orn d(l)
_ psst (
_Bh,Rm IQ @ Om+1, m Om+1, m (2)
0., I, dl
d®
41
dV
def Bssi dv(*l)
h, R 2
d”
d?

WhereBh f—im does not depend om; andm.,. Its right sin-
gular vectors and singular values also do not depend:on
andms. d is a right smgular vector associated with the largest

singular value ofB} g iff dY a" d?" d@ s a
right singular vector associated with the Iargest singular value

ofB R Therefore, the nght singular vector associated with

the Iargestsmgular value &f;> “rr does not depend on, and

mo. |
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