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a b s t r a c t 

This paper analyzes the deterministic (DCRB) and the stochastic (SCRB) Cramér-Rao bound on direction- 

of-arrival (DOA) estimation for two equi-powered correlated complex circular or rectilinear sources af- 

fected by complex circular white noise in different complex elliptically symmetric (CES) data models. 

Beginning by decomposing these CRBs, into factors depending on signal and noise parameters, and on 

geometric parameters of the array, some new interpretable closed-form expressions are derived in par- 

ticular scenarios. These expressions provide useful insight into the behavior of these CRB’s dependence 

on the correlation factor. Approximate closed-form expressions of these CRBs for small DOA separation 

are also derived. These results lead to new formulas for statistical resolution limit (SRL) based on the 

Smith criterion at which an unbiased DOA estimation algorithm can resolve two closely-spaced circular 

or rectilinear sources. These SCRB-derived formulas are much less optimistic than those which have so 

far been deduced only from the DCRB under the assumption of known sources. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

The ability to resolve two closely-spaced narrowband far-field 

ources in terms of parameters of interest is an important perfor- 

ance measure of sensor arrays in localizing remote targets. The 

RL is an important tool used to quantify estimator performance, 

hich can be defined according to various criteria. There are in the 

iterature four main different approaches to characterize SRL (see 

.g. [ 1 , Sec. VI]) The first one is based on the mean null spectrum

elating to a specific high-resolution algorithm. (see e.g. [2–5] ). 

he second approach rests on hypothesis test using the general- 

zed likelihood ratio test [6,7] , on Rao’s test [8] or on Bayesian 

pproach [9] . The third approach is based on the information 

heory and, more precisely, either on Stein’s lemma which relates 

he false alarm probability resulting from the Neyman-Pearson 

ecision criterion to the relative entropy between two hypothesis 

10] , on Chernoff upper bound [11] , or on the mutual information 

etween DOA, scattering properties and the received signal [12] . 

he last approach capitalizes on the CRB where two criteria were 

roposed. One is the Lee criterion [13] for which the SRL is defined 
∗ Corresponding author. 
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y the DOA separation that is equal to half of the maximum value 

f the two square roots of the CRB of the DOA’s. This criterion was 

erived form the DCRB in [13] and then extended from the SCRB 

n [14] . The other criterion was proposed in the seminal paper by 

mith [15] where the SRL is defined by the DOA separation which 

s equal to the square root of the CRB of the DOA separation. 

his criterion has the advantage over Lee’s criterion of taking into 

ccount the coupling between the interest parameters, and an- 

ther advantage is that it is closely related to the detection theory 

pproach, as shown in [7] , and furthermore, it can be generalized 

o multiple parameters [16] . Based on the SCRB, this criterion pro- 

ides the best-case resolution bound for any unbiased algorithm. 

The SRL based on the Smith criterion was used in numerous re- 

earch papers (see e.g., [16–25] ). We note, however, that all these 

orks (except [17] dedicated to discrete sources and [21] focused 

n a unifying methodology without given closed-form expressions 

f the SRL) are based on the DCRB associated with the conditional 

ignal source model. Furthermore, the role of the correlation of the 

ignal sources has not been precisely determined in these contri- 

utions, except in [20] which assumes that the signal sources are 

nown. This DCRB has the advantage of being easily derived and 

aking it possible to obtain explicit simple closed-form expres- 

ions of the SRL and thus allows to reveal enlightening proper- 

ies pertinent related to SRL behavior. However, it is well known 

hat the DCRB is not always a tight lower bound on the variance 

https://doi.org/10.1016/j.sigpro.2022.108478
http://www.ScienceDirect.com
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f an unbiased estimator and cannot be attained by the maximum 

ikelihood (ML) estimate. In particular, it was shown in [26] that 

he difference between the SCRB and the DCRB is very significant 

or closely spaced sources when the number of sensors is small. 

herefore this DCRB would tend to give optimistic values of the 

RL and thus makes necessary the derivation and the analysis of 

he SRL based on the SCRB. Moreover, all these studies were car- 

ied out within the framework of Gaussian distributions. To take 

nto account the effect of impulsive noise encountered in radar 

lutter [27,28] , made-man noise and interference in indoor and 

utdoor mobile communications channels [29 , 30] , the CES distri- 

ution has been preferred over the Gaussian distribution in many 

OA finding and beamforming processing (see e.g., [31–33] ) for 

odeling noise alone or observations. 

This paper gives simplified closed-form expressions of the DCRB 

nd SCRB on DOA estimation for two closely-spaced equi-powered 

arrowband far-field uncorrelated or correlated (including coher- 

nt) circular or rectilinear sources affected by complex circular 

hite noise within the framework of CES distributions. 

The main aim of this paper is twofold. First, it derives a new 

implified expression of the SCRB on DOA estimation for two equi- 

owered correlated complex circular or rectilinear sources affected 

y complex circular white noise in different CES data models. Such 

n expression had hitherto been considered uninteresting because 

t was too complex to analyze. But thanks to our choice of the 

eference of the phase at the centroid of centro-symmetric ar- 

ays, we were able to obtain interpretable closed-form expressions. 

ectilinear sources (also called maximally improper or strict-sense 

oncircular) are frequent in radiocommunications. For example, 

inary-phase-shift-keying and offset-quadrature-phase-shift-keying 

fter post-rotation are rectilinear. These expressions of SCRB are 

nalyzed and compared to the DCRB w.r.t. array geometric fac- 

ors, heavy-tailed non-Gaussian noise and observations, and signal 

ources’ correlation coefficients. In particular, they point out the 

trong effect of the correlation phase, until now only observed by 

umerical calculations in [34] . Secondly, our paper derives closed- 

orm expressions of the SRL based on the DCRB and SCRB w.r.t. 

elevant parameters for these different models. This allows us to 

ompare the SRLs between the various models and CRBs. 

The paper is organized as follows. Section 2 describes the de- 

erministic and stochastic data model where the sources are ei- 

her arbitrary, circular or rectilinear within the framework of CES 

istributions. Section 3 gives a review of the DCRB and SCRB as 

ell as the semiparametric DCRB and SCRB (denoted respectively 

s SDCRB and SSCRB). Section 4 focuses on the case of two equi- 

owered sources, where some new interpretable exact closed-form 

xpressions are derived in particular scenarios with particular at- 

ention given to the impact of the correlation phase and correla- 

ion magnitude on DCRB and SCRB. This section also derives ap- 

roximate closed-form expressions of DCRB and SCRB for small 

OA separations. Section 5 gives interpretable closed-form expres- 

ions of SRLs deduced from the DCRB and SCRB for known, ar- 

itrary, circular and rectilinear sources. Then, comments to ex- 

lain how different parameters impact the SRL and how the SRL 

erived from the SCRB are less optimistic than those that have 

o far been deduced only from the DCRB, are discussed. Nu- 

erical illustrations of the different SRLs are given in Section 6 , 

ith particular attention paid to the phase and magnitude of 

he correlation of the sources. Finally, the paper is concluded 

n Section 7 . 

The notations used throughout this paper are the following. 

ectors and matrices are denoted by bold-faced lowercase and up- 

ercase letters, respectively. ∗ and 

H represent the conjugate and 

he conjugate transpose operators, respectively. Re(.) and Im(.) de- 

ote the real and imaginary part, respectively, whereas � repre- 

R

2 
ents the element by element matrix product. J is the unit antidi- 

gonal matrix and = d means has the same distribution as. 

. Data model 

Consider two narrowband far-field uncorrelated or correlated 

including coherent) signals impinging on an arbitrary array of N

ensors. The baseband received signal at the time instant t is mod- 

led as 

 t = Ax t + n t , t = 1 , . . . , T , (1)

here (y t ) 
T 
t=1 

are independent. A = [ a 1 , a 2 ] is the steering matrix

here each vector a k = a (θk ) is parameterized by the real scalar 

arameter θk with ‖ a k ‖ 2 = N. It is assumed for any θ1 � = θ2 , A has

 full column rank. x t 
def = (x t, 1 , x t, 2 ) 

T and n t are zero mean mu-

ually uncorrelated and respectively model signals transmitted by 

ources and additive measurement noise which is assumed circular 

nd spatially uncorrelated with E(n t n 

H 
t ) = σ 2 

n I . Two different types 

f data models are currently used for the distribution of (x t , n t )

here n t is circular Gaussian distributed [26] . We consider here 

xtensions of these models within the framework of CES distribu- 

ions. 

.1. Deterministic CES data model 

In the conditional or deterministic model, the signal sources se- 

uence (x t ) t=1 , ... ,T are conditioned from an independent zero-mean 

rocess (as it was explained in [26] ), either of arbitrary circularity 

ith R x,T 
def = 

1 
T 

∑ T 
t=1 x t x 

H 
t such that lim T →∞ 

R x,T = R x, ∞ 

, or rectlin- 

ar, i.e. satisfying the condition 

 t,k = r t,k e 
iφk , k = 1 , 2 where r t,k are real-valued with 

�φ
def = φ1 − φ2 ∈ [0 , π ] , (2) 

ith R r,T 
def = 

1 
T 

∑ T 
t=1 r t r 

T 
t where r t 

def = (r t, 1 , r t, 2 ) 
T such that 

im T →∞ 

R r,T = R r, ∞ 

. The phases φk associated with different 

ropagation delays are assumed fixed, but unknown during the 

rray observation. In this model (x t ) t=1 , ... ,T or (r t ) t=1 , ... ,T and 

φ1 , φ2 ) are unknown deterministic parameters. Noise n t is 

ssumed in this model circular CES (C-CES) distributed. 

.2. Stochastic Gaussian data model 

In the unconditional or stochastic model, both x t and n t are 

sually assumed Gaussian distributed and independent of each 

ther. x t is here either circular or strictly non-circular (also called 

ectilinear). In the circular case, the distribution of y t is character- 

zed by the covariance given by 

 y 
def = E(y t y 

H 
t ) = AR x A 

H + σ 2 
n I , (3) 

here 

 x 
def = E(x t x 

H 
t ) = 

(
σ 2 

x 1 
ρσx 1 σx 2 

ρ∗σx 1 σx 2 σ 2 
x 2 

)
with 

ρ = | ρ| e iφ ∈ C and | ρ| ≤ 1 . (4) 

n the rectilinear case, the sources x t,k , k = 1 , 2 , satisfy the con-

traint (2) . In this case, the distribution of y t is characterized by 

he covariance of the extended observation ̃

 y t 
def = [ y T t , y 

H 
t ] 

T given by 

 ˜ y 
def = E( ̃  y t ̃  y H t ) = ̃

 A R r ̃
 A 

H + σ 2 
n I , (5) 

here ˜ A 

def = [ ̃  a 1 , ̃  a 2 ] with 

˜ a k 
def = [ a T 

k 
e iφk , a H 

k 
e −iφk ] T and R r 

def = E(r t r 
T 
t )

iven by 

 r = 

(
σ 2 

x 1 
ρ ′ σx 1 σx 2 

ρ ′ σx 1 σx 2 σ 2 
x 2 

)
with ρ ′ ∈ [ −1 , +1] . (6) 
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hus, R x in (4) is written in the following form: 

 x = 

(
σ 2 

x 1 
ρ ′ e i �φσx 1 σx 2 

ρ ′ σx 1 σx 2 e 
−i �φ σ 2 

x 2 

)
. (7) 

onsequently, for rectilinear sources, the phase separation �φ as- 

ociated with the sign of ρ′ corresponds to the phase φ of the cor- 

elation of the sources if ρ′ � = 0 . 

.3. Stochastic CES data model 

To take into account the effect of heavy tailed impulse noise, 

he CES distribution has been preferred over the Gaussian distri- 

ution to model the observations y t in many DOA finding and 

eamforming processing (see e.g., [31–33] ). In this case the dis- 

ributions of x t and n t are not specified, but only their second- 

rder statistics are imposed. More specifically, in the case of circu- 

ar to the second-order [resp., rectilinear] sources x t , the associated 

y t ) t=1 , ... ,T are assumed independent zero-mean C-CES [resp., non- 

ircular CES (NC-CES)] identically distributed. The p.d.f. of y t is 

p(y t ) = c N,g | R y | −1 g(y H t R 

−1 
y y t ) , [resp. , c N,g | R ˜ y | −1 / 2 g 

(
1 

2 

˜ y H t R 

−1 
˜ y 

˜ y t 

)
] , 

(8) 

here R y and R ˜ y are the structured covariance in (3) and ex- 

ended covariance in (5) , respectively. The density generator g(. ) : 

 

+ 
→ R 

+ satisfies δN,g 
def = 

∫ ∞ 

0 t N−1 g(t) dt < ∞ to ensure the integra- 

ility of p(y t ) and c N,g is a normalizing constant given by c N,g 
def= 

(s N δN,g ) 
−1 where s N 

def = 2 πN / 	(N) is the surface area of the unit

omplex N-sphere. We note that the so-called scale ambiguity 

sually present in the p.d.f. of y t with the scatter and pseudo- 

catter matrices, is here removed thanks to the constraint on g: 

N+1 ,g /δN,g = N [33] which ensures that the scatter matrices are 

qual to the covariance matrices. 

The r.v. y t admits the following stochastic representation [35] : 

 t = d 

√ 

Q t R 

1 / 2 
y u t , circular source case (9) 

 t = d 

√ 

Q t [ I , 0 ] R 

1 / 2 
˜ y 

˜ u t , rectilinear source case (10) 

here ˜ u t 
def = (u 

T 
t , u 

H 
t ) 

T . Q t and u t are independent, u t is uniformly

istributed on the unit complex N-sphere and Q t has the p.d.f. 

p(Q t ) = δ−1 
N,g Q 

N−1 
t g(Q t ) , (11) 

ith E(Q t ) = N. Note that this CES distribution model includes the 

tandard Gaussian model, for which g(x ) = e −x , c N,g = π−N and Q t 

s 1 / 2 χ2 
2 N 

distributed in the circular and rectilinear source cases. 

. Review of deterministic and stochastic Cramér-Rao bounds 

erivation 

We consider here the general framework of K deterministic or 

ircular stochastic [resp., rectilinear] sources, where the range of 

he steering matrix A [resp., ˜ A ] characterizes the DOA. 1 To derive 

he DCRB and SCRB for DOA estimation, we have to carefully spec- 

fy all the unknown parameters associated with the distribution of 

 t . 

In the deterministic model where the density generator g(.) 

f the C-CES distributed noise is known, y t in (1) is param- 

terized by the parameter α = (θ1 , . . . , θK , ρ
T , σ 2 

n ) 
T where ρ

def = 

( Re T (x t ) , Im 

T (x t )) t=1 , ... ,T ) 
T (with K < N) in arbitrary circularity 
1 This excludes the SCRB derived under the prior knowledge of uncorrelated 

ources applied to sparse linear arrays with K > N [36] . 

fi

m

D

t

3 
ase and ρ
def = (φ1 , . . . , φK , (r t, 1 . . . , r t,K ) t=1 , ... ,T ) 

T (with K < 2 N) in

ectilinear case. For both stochastic Gaussian and stochastic CES 

ata model where the density generator g(.) is known, y t in (1) is 

arameterized by the parameter α = (θ1 , . . . , θK , ρ
T , σ 2 

n ) 
T where 

def = ([ R x ] i,i , Re ([ R x ] i, j ) , Im ([ R x ] i, j )) 
T , 1 ≤ i < j ≤ K (with K < N) in

ircular case and ρ
def = (φ1 , . . . , φK , [ R r ] i, j ) 

T , 1 ≤ i ≤ j ≤ K (with K <

 N) in rectilinear case. Under these parametrizations, the com- 

onents of the Fisher Information matrix (FIM) associated with 

OA parameters and nuisance parameters can be computed. Sim- 

le general closed-form expressions of these components called 

lepian-Bangs formula were given for the real Gaussian distribu- 

ion in [37] and [38] , then extended to the circular and noncircular 

omplex Gaussian distribution in [39] and [40] , respectively. This 

ormula has been extended to the C-CES distribution in [41] and 

42] , and then in [43] to the NC-CES distribution. In contrast, if 

he density generator g(. ) of the C-CES distribution of the noise in 

he deterministic model or of the C-CES ot NC-CES distribution of 

he data y t in the stochastic model, is unknown, an additional infi- 

ite dimensional nuisance parameter must be considered. To han- 

le this parameterization, a semiparametric FIM associated with 

he finite dimensional parameter was derived in [44] . 

In the deterministic model with circular Gaussian noise, with 

o prior knowledge is introduced on the sources, the DCRB for 

OA was first derived in [45] by picking the DOA-block of the in- 

erse of the FIM. Then for rectilinear sources, a closed-form ex- 

ression of this DCRB was given in [46] and [47] and then in 

48] under more general rectilinear models. Noting that the pa- 

ameter σ 2 
n is decoupled from the other parameters in the FIM of 

he C-CES distributions where the density generator g(. ) is known, 

nd that the expectation terms of this FIM is proportional to those 

f the Gaussian noise case, the DCRB for DOA is directly derived. 

urthermore, when the density generator g(. ) is unknown, σ 2 
n is 

lso decoupled from the other parameters in the semiparametric 

IM from [ 49 , rel. (46)] and the expectation term of this semipara-

etric FIM is proportional to the expectation term of the FIM asso- 

iated with circular Gaussian distributed data with the coefficient 

f proportionality ξ1 = 

E[ φ2 (Q t ) Q t ] 
N where φ(x ) 

def = − 1 
g(x ) 

dg(x ) 
dx 

. Com- 

aring these DCRB and SDCRB, we get the following theorem: 

heorem 1. The DCRB and SDCRB for DOA estimation in the general 

cenario of K sources are given by the following expressions: 

CRB ( θ) = SDCRB ( θ) = 

1 

T 

σ 2 
n 

2 ξ1 

{
Re 

(
(D 

H 
θ �⊥ 

A D θ ) �R 

T 
x,T 

)}−1 
, (12) 

CRB Rec ( θ) = SDCRB Rec ( θ) 

= 

1 

T 

σ 2 
n 

ξ1 

{ (
( ̃  D 

H 
θ �⊥ 

˜ A ̃
 D θ ) �R r,T 

)
−
(
( ̃  D 

H 
θ �⊥ 

˜ A ̃
 D φ ) �R r,T 

)
×

(
( ̃  D 

H 
φ�⊥ 

˜ A ̃
 D φ ) �R r,T 

)−1 (
( ̃  D 

H 
φ�⊥ 

˜ A ̃
 D θ ) �R r,T 

)} −1 

(13) 

or sources of arbitrary circularity and rectilinear sources, respectively, 

here D θ
def = [ d 1 , . . . , d K ] , 

˜ D θ
def = [ ̃ d 1 , . . . , ̃

 d K ] , 
˜ D φ

def = [ ̃ d φ1 
, . . . , ̃  d φK 

]

ith d k 
def = 

∂a k 
∂θk 

, ˜ d k 
def = 

∂ ̃ a k 
∂θk 

, ˜ d φk 

def = 

∂ ̃ a k 
∂φk 

, �⊥ 
A 

[resp. �⊥ 
˜ A 

] denote the or- 

hogonal projector on the columns of A [resp. ̃  A ]. Note that if the sig- 

al sources x t,k or r t,k are known, the DCRB are more simply derived 

rom the associated FIM. They are also given by (12) and (13) where 
⊥ 
A 

and �⊥ 
˜ A 

is replaced by the identity matrix. 

In the stochastic circular Gaussian model, the SCRB for DOA was 

rst derived, indirectly, as the asymptotic covariance matrix of the 

aximum likelihood estimator [26] , then directly by picking the 

OA block of the inverse of the FIM [50] . Following this approach, 

he SCRB for DOA was derived in the stochastic rectilinear Gaussian 
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(
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4

p

(

o

D  

g

(

d

(

o

c

t

k k k 

2 For example, uniform linear arrays, uniform circular arrays with an even num- 

ber of sensors, regular hexagonal shaped arrays, cross-based centro-symmetric ar- 

rays, square-based centro-symmetric array, for which the array centroid is chosen 

as the reference of the phases are centro-symmetric arrays [52] . 
odel [51] and then extended to the stochastic C-CES data model 

here the density generator g(. ) is known in [43] to C-CES and 

C-CES distributions. Similarly, using the semiparametric FIM [44] , 

he SSCRB on the DOA only was given in [ 49 , rel. (62)] for C-CES

istributions and extended to NC-CES distributions in [35] . Com- 

aring these SCRB given in [43] and SSCRB, we get the following 

heorem: 

heorem 2. The SCRB and SSCRB for DOA estimation in the general 

cenario of correlated or uncorrelated (including coherent) K sources 

re given for both conventional Gaussian and robust distribution mod- 

ls by the following common expressions: 

CRB Cir ( θ) = SSCRB Cir ( θ) = 

1 

T 

σ 2 
n 

2 ξ2 

{
Re 

(
(D 

H 
θ �⊥ 

A D θ ) �H 

T 
)}−1 

, (14) 

CRB Rec ( θ) = SSCRB Rec ( θ) 

= 

1 

T 

σ 2 
n 

ξ2 

{ (
( ̃  D 

H 
θ �⊥ 

˜ A ̃
 D θ ) �˜ H 

)
−

(
( ̃  D 

H 
θ �⊥ 

˜ A ̃
 D φ ) �˜ H 

)
×

(
( ̃  D 

H 
φ�⊥ 

˜ A ̃
 D φ ) �˜ H 

)−1 (
( ̃  D 

H 
φ�⊥ 

˜ A ̃
 D θ ) �˜ H 

)} −1 

(15) 

or circular and rectilinear sources, respectively, where D θ , ˜ D θ , ˜ D φ , 

⊥ 
A 

and �⊥ 
˜ A 

are defined in Theorem 1 , H 

def = R x A 

H R 

−1 
y AR x , ˜ H 

def= 

 r ̃
 A 

H R 

−1 
˜ y 

˜ A R r , and where ξ2 
def = 

E[ φ2 (Q t ) Q 2 t ] 

N (N +1) 
. 

We note that in the standard Gaussian model, φ(x ) = 1 gives 

1 = 

E( χ2 
2 N 

) 

N = 1 and ξ2 = 

E[( χ2 
2 N 

) 2 ] 

4 N (N +1) 
= 1 and thus the DCRB and SD- 

RB given for arbitrary C-CES distributions of the noise, and the 

CRB and SSCRB given for arbitrary C-CES or NC-CES distributions 

f the observation are scaled expressions of the associated CRB 

iven in the conventional Gaussian model. Furthermore, we no- 

ice that ξ1 ≥ 1 , while ξ2 ≤ 1 (sub-Gaussian case) or ξ2 ≥ 1 (super- 

aussian case) [43] . 

Note also that from this theorem, the DCRB and SCRB derived 

nder the full knowledge of g, and the SDCRB and SSCRB that as- 

ume g as infinite-dimensional nuisance parameter are equal. But 

e cannot conclude that knowing or not knowing g can lead to 

he same DOA performance. When g is known, the ML estimate of 

he DOA is asymptotically (w.r.t. the number of snapshots T ) effi- 

ient, and therefore, its covariance reaches the CRB for the stochas- 

ic model. But when g is unknown, some estimates have been pro- 

osed in [32] by exploiting the MUSIC algorithm together with the 

yler’s or Hubert’s M estimate of the covariance with better per- 

ormance than for the conventional MUSIC algorithm. But none of 

hese estimators is efficient w.r.t. the SSCRB. Finding such an esti- 

ator appears to be an open problem to the best of our knowl- 

dge. 

. DCRB and SCRB for two equi-powered sources 

This subsection derives exact closed-form expressions of the 

CRB and SCRB given for two equi-powered sources deduced from 

12), (13), (14) and (15) in particular scenarios and analyzes the 

ignificant role played by the magnitude and the phase of the cor- 

elation. It gives also approximate closed-form expressions of this 

CRB for small DOA separation. Unfortunately, without special con- 

itions on arrays, the expressions of these different CRB’s are too 

omplicated (see (71) –(80) in Appendix A) to provide useful in- 

ights into the behavior of the CRB’s dependence on the different 

arameters. To simplify these expressions, we impose the assump- 

ion that the steering vectors a 1 and a 2 are defined up to a mul-

iplicative phase depending on the DOAs and the origin of the co- 

rdinate system. Consequently, without loss of generality, we can 

uppose that β
def = a H a 2 is real-valued. But as this condition is not 
1 

4 
et sufficient to obtain simple expressions, it is reinforced by sup- 

osing that the array is centro-symmetric, i.e., satisfying a ∗
k 

= Ja k 
2 

This latter condition ensures not only that β is real-valued, but 

hat it is also the case for the geometric terms α1 , 2 , η
′ 
k 

and η′′ 
2 

efined below, which allows us to obtain simplified expressions of 

CRBs. 

We obtain from (12) the following closed-form expressions: 

CRB (θk , θk ) = 

1 

2 T ξ1 

1 

r 

α3 −k 

(α1 α2 − α2 
1 , 2 

| ρ| 2 cos 2 φ) 
, k = 1 , 2 (16) 

CRB (θ1 , θ2 ) = − 1 

2 T ξ1 

1 

r 

α1 , 2 | ρ| cos φ

(α1 α2 − α2 
1 , 2 

| ρ| 2 cos 2 φ) 
, (17) 

here αk 
def = d 

H 
k 
�⊥ 

A 
d k and α1 , 2 

def = d 

H 
1 �

⊥ 
A 

d 2 , r 
def = σ 2 

x /σ
2 
n with σ 2 

x 
def = 

1 
T 

∑ T 
t=1 | x t, 1 | 2 = 

1 
T 

∑ T 
t=1 | x t, 2 | 2 and ρ

def = 

1 

σ 2 
x 

1 
T 

∑ T 
t=1 x t, 1 x 

∗
t, 2 

. We see 

rom (16) that the DCRB of the DOA is an increasing function of 

he real part of the correlation. This DCRB reaches its minimum 

or uncorrelated sources or for φ = π/ 2 mod π for which 

CRB (θk , θk ) = 

1 

2 T ξ1 

1 

r 

1 

αk 

, k = 1 , 2 . (18) 

his expression is similar to that of a single source k where αk 

s replaced by d 

H 
k 
�⊥ 

a k 
d k = ‖ d k ‖ 2 (for centro-symmetric arrays). It 

lso follows that the minimum bound (18) remains greater than 

hat for a single source. We see from (17) that the DOA are de- 

oupled in the DCRB if and only if the real part of the correlation 

s zero. It is also clear that the DCRB is inversely proportional 

o SNR. We note that (16) and (17) are not given in [13] which

ocused on approximate DCRB expressions for closely-spaced 

ources impinging on a ULA array. We also point out that (16) and 

17) are also valid in the context of known signal sources where 
⊥ 
A 

is replaced by the identity matrix in the definition of αk and 

1 , 2 . These expressions have also been derived in [20] for the 

inear array in a more complicated form due to the choice of the 

rst sensor as the origin of the phases. 

.1. Exact closed-form expressions of the DCRB and SCRB in 

articular scenarios 

In contrast to (12) , the application of (13), (14) and 

15) for two equi-powered sources gives intricate expressions 

f SCRB Cir (θk , θk ) and SCRB Cir (θ1 , θ2 ) [resp., DCRB Rec (θk , θk ) , 

CRB Rec (θ1 , θ2 ) , SCRB Rec (θk , θk ) , SCRB Rec (θ1 , θ2 ) ], k = 1 , 2 in which

eometric terms through ( β , αk and α1 , 2 ) and signal terms through 

 r and ρ), [resp., geometric and phase terms ( ̃  β = 

˜ a H 
1 ̃

 a 2 , ˜ αk = 

˜ 
 

H 
k 
�⊥ 

˜ A 
˜ d k and ˜ α1 , 2 = 

˜ d 

H 
1 �

⊥ 
˜ A 

˜ d 2 ) and signal terms ( r, ρ′ )] are mixed 

see Appendix A). However, in the particular scenarios of orthog- 

nal steering vectors, uncorrelated sources or coherent sources, 

losed-form interpretable expressions are available. 

From (13) , only the following scenarios make it possible to ob- 

ain such expressions: 

• Case ρ′ = 0 (uncorrelated sources) 

In this case, the two DOAs are decoupled in the DCRB with ex- 

pressions given by 

DCRB Rec (θk , θk ) = 

1 

2 T ξ1 

1 

r 

1 

ηk − Nη
′ 2 
k 

N 2 −β2 cos 2 (�φ) 
, k = 1 , 2 , (19) 

DCRB Rec (θ1 , θ2 ) = 0 , (20) 

where ηk = d 

H d k and η′ = d 

H a 3 −k , k = 1 , 2 . 
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′′ 
2 
) 2 cos 2 �φ

 Nη
′ 2 
3 −k 

, k = 1 , 2 , (21) 

 

 

− (β2 − N 

2 ) η′′ 
2 ) cos �φ

 Nη
′ 2 
2 
) − (βη

′ 
1 
η

′ 
2 

− (β2 − N 

2 ) η′′ 
2 
) 2 cos 2 �φ

, (22) 

 ρ ′ 2 η′′ 2 
2 

′ 2 +(1 −ρ ′ 2 ) cos 2 �φ) 

)
cos 2 �φ

(23) 

ec (θk , θk ) . (24) 

 expressions of SCRB Cir (θk , θk ) and SCRB Cir (θ1 , θ2 ) are only possible in 

t

2 ) 
 

, k = 1 , 2 , (25) 

 

. (26) 

imum [resp., maximum] for β = 0 (orthogonal steering vectors) [resp., 

 

, k = 1 , 2 , (27) 

) 

 

2 )) 
. (28) 

 

, θk ) is maximum in φ for φ = π . But its minimum is approached for 

)(1 + Nr(2 + Nr(1 − | ρ| 2 ))) 
α2 

1 , 2 
| ρ| 2 (−2 + Nr(| ρ| 2 − 1)) 2 cos 2 φ) 

, k = 1 , 2 , (29) 

1))(1 + Nr(2 + Nr(| ρ| 2 − 1))) 

− α2 
1 , 2 

| ρ| 2 (−2 + Nr(| ρ| 2 − 1)) 2 cos 2 φ) 
. (30) 

w.r.t. π/ 2 and decreasing from its maximum for φ = 0 mod π to its 

ence in | ρ| , although we observe that SCRB Cir (θk , θk ) are numerically 

ing interpretable closed-form expressions in more specific cases: 

(31) 

(32) 

r to those a single source k , which has also the expression (31) where 

r than for a single source and these SCRB are equal i.i.f. d 

H 
k 

a 3 −k = 0 . 
• Case ρ′ = ±1 (coherent sources): 

DCRB Rec (θk , θk ) = 

1 

2 T ξ1 

1 

r 

β2 − N 

2 

(β2 − N 

2 ) ηk + Nη
′ 2 
k 

− (βη
′ 
1 
η

′ 
2 
−(β2 −N 2 ) η

(β2 −N 2 ) η3 −k +

DCRB Rec (θ1 , θ2 ) = 

1 

2 T ξ1 

1 

r 

(β2 − N 

2 )(βη
′ 
1 η

′
2

((β2 − N 

2 ) η1 + Nη
′ 2 
1 
)((β2 − N 

2 ) η2 +
where η′′ 

2 = d 

H 
1 d 2 . 

• Case β = 0 (orthogonal steering vectors): 

DCRB Rec (θk , θk ) = 

1 

2 T ξ1 

1 

r 

1 

ηk − ρ ′ 2 η′ 2 
k 

sin 2 �φ

N 
−

(
η

′ 2 
k 

N 
− N

Nη3 −k −η
′ 2 
3 −k 

( ρ

DCRB Rec (θ1 , θ2 ) = − Nρ ′ η′′ 
2 cos �φ

Nη2 − η
′ 2 
2 
( ρ ′ 2 + (1 − ρ ′ 2 ) cos 2 �φ) 

DCRB R

Note that (19), (21) and (23) are functions of �φ, symmetric 

w.r.t. π/ 2 and decreasing from its maximum for �φ = 0 mod 

π to its minimum for �φ = π/ 2 . 

From (71) and (72) derived from (14) , interpretable closed-form

he following scenarios: 

• Case ρ = 0 : 

SCRB Cir (θk , θk ) = 

1 

2 T ξ2 

α3 −k (N + r(N 

2 − β2 ))((1 + Nr ) 2 − r 2 β

r 2 (α1 α2 (N + r(N 

2 − β2 )) 2 ) − α2 
1 , 2 

β2

SCRB Cir (θ1 , θ2 ) = − 1 

2 T ξ2 

α1 , 2 β((1 + Nr) 2 − r 2 β2 ) 

r 2 (α1 α2 (N + r(N 

2 − β2 )) 2 − α2 
1 , 2 

β2 )

We note that (25) is an increasing function of β2 , which is min

β = N (collinear steering vectors)]. 
• Case | ρ| = 1 : 

SCRB Cir (θk , θk ) = 

1 

4 T ξ2 

α3 −k (1 + 2 r(N + β cos (φ))) 

r 2 (N + β cos (φ))(α1 α2 − α2 
1 , 2 

cos (φ) 2 )

SCRB Cir (θ1 , θ2 ) = − 1 

4 T ξ2 

α1 , 2 cos (φ)(1 + 2 r(N + β cos (φ))

r 2 (N + β cos (φ))(α1 α2 − α2 
1 , 2 

cos (φ)

We note that for not too far DOA (such that β > 0 ), SCRB Cir (θk

φ = π/ 2 mod π only for high SNR r. 
• Case β = 0 : 

SCRB Cir (θk , θk ) = 

1 

2 T ξ2 

α3 −k (1 + | ρ| 2 + Nr(1 − | ρ| 2 )
Nr 2 (α1 α2 (1 + | ρ| 2 + Nr(1 − | ρ| 2 )) 2 −

SCRB Cir (θ1 , θ2 ) = − 1 

2 T ξ2 

α1 , 2 | ρ| cos (φ)(2 + Nr(| ρ| 2 −
Nr 2 (α1 α2 (1 + | ρ| 2 + Nr(1 − | ρ| 2 )) 2 

It is clearly that SCRB Cir (θk , θk ) are functions of φ, symmetric 

minimum for φ = π/ 2 , but it is not easy to assess the depend

increasing with | ρ| for the ULA and UCA. 

It is easy to deduce from these particular expressions the follow

• Case ρ = 0 and β = 0 : 

SCRB Cir (θk , θk ) = 

1 

2 T ξ2 

1 

αk 

1 

r 

(
1 + 

1 

Nr 

)
, k = 1 , 2 , 

SCRB Cir (θ1 , θ2 ) = 0 . 

So the DOAs are decoupled in the SCRB and this SCRB is simila

αk is replaced by d 

H 
k 
�⊥ 

a k 
d k . So the SCRB for two sources is large
5 
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1 , 2 , (33) 

(34) 

 larger than for correlated sources, except for very low SNR r. 

f SCRB Rec (θk , θk ) and SCRB Rec (θ1 , θ2 ) can be only found in more specific 

s

 , (35) 

(36) 

f θk is similar to those of a single source k derived in [51, (19)] , which 

k (because d 

H 
k 
�⊥ 

a k 
d k = ηk using d 

H 
k 

a k = 0 for centro-symmetric arrays). 

 and these SCRB are equal iif η
′ 
k 

= 0 or �φ = 

π
2 . 

1 , 2 , (37) 

 �φ

1 

r 

(
1 + 

1 

4 Nr 

)
. (38) 

eater than for uncorrelated sources (see (35) ). 

φ, symmetric w.r.t. π/ 2 and decreasing from its maximum for �φ = 0 

m

r particular values of the parameters β , | ρ| , ρ ′ , cos φ and cos �φ are 

a ple, extensive numerical experiments with ULA and UCA confirm that 

f φ, symmetric w.r.t. π/ 2 and decreasing from its maximum for �φ = 0 

m

4 all DOA separation 

urces are known or unknown and the SCRB (14) and (15) when the 

D aration-dependent-coefficients in terms of Taylor series about δθ = 0 

a  For simplicity 3 , we restrict our analysis to the ULA with the following 

s

a (39) 

w  of array broadside and where the coordinate system has its origin at 

t calculus tools, the following asymptotic expressions of the DCRB are 

r

D (40) 

D  , (41) 

D  , (42) 

D  ) , (43) 

o

• Case | ρ| = 1 and β = 0 : 

SCRB Cir (θk , θk ) = 

1 

2 T ξ2 

α3 −k 

(α1 α2 − α2 
1 , 2 

cos 2 φ) 

1 

r 

(
1 + 

1 

2 Nr 

)
, k = 

SCRB Cir (θ1 , θ2 ) = − 1 

2 T ξ2 

α1 , 2 cos 2 φ

(α1 α2 − α2 
1 , 2 

cos 2 φ) 

1 

r 

(
1 + 

1 

2 Nr 

)
. 

So the DOAs are coupled in the SCRB and this SCRB is generally

Unlike the circular case, interpretable closed-form expressions o

cenarios for which (15) gives: 

• Case ρ′ = 0 and β = 0 : 

SCRB Rec (θk , θk ) = 

1 

2 T ξ2 

1 

ηk − η
′ 2 
k 

N 
cos 2 �φ

1 

r 

(
1 + 

1 

2 Nr 

)
, k = 1 , 2

SCRB Rec (θ1 , θ2 ) = 0 . 

The DOAs are therefore decoupled in the SCRB and the SCRB o

also has the expression (35) by replacing ηk −
η
′ 2 
k 
N cos 2 (�φ) by η

Thus, the SCRB for two sources is larger than for a single source
• Case ρ′ = ±1 and β = 0 : 

SCRB Rec (θk , θk ) = 

1 

2 T ξ2 

1 

ηk − η
′ 2 
k 

N 
+ 

Nη
′′ 2 
2 

cos 2 �φ

η
′ 2 
3 −k 

−Nη3 −k 

1 

r 

(
1 + 

1 

4 Nr 

)
k = 

SCRB Rec (θ1 , θ2 ) = − 1 

2 T ξ2 

N 

2 η
′′ 
2 cos (�φ) 

(η
′ 2 
1 

− Nη1 )(η
′ 2 
2 

− Nη2 ) − N 

2 η
′′ 2 
2 

cos 2

The DOAs are therefore coupled in the SCRB and this SCRB is gr

It is clear that SCRB Rec (θk , θk ) in (35) and (37) are functions of �

od π to its minimum for �φ = π/ 2 . 

Finally, note that some properties of SCRB and DCRB proved fo

lso confirmed for arbitrary values of these parameters. For exam

or rectilinear signal sources, the different DCRB are functions of �

od π to its minimum for �φ = π/ 2 . 

.2. Approximate closed-form expressions of the DCRB and SCRB for sm

We examine here the DCRB (12) and (13) when the signal so

OA separation δθ
def = θ1 − θ2 is small, by expressing the DOA-sep

nd identifying the dominant term of the different CRB as δθ → 0 .

teering vectors 

 k = (e −i (N−1) θk / 2 , e −i (N−3) θk / 2 , . . . , e i (N−3) θk / 2 , e i (N−1) θk / 2 ) , 

here θk = π sin αk , with αk are the DOAs relative to the normal

he centroid of the array. With the aid of symbolic algebra and 

espectively obtained 

4 : 

CRB 

Kn (θk , θk ) = 

1 

T ξ1 

1 

r 

6 

N (N 

2 − 1)(1 − | ρ| 2 cos 2 φ) 
+ O ((δθ ) 2 ) , 

CRB 

Kn (θ1 , θ2 ) = − 1 

T ξ1 

1 

r 

6 | ρ| cos (φ) 

N (N 

2 − 1)(1 − | ρ| 2 cos 2 φ) 
+ O ((δθ ) 2 )

CRB 

Kn 
Rec (θk , θk ) = 

1 

T ξ1 

1 

r 

6 

N (N 

2 − 1)(1 − ρ ′ 2 cos 2 �φ) 
+ O ((δθ ) 2 )

CRB 

Kn 
Rec (θ1 , θ2 ) = − 1 

T ξ1 

1 

r 

6 ρ ′ cos (�φ) 

N (N 

2 − 1)(1 − ρ ′ 2 cos 2 �φ) 
+ O ((δθ ) 2
3 For example, the analysis for the UCA is much more complicated because the different CRB are not functions only of the DOA separation, but also on the mid DOA. In 

ther words, the UCA which is isotropic for a single source is no longer isotropic for two sources. 
4 The exponents Kn and Unk denote respectively known and unknown 

6 
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w

D
) 2 

+ O (1) , (44) 

D
) 2 

+ O (1) , (45) 

D  , for �φ � = 0 (46) 

D  , for �φ � = 0 (47) 

D ) , for �φ = 0 (48) 

D ) , for �φ = 0 (49) 

w

r sources are obtained: 

S
 cos (φ)) 

 

2 sin 

2 φ

1 

(δθ ) 2 
+ O (1) , (50) 

S
 cos φ(1 + | ρ| cos φ)) 

os φ) 2 sin 

2 (φ) 

1 

(δθ ) 2 
+ O (1) , (51) 

f

S (52) 

S (53) 

f

S
)) + O ((δθ ) 2 ) , (54) 

S
′ 2 − 1) sin 

2 �φ)) 

�φ
+ O ((δθ ) 2 ) , (55) 

f

S (56) 

S (57) 

f

 (δθ ) 4 , the terms b k / (δθ ) 2 and a k / (δθ ) 2 , k = 2 , 3 , are needed to derive 

t  (61) . In fact, only the following differences are useful. 

S
 | ρ| )) 
 + | ρ| ) 2 (δθ ) 2 

+ O (1) (58) 

S
 ρ ′ )) 
1 + ρ ′ ) 2 (δθ ) 2 

+ O (1) . (59) 

W (42), (43) sources tend to non-zero finite values when the DOA separa- 

t  rectilinear sources (46), (47) and the SCRB for rectilinear sources (54), 

( es has been observed numerically in [40] and was later confirmed by 

t

hen the signal sources are known, 

CRB 

Unk (θk , θk ) = 

1 

T ξ1 

1 

r 

360 

N (N 

2 − 4)(N 

2 − 1)(1 − | ρ| 2 cos 2 (φ))(δθ

CRB 

Unk (θ1 , θ2 ) = 

1 

T ξ1 

1 

r 

360 | ρ| cos (φ) 

N (N 

2 − 4)(N 

2 − 1)(1 − | ρ| 2 cos 2 (φ))(δθ

CRB 

Unk 
Rec (θk , θk ) = 

1 

T ξ1 

1 

r 

6 

N (N 

2 − 1)(1 − ρ ′ 2 ) sin 

2 �φ
+ O ((δθ ) 2 )

CRB 

Unk 
Rec (θ1 , θ2 ) = 

1 

T ξ1 

1 

r 

6 ρ ′ cos (�φ) 

N (N 

2 − 1)(1 − ρ ′ 2 ) sin 

2 �φ
+ O ((δθ ) 2 )

CRB 

Unk 
Rec (θk , θk ) = 

1 

T ξ1 

1 

r 

360 

N (N 

2 − 1)(N 

2 − 4)(1 − ρ ′ 2 )(δθ ) 2 
+ O (1

CRB 

Unk 
Rec (θ1 , θ2 ) = 

1 

T ξ1 

1 

r 

360 ρ ′ 
N (N 

2 − 4)(N 

2 − 1)(1 − ρ ′ 2 )(δθ ) 2 
+ O (1

hen the source signals are unknown. 

Using the same tools, the following asymptotic SCRB for circula

CRB Cir (θk , θk ) = 

1 

T ξ2 

90(1 + 2 Nr(1 + | ρ| cos φ))(1 + | ρ| 2 + 2 | ρ|
r 2 | ρ| 2 N 

2 (N 

2 − 1)(N 

2 − 4)(1 + | ρ| cos (φ))

CRB Cir (θ1 , θ2 ) = 

1 

T ξ2 

90(1 + 2 Nr(1 + | ρ| cos φ))(1 − | ρ| 2 + 2 | ρ|
r 2 | ρ| 2 N 

2 (N 

2 − 1)(N 

2 − 4)(1 + | ρ| c
or φ � = 0 mod π and 

CRB Cir (θk , θk ) = 

b 1 
(δθ ) 4 

+ 

b 2 
(δθ ) 2 

+ O (1) 

CRB Cir (θ1 , θ2 ) = 

b 1 
(δθ ) 4 

+ 

b 3 
(δθ ) 2 

+ O (1) 

or φ = 0 mod π . As for the SCRB for rectilinear sources, we get: 

CRB Rec (θk , θk ) = 

1 

T ξ2 

3(( ρ ′ + cos (�φ)) 2 + 2 Nr( ρ ′ 2 − 1) sin 

2 (�φ

r 2 N 

2 (N 

2 − 1)( ρ ′ 2 − 1) 2 sin 

4 (�φ) 

CRB Rec (θ1 , θ2 ) = 

1 

T ξ2 

3 cos �φ((1 + ρ ′ 2 ) cos �φ + 2 ρ ′ (1 − Nr( ρ

r 2 N 

2 (N 

2 − 1)( ρ ′ 2 − 1) 2 sin 

4 

or �φ � = 0 and 

CRB Rec (θk , θk ) = 

a 1 
(δθ ) 4 

+ 

a 2 
(δθ ) 2 

+ O (1) 

CRB Rec (θ1 , θ2 ) = 

a 1 
(δθ ) 4 

+ 

a 3 
(δθ ) 2 

+ O (1) 

or �φ = 0 . 

Although the dominant terms in (52) –(57) are b 1 / (δθ ) 4 and a 1 /

he SRL in Section 5 because the dominant terms are eliminated in

CRB Cir (θk , θk ) − SCRB Cir (θ1 , θ2 ) = 

1 

T ξ2 

180(1 + 2 Nr(1 +
r 2 N 

2 ((N 

2 − 1)(N 

2 − 4))(1

CRB Rec (θk , θk ) − SCRB Rec (θ1 , θ2 ) = 

1 

T ξ2 

90(1 + 4 Nr(1 +
r 2 N 

2 ((N 

2 − 1)(N 

2 − 4))(

e see that the DCRB for known arbitrary (40), (41) or rectilinear 

ion tends to zero. This is also the case for the DCRB for unknown

55) when �φ � = 0 . This property of the SCRB for rectilinear sourc

he behavior of the non-circular MUSIC algorithm in [53] . 
7 
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. CRB-Based Statistical resolution limits 

.1. Derivation of different SRL 

In [15] , the SRL proposed by Smith was defined as the source 

eparation that equals its own CRB, providing an algorithm- 

ndependent resolution bound and was illustrated by the DCRB in 

he context of two damped exponentials of identical unknown am- 

litudes. In the context of DOA estimation, the SRL is the DOA sep- 

ration δθ = θ1 − θ2 solution of the implicit equation: 

θ = 

√ 

CRB (δθ ) , (60) 

here CRB (δθ ) denotes the CRB on the DOA separation θ1 − θ2 . 

ecause Var ( ̂  θ1 − ̂ θ2 ) = Var ( ̂  θ1 ) + Var ( ̂  θ2 ) − 2 Cov ( ̂  θ1 , ̂
 θ2 ) , CRB (δθ )

an be deduced form the matrix CRB ( θ) by: 

RB (δθ ) = CRB (θ1 , θ1 ) + CRB (θ2 , θ2 ) − 2 CRB (θ1 , θ2 ) , (61) 

or which CRB (θ1 , θ1 ) = CRB (θ2 , θ2 ) for two equal-powered source 

ignals impinging on a ULA, and where the CRB is either the DCRB 

r the SCRB. Although definition (60) essentially makes sense be- 

ause the CRB indicates the DOA estimation accuracy, it is not sup- 

orted by rigorous statistical arguments. Some authors have intro- 

uced a scalar factor λ between δθ and 

√ 

CRB (δθ ) (e.g., λ = 0 . 25 

n [54] , λ = 4 in [55] ). But using a generalized likelihood ratio test

pproach, [7] gave a statistical basis to (60) by defining the SRL 

nstead by the solution of the following implicit equation: 

θ = λ
√ 

CRB (δθ ) , (62) 

here λ is analytically determined by the preassigned constraints 

n the probability of false alarm and detection. As λ is of the order 

f unity for the usual values of these probabilities, we will retain 

ere definition (60) . 

We derive here explicit closed-form expressions for SRLs by 

olving (60) , whose solutions are only possible in the form of 

pproximate solutions for two closely-spaced sources resulting 

rom the different asymptotic expressions (40) –(59) . Using �θ
def = 

δθ/ 2 
√ 

3 5 , these approximate solutions are given from the derived 

CRB for known (40) and (41) and unknown (44) and (45) arbi- 

rary sources, respectively, by 

�θ) Kn 
D ≈

(
1 

T ξ1 

N 

r(N 

2 − 1)(1 − | ρ| cos φ) 

)1 / 2 

, (63) 

�θ) Unk 
D ≈

(
1 

T ξ1 

5 N 

3 

r(N 

2 − 1)(N 

2 − 4)(1 + | ρ| cos φ) 

)1 / 4 

, (64) 

nd for known (42) and (43) and unknown (46) –(49) rectilinear 

ources, respectively, by: 

�θ) Kn 
D , Rec ≈

(
1 

T ξ1 

N 

r(N 

2 − 1)(1 − ρ ′ cos �φ) 

)1 / 2 

, (65) 

�θ) Unk 
D , Rec ≈

(
1 

T ξ1 

N(1 − ρ ′ cos �φ) 

r(N 

2 − 1)(1 − ρ ′ 2 ) sin 

2 �φ

)1 / 2 

, for �φ � = 0 

(66) 

�θ) Unk 
D , Rec ≈

(
1 

T ξ1 

5 N 

3 

r(N 

2 − 1)(N 

2 − 4)(1 + ρ ′ ) 

)1 / 4 

, for �φ = 0 . 

(67) 
5 This normalization has been introduced in [4] and then taken up by Lee and 

engrovitz [56] , so we also use it in order to simplify comparisons with the litera- 

ure. 

g

t

b

8 
s a comparison, (�θ ) Kn 
D 

given in [ 20 , rel. (26)] has complicated 

nd uninterpretable expressions while (63) is an interpretable 

losed-form expression obtained thanks to the choice of the ori- 

in of the phases in the middle of the ULA. 

The approximate SRL solution of (60) are given from the derived 

CRB for circular sources (50) –(53) by 

�θ) S , Cir ≈
(

1 

2 T ξ2 

5 N 

2 (1 + 2 Nr(1 + | ρ| cos φ)) 

r 2 ( N 

2 − 1)( N 

2 − 4)( 1 + | ρ| cos φ) 2 

)1 / 4 

, (68) 

or all φ, and for rectilinear sources (54) –(57) , by: 

�θ) S , Rec ≈
(

1 

2 T ξ2 

(1 + ρ ′ 2 + 2 Nr(1 − ρ ′ 2 )(1 − ρ ′ cos �φ)) 

r 2 (N 

2 − 1)(1 − ρ ′ 2 ) 2 sin 

2 �φ

)1 / 2 

, 

for �φ � = 0 , (69)

�θ) S , Rec ≈
(

1 

4 T ξ2 

5 N 

2 (1 + 4 Nr(ρ ′ + 1)) 

r 2 (N 

2 − 1)(N 

2 − 4)(ρ ′ + 1) 2 

)1 / 4 

, for �φ = 0 , 

(70)

.2. General comments 

This section sheds light on the influence of various parameters 

nvolved in the SRLs expressions (63) –(70) such as the number T 

f snapshots, the number N of sensors and signal and noise pa- 

ameters ( r, ξ1 , ξ2 , ρ , φ, ρ′ , �φ). It also compares SRLs deduced 

rom SCRBs to those deduced from DCRBs. 

.2.1. Impact of parameters r, N and T on SRLs 

The SNR r impacts the DCRB-derived SRL in a manner similar as 

he number of snapshots T . As for the SCRB-derived SRL, its impact 

s more complex to analyze. But it is similar for a large SNR and 

n the other hand, for a weak SNR and N, r 2 impacts the SRL in a

anner similar to T . 

Moreover for large values of N , the number of sensors N im- 

acts all the SRLs in a similar way to T because for the DCRB- 

erived SLRs N 
N 2 −1 

≈ 1 
N and 

N 3 

(N 2 −1)(N 2 −4) 
≈ 1 

N in (63) –(66) and (67) , 

espectively, and for the SCRB-derived SLRs N 2 (1+2 Nr(1+ | ρ| cos φ)) 

2 r(N 2 −1)(N 2 −4) 
≈

1+ | ρ| cos φ
N , (1+ ρ′ 2 +2 Nr(1 −ρ′ 2 )(1 −ρ′ cos �φ)) 

r(N 2 −1) 
≈ 2(1 −ρ′ 2 )(1 −ρ′ cos �φ) 

N and 

N 2 (1+4 Nr(ρ′ +1)) 

r(N 2 −1)(N 2 −4) 
≈ 4(ρ′ +1) 

N in (68), (69) , and (70) , respectively. 

Now, the dependence of the SRL on T and therefore on r and N

epends largely on the data assumptions of the model, for which 

e have two types of dependencies. For the deterministic model 

ith arbitrary unknown sources and the stochastic model with 

ircular sources, the SRLs are proportional to the inverse of the 

ourth root of T . This behavior is similar for deterministic unknown 

nd stochastic rectilinear sources with �φ = 0 . In contrast, for de- 

erministic unknown rectilinear and stochastic rectilinear sources 

ith �φ � = 0 , the SRLs are proportional to the inverse of the square

oot of T , which can give a much lower SRL. This behavior is simi-

ar when the sources are known (arbitrary or rectilinear). 

.2.2. Impact of parameters ξ1 and ξ2 on SRLs 

The non-Gaussianity of noise in the deterministic data model 

nd of observations in the stochastic data model impacts the SRLs 

hrough the coefficients ξ1 and ξ2 , respectively. These coefficients 

nfluence the SRL in an equivalent way to the numbers of samples 

 ξ1 and T ξ2 , respectively. 

While ξ1 is always greater than or equal to one, ξ2 can be 

reater or less than one [43] . This proves that the Gaussian dis- 

ributed observations (i.e., ξ2 = 1 ) does not lead to the largest SRL 

ased on the SCRB. As examples, we prove in the Appendix that 
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Fig. 1. Comparisons between stochastic SRLs for circular sources (68) , rectilinear sources (69) , and between deterministic SRLs for known arbitrary sources (63) , unknown 

arbitrary sources (64) , known rectilinear sources (65) and unknown rectilinear sources (66) for either Gaussian noise or observations (i.e., ξ1 = ξ2 = 1 ) as function of SNR, 

with N = 6 . 

Fig. 2. Comparisons between stochastic SRLs for circular sources (68) , rectilinear sources (69) , and between deterministic SRLs for known arbitrary sources (63) , unknown 

arbitrary sources (64) , known rectilinear sources (65) and unknown rectilinear sources (66) for either Gaussian noise or observations (i.e., ξ1 = ξ2 = 1 ) as function of SNR, 

with N = 6 and φ = �φ = π/ 3 . 
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he expressions of ξ1 and ξ2 for the normalized complex Stu- 

ent’s t−distribution of degree of freedom ν > 2 , are given by 

1 = 

ν/ 2 
(ν/ 2) −1 

(ν/ 2)+ N 
(ν/ 2)+ N+1 

> 1 and ξ2 = 

(ν/ 2)+ N 
(ν/ 2)+ N+1 

< 1 , and for the nor- 

alized generalized Gaussian distribution with exponent s > 0 , 

re given by ξ1 = 

	(2+ N−1 
s )	( N+1 

s ) 

(	(1+ N s )) 
2 

> 1 and ξ2 = 

N+ s 
N+1 where ξ2 < 1 

resp., ξ2 > 1 ] if 0 < s < 1 [resp., s > 1 ]. 

Finally, note that the complex angular elliptical (CAE) distribu- 

ion which is obtained by normalizing any centered C-CES distri- 

ution [33] is an interesting case because the ML estimate of its 

catter matrix is the Tyler’s M-estimator [57] . Based on the Fisher 

nformation analysis [ 42 , eq. (20)], we deduce that the SCRB for 

he CAE distribution, which is independent of the C-CES generat- 
p

9 
ng function g(. ) , is given by (14) with ξ2 = 

N 
N+1 , despite this dis-

ribution is not a C-CES distribution. This result is consistent with 

he invariance and the efficiency of the ML estimator, which allows 

s to directly deduce ξ2 = ξ2 , Tyler = 

N 
N+1 from the asymptotic dis- 

ribution of the Tyler’s M-estimator. Note further that for the CAE 

istribution the SCRB for DOA is equal to the asymptotic minimum 

ariance bound (AMVB) [58] based on the Tyler’s M statistics. It 

ollows from the C-CES distribution-free property of the asymptotic 

istribution of the Tyler’s M estimator, that for arbitrary second- 

rder C-CES distributed observations y t , the AMVB for DOA based 

n the Tyler’s M statistics is equal to the SCRB given by (14) where 

2 = 

N 
N+1 . As a result, all the analysis of the SCRB-derived SRL ap- 

ly to AMVB-derived SRL based on the Tyler’s M statistics. 
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Fig. 3. Ratio r 1 = (�θ ) Unk 
D / (�θ ) S , circ (i.e., (64) / (68) ) for either complex Gaussian noise or observations (i.e., ξ1 = ξ2 = 1 ) as a function of SNR with N = 6 and T = 500 . 

Fig. 4. Ratio r 2 = (�θ ) Unk 
D , rect / (�θ ) S , rect (i.e., (66) / (69) ) for either complex Gaussian noise or observations (i.e., ξ1 = ξ2 = 1 ) as a function of SNR with N = 6 and T = 500 . 
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.2.3. Impact of parameters ρ , φ, ρ′ and �φ on SRLs 

The different SRLs are functions of the magnitude of the cor- 

elation of sources, but also of the phase and this dependence 

epends on the considered SRL. Thus, SRLs for known arbitrary 

ources (63) and known rectilinear sources (65) are respectively in- 

reasing functions of | ρ| cos φ and ρ′ cos �φ, which is unbounded 

or ρ and ρ′ e i �φ approaching one, respectively. 

In contrast, the SRL (64) deduced from the DCRB for arbitrary 

nknown sources and the SRL (68) deduced from the SCRB for 

ircular sources with large SNR are both decreasing functions of 

 ρ| cos φ. Note that, for | ρ| � = 1 , the DCRB-derived SRL (64) and the

CRB-derived SRL (68) are both minimal for φ = 0 , and are max- 

mum for φ = π . On the other hand, for | ρ| = 1 , these SRLs are

inimal for φ = 0 and go to infinity for φ = π . 

It can also be seen that the DCRB-derived SRL (66) and 

67) and SCRB-derived SRL (69) and (70) for rectilinear sources 

a

10 
epend strongly on the correlation phase. A non-zero correla- 

ion phase greatly improves the SRL due to the proportionality 

f SRL in (. ) 1 / 2 instead of (. ) 1 / 4 for zero-phase. Note that the 

CRB-derived SRL (66) and the SCRB-derived SRL (69) are re- 

pectively minimum for �φ = tan 

−1 ( 

√ 

2(ρ′ 2 + 
√ 

1 −ρ′ 2 −1) 

1 −
√ 

1 −ρ′ 2 ) and �φ = 

an 

−1 [( 
2 Nrρ′ 

(
1 −ρ

′ 2 
)

2 N r 

(
1 −ρ′ 2 

)
+ ρ′ 2 +1 −

√ 

4 N 2 r 2 
(

1 −ρ′ 2 
)3 

+4 N r 

(
1 −ρ′ 4 

)
+ 
(
ρ′ 2 +1 

)2 
) 2 −

] 1 / 2 . These values become equal for a high SNR and are equal 

o π/ 2 for uncorrelated sources ( ρ ′ = 0 ). These SRLs are both 

aximum for �φ = 0 . 

.2.4. Comparisons between SRL deduced from DCRB and SCRB 

Comparing the SRL derived from the DCRB when the sources 

re unknown arbitrary (64) , unknown rectilinear with �φ � = 0 
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Fig. 5. (a) Deterministic SRL for unknown arbitrary sources (64) and (b) stochastic SRL for circular sources (68) for either normalized complex Student’s t-distributed noise 

or observations as function of ν > 2 for three values of N with | ρ| = 0 . 5 , φ = π/ 3 , SNR = 10dB and T = 500 . 

Fig. 6. (a) Deterministic SRL for unknown arbitrary sources (64) and (b) stochastic SRL for circular sources (68) for either complex normalized generalized Gaussian dis- 

tributed noise or observations as function of exponent s > 0 for three values of N with | ρ| = 0 . 5 , φ = π/ 3 , SNR = 10dB and T = 500 . 
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66) and �φ = 0 (67) to that deduced from the SCRB when 

he sources are respectively circular (68) , rectilinear with �φ � = 0 

69) and �φ = 0 (70) in Gaussian data models (i.e., ξ1 = ξ2 = 1 ),

e see that these SRLs each tends to the same limit when r in- 

reases. This property is consistent with the general result [26, 

9] proved in the Gaussian framework that states that the DCRB 

nd SCRB tend to the same limit as all SNRs increase. 

As for the SRL (63) deduced from the DCRB with known source 

ignals which is the only expression of SLR [20] for correlated 

ources published in the literature, we see that the knowledge of 

ectilinearity of the source signals which adds an unknown phase 

arameter does not modify this SRL (65) . Naturally, these SRLs are 

ore optimistic than the SRLs resulting from the DCRB with arbi- 

b

11 
rary unknown sources and SCRB for circular sources, due to the 

roportionality of SRL in (. ) 1 / 2 instead of (. ) 1 / 4 . 

. Numerical illustrations 

This section illustrates the dependence of the derived DCRB 

and SCRB)-based SRLs expressions (63) –(70) on various parame- 

ers such as the number of sensors, the number of snapshots and 

he signal and noise parameters. Throughout this section (except 

n Figs. 6 and 10 ), the number of sensors N is fixed at 6 and that

f snapshots T at 500. Note first that our interpretable closed-form 

xpressions (64) –(70) of SRLs only give approximate solutions of 

60) . Their relative precisions depend on the different parameters, 

ut from our different calculations, we can say that they are in- 



H. Abeida and J.-P. Delmas Signal Processing 195 (2022) 108478 

Fig. 7. Deterministic SRL (66) with unknown rectilinear sources and stochastic SRL with rectilinear sources (69) for either complex Gaussian noise or observations (i.e., 

ξ1 = ξ2 = 1 ) as a function of the noncircularity phase separation �φ with N = 6 , SNR = 10dB and T = 500 for positive (a) and negative (b) values of ρ ′ . 
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Fig. 8. Deterministic SRL (66) with unknown rectilinear sources and stochastic SRL 

with rectilinear sources (69) for either complex Gaussian noise or observations (i.e., 

ξ1 = ξ2 = 1 ) as a function of ρ ′ with �φ = π/ 2 , N = 6 and T = 500 . 
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reasing functions of the different SRLs and that they are better 

han 1 % as soon as our calculated values of SRL are lower than

.5rd. This good precision of our approximations can be explained 

y the expansions in δ that are even, and truncated to order two 

r four. 

In the first experiment, Figs. 1–4 compare the different SRLs 

63) –(70) with respect to the SNR under the assumption of Gaus- 

ian noise or observations (i.e., ξ1 = ξ2 = 1 ). Figs. 1 and 2 clearly

how that the SRL derived under the assumption of known sources, 

hich is the only result published in the literature [20] is very op- 

imistic with respect to other SCRB (and DCRB)-derived SRLs, es- 

ecially for a correlation or non-circularity phase equal to zero. 

n the other hand, the DCRB-derived SRLs are lower than the as- 

ociated SCRB-derived SRLs for both circular and rectilinear un- 

nown sources, similarly to the behavior of the associated CRBs. 

ote however that the DCRB (and SCRB)-derived SRLs are very 

lose, except in the case of strongly correlated rectilinear sources 

ith non-zero phase (see Fig. 2 b). 

Fig. 3 and 4 clarify this point by plotting the ratios 

�θ) Unk 
D 

/ (�θ ) S , circ and (�θ ) Unk 
D , rect 

/ (�θ ) S , rect . One can observe that 

hese ratios deviate all the more than one as the SNR is lower, as 

t has already been noticed in [26] when analyzing the relation be- 

ween DCRB 

Unk (θk ) and SCRB Cir (θk ) . Note also that the magnitude 

nd phase of the correlation impact these ratios in different ways 

or circular or rectilinear source signals. This ratio is lowest for un- 

orrelated circular sources ( ρ = 0 ) and for strongly correlated rec- 

ilinear sources of correlation phase not close to zero ( ρ ′ ≈ 1 and 

φ � = 0 ). 

In the second experiment, Figs. 5 and 6 illustrate the impact of 

he non-Gaussianity of the noise on the DCRB-derived SRL implied 

y the influence of the coefficient ξ1 and of the observation on the 

CRB-derived SRL implied by the influence of the coefficient ξ2 . We 

onsider here the normalized complex Student’s t−distribution of 

egree of freedom ν > 2 and the normalized complex generalized 

aussian distribution of exponent s > 0 , which each include the 

aussian distribution for ν → ∞ and s = 1 , respectively. For these 

wo distributions, the expressions of ξ1 and ξ2 depend not only 

n the parameter of the distributions, but also on N that are calcu- 

ated in Appendix. One can observe from Figs. 5 and 6 that plot the

RLs as a function of ν or s for three values of N, that: (i) similar to

he well-known result on DCRB in which the Gaussian distribution 

eads to the largest DCRB ( ξ ≥ 1 ), the DCRB-derived SRL is maxi- 
1 s

12 
um for the Gaussian distribution and takes very small values in 

he case of very heavy-tailed distributions (i.e., ν close to 2 and s 

lose to 0); (ii) similar to the less known result on SCRB in which 

he Gaussian distribution does not always lead to the largest SCRB 

for the normalized complex Student’s t−distribution ξ2 < 1 and 

or normalized complex generalized Gaussian distribution ξ2 < 1 

or s < 1 and ξ2 > 1 for s > 1 ), the SCRB-derived SRL is minimum

or ν → ∞ (Gaussian distribution) and for s → ∞ light tail distri- 

ution. 

In the third experiment, Figs. 7–10 illustrate the impact of 

he correlation (phase and magnitude), the SNR, the number of 

napshots and sensors on the DCRB (and SCRB)-derived SRLs. 

igs. 7 and 8 , dedicated to SRLs depending on rectilinear sources 

or which ρ = ρ′ e i �φ with ρ′ ∈ [ −1 , +1] and �φ ∈ [0 , π ] and

ig. 9 dedicated to SRLs depending on unknown arbitrary or cir- 

ular sources for which ρ = | ρ| e iφ with φ ∈ [0 , 2 π ] , present the

mportant role played by the correlation of the sources. It can be 

bserved from Figs. 7 and 8 that the SRLs increase with ρ′ but not 

ymmetric in �φ and leads to a minimum SRL depending on ρ ′ , N
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Fig. 9. Deterministic SRL with unknown arbitrary sources (64) and stochastic SRL with circular sources (68) for either complex Gaussian noise or observations (i.e., ξ1 = ξ2 = 

1 ) as a function of the angle (a) and magnitude (b) of the correlation with N = 6 , SNR = 10dB and T = 500 . 

Fig. 10. Stochastic SRL with circular sources (68) and stochastic SRL with rectilinear sources (69) for complex Gaussian observations (i.e., ξ2 = 1 ) as a function of number of 

sensors N (a) and number of snapshots T (b) with N = 6 , | ρ| = ρ ′ = 0 . 5 and φ = �φ = π/ 3 . 
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nd SNR as indicated in paragraph 3 of Section 5.2 , and are min-

mum for �φ = π/ 2 only for ρ′ = 0 . Fig. 9 shows that the SRLs

ncrease with | ρ| and it is symmetric with respect to φ = π/ 2 and

re minimum for φ = 0 and maximum for φ = π as depicted in 

aragraph 3 of Section 5.2 . Fig. 10 compares the SCRB-derived SRLs 

or circular and rectilinear sources for different values of SNRs, 

umber of snapshots and sensors. It shows that similar to the well- 

nown behavior of SCRB, the SRL is much smaller for rectilinear 

ources than for circular sources when the phase of correlation is 

ot zero. 

Finally, to illustrate that the correlation phase of the sources 

mpacts not only the CRB and thus the SRL, but also the resolu- 

ion performance of the ML and MUSIC algorithms, a Monte Carlo 
s

13 
imulation is presented in Fig. 11 . This figure shows the predicted 

RL (�θ ) S , Cir given by (68) , the N 

√ 

SCRB Cir (δθ ) / 2 
√ 

3 and the RMSE 

10 0 0 Monte-Carlo runs are performed for each simulation point) 

f the difference of the DOA estimates versus �θ
def = Nδθ/ 2 

√ 

3 for 

wo values of correlation phase φ = 0 and φ = π . We can see 

rom the two figures: the dependence of the SRL on the correla- 

ion phase which moves from 0.032 when φ = 0 to 0.078 when 

= π , and that the RMSE associated with the ML reaches the CRB 

n the resolvable region and that the reached region is reduced for 

= 0 . It can also be observed that the resolution performance of 

he ML estimator outperforms that of the MUSIC algorithm which 

s strongly affected by the phase correlation. While in the unre- 

olved region where the two sources are no longer resolved, the 
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Fig. 11. The predicted SRL (68) , the N 
√ 

SCRB Cir (δθ ) / 2 
√ 

3 and the RMSE (10 0 0 Monte-Carlo runs are performed for each simulation point) of the difference of the DOA 

estimates versus �θ for the ML estimator and the MUSIC algorithm for complex circular Gaussian observations (i.e., ξ2 = 1 ) considering the two cases (a) φ = 0 and (b) 

φ = π with N = 6 , | ρ| = 0 . 95 , T = 500 , and SNR = 30 dB . 
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L breaks away from the CRB as well as the MUSIC algorithm. 

hese results ensure that the SRL can not be achieved in general 

s was discussed in [15] . 

. Conclusion 

Simple exact and asymptotic (for small DOA separation) inter- 

retable closed-form expressions are presented for the DCRB and 

CRB of the DOA for two equi-powered correlated known, arbi- 

rary, circular or rectilinear sources in CES data models. The depen- 

ence of these bounds on the magnitude and phase of the correla- 

ion is examined, and the values of the phase leading to the larger 

nd smaller bounds are obtained. The asymptotic expressions of 

CRB and SCRB allow us to give interpretable closed-form expres- 

ions of the SRL based on the Smith criterion in different scenarios. 

omments to explain how different parameters impact the derived 

RLs among them the phase and magnitude of the correlation of 

he sources, and how also the SRLs derived from the SCRBs are 

uch less optimistic than those that have so far been deduced 

nly from the DCRB under the assumption of known sources are 

iscussed. Finally, numerical illustrations clarify the obtained the- 

retical results. 
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ppendix 

Derivation of the SCRB for two equipowered sources: 

After some algebraic manipulations, one arrives at the follow- 

ng expressions of the diagonal SCRB Cir (θk , θk ) , k = 1 , 2 , and the

nti-diagonal SCRB Cir (θ1 , θ2 ) elements of SCRB Cir ( θ) for two equal- 

ower circular correlated sources deduced from (14) . 

CRB Cir (θk , θk ) = 

1 

2 T ξ2 

γχk 

χ1 χ2 − χ2 
1 , 2 

, k = 1 , 2 , (71) 

CRB Cir (θ1 , θ2 ) = − 1 

2 T ξ2 

γχ1 , 2 

χ1 χ2 − χ2 
1 , 2 

. (72) 

ith χk = α3 −k ν1 , k = 1 , 2 , and χ1 , 2 = α1 , 2 ν2 where 

1 = r(1 − | ρ| 2 )(N 

2 − β2 ) + 2 β| ρ| cos (φ) + N(1 + | ρ| 2 ) , (73) 

2 = β + r| ρ| cos (φ)(1 − | ρ| 2 )(N 

2 − β2 ) 

+ | ρ| (2 N cos (φ) + β| ρ| cos (2 φ)) , (74) 

= (1 − | ρ| 2 )(N 

2 − β2 ) + 2(N + β| ρ| cos (φ)) /r + 1 /r 2 , (75) 

here αk and α1 , 2 are the geometric-dependent array coefficients 

iven by αk = d 

H 
k 
�⊥ 

A 
d k and α1 , 2 = d 

H 
1 �

⊥ 
A 

d 2 . 

Similarly, the diagonal SCRB Rec (θk , θk ) , k = 1 , 2 , and the anti-

iagonal SCRB Rec (θ1 , θ2 ) elements of SCRB Rec ( θ) for two equal- 

ower rectilinear sources deduced from (15) can be written as: 

CRB Rec (θk , θk ) = 

1 

T ξ2 

γ c 1 
c 3 

, k = 1 , 2 , (76) 

CRB Rec (θ1 , θ2 ) = 

1 

T ξ2 

γ c 2 
c 3 

, (77) 



H. Abeida and J.-P. Delmas Signal Processing 195 (2022) 108478 

w

c

c

c

w  

ν
t

w

p

d

d

t

s

d

b

s

φ

s

t  

t

i

c

a

w

p  

c

v

t

d

i

R

 

 

 

 

 

 

 

 

 

 

[  

 

[  

[  

[  

[  

[

[

[  

[

[

[  

[  

[

[

[

[  

[

[

[

ith 

 1 = ζ5 (ζ
2 
4 + ζ 2 

7 ) − ζ2 (ζ
2 
5 − ζ 2 

9 ) − 2 ζ4 ζ8 ζ9 , (78) 

 2 = ζ6 ζ
2 
5 − ζ6 ζ

2 
9 − ζ3 ζ8 ζ5 + ζ3 ζ4 ζ9 + ζ7 ζ8 ζ9 − ζ7 ζ4 ζ5 , (79) 

 3 = ζ5 

(
ζ1 

(
−ζ2 ζ5 + ζ 2 

8 + ζ 2 
4 

)
+ ζ 2 

6 ζ5 

)
+ ζ 2 

9 

(
ζ1 ζ2 − ζ 2 

6 

)
− 2 ζ1 ζ8 ζ4 ζ9 

+ 2 ζ7 ( ζ6 ζ8 ζ9 − ζ6 ζ4 ζ5 − ζ2 ζ3 ζ9 + ζ3 ζ8 ζ4 ) + 2 ζ6 ζ3 ( ζ4 ζ9 − ζ8 ζ5 ) 

+ ζ 2 
3 

(
ζ2 ζ5 − ζ 2 

4 

)
+ ζ 2 

7 

(
ζ2 ζ5 − ζ 2 

8 

)
(80) 

ith ζk = ˜ αk ν1 , k = 1 , 2 , 3 , 4 , 5 , and ζk = ˜ αk ν2 , k = 6 , 7 , 8 , 9 , where

1 , ν2 and γ are given, respectively, by (73), (73) and (75) af- 

er replacing N with 2 N, ρ ∈ C with ρ ′ ∈ (−1 , 1) , and β

ith 

˜ β
def = 

˜ a H 1 ̃
 a 2 = 2 β cos (�φ) . The ˜ αk are the geometric and 

hase-dependent array coefficients given by ˜ α1 = 

˜ d 

H 
1 
�⊥ 

˜ A 
˜ d 1 , ˜ α2 = 

˜ 
 

H 
2 �

⊥ 
˜ A 

˜ d 2 , ˜ α3 = 

˜ d 

H 
1 �

⊥ 
˜ A 

˜ d φ1 
, ˜ α4 = 

˜ d 

H 
2 �

⊥ 
˜ A 

˜ d φ2 
, ˜ α5 = 

˜ d 

H 
φ1 

�⊥ 
˜ A 

˜ d φ1 
, ˜ α6 = 

˜ 
 

H 
1 
�⊥ 

˜ A 
˜ d 2 , ˜ α7 = 

˜ d 

H 
1 
�⊥ 

˜ A 
˜ d φ2 

, ˜ α8 = 

˜ d 

H 
2 
�⊥ 

˜ A 
˜ d φ1 

and ˜ α9 = 

˜ d 

H 
φ1 

�⊥ 
˜ A 

˜ d φ2 
. 

Derivation of ξ1 
def = 

E[ φ2 (Q t ) Q t ] 
N and ξ2 

def = 

E[ φ2 (Q t ) Q 2 t ] 

N (N +1) 
: 

Normalized complex Student’s t−distribution: 

Note first that the usual zero mean complex Student’s 

−distribution used in [33,41] of the data y t associated with the 

catter matrix � satisfies E(y t y 
H 
t ) = 

ν
ν−2 � for a degree of free- 

om ν > 2 . Consequently, we need to normalize this usual distri- 

ution so that its covariance is equal to the scatter matrix. Its den- 

ity generator then becomes g(t) = 

(
1 + 

2 t 
ν−2 

)−(N+ ν/ 2) 
and hence 

(t) = 

(ν/ 2)+ N 
(ν/ 2)+ t−1 

. The 2nd-order modular variate Q t then has a 

caled F −distribution with 2 N and ν degrees of freedom, Q t = d 

ν−2 
ν NF 2 N,ν with p.d.f p(t ) = 

1 
((ν/ 2) −1) N B (N,ν/ 2) 

t N−1 
(
1 + 

2 t 
ν−2 

)−(N+ ν/ 2) 
, 

 ≥ 0 , where B (x, y ) is the Beta function. A straightforward calcula-

ion proves that ξ1 = 

ν/ 2 
(ν/ 2) −1 

(ν/ 2)+ N 
(ν/ 2)+ N+1 

and ξ2 = 

(ν/ 2)+ N 
(ν/ 2)+ N+1 

. 

Normalized complex generalized Gaussian distribution: 

The general density generator for zero mean complex general- 

zed Gaussian distribution with exponent s > 0 and scale b asso- 

iated with the scatter matrix � is given in [33] by g(t) = e −t s /b 

nd hence φ(t ) = 

s 
b 

t s −1 . The 2nd-order modular variate Q t = d G 
1 /s 
t 

here G t is gamma distributed with shape N/s and scale b. The 

.d.f. of Q t is given by p(t ) = 

s 

	( N s ) b 
N /s 

t N−1 g(t ) . Note that b, which

ontrols the scale of the density generator, ensures that the co- 

ariance is equal to the scatter matrix for b = 

(
N	( N s ) 

	( N+1 
s ) 

)s 

. With 

his value of b, a straightforward calculation proves that ξ1 = 

	(2+ N−1 
s )	( N+1 

s ) 

(	(1+ N s )) 
2 

and ξ2 = 

N+ s 
N+1 . 

Finally, note that ξ1 depends on the normalization of the CES 

istributions, unlike ξ2 for which its normalization does not impact 

t (see ξ2 given in [41] and [42] ). 
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