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Subspace-based algorithms that exploit the orthogonality between a sample subspace and a parameter- 

dependent subspace have proved very useful in many applications in signal processing. The purpose of 

this paper is to complement theoretical results already available on the asymptotic (in the number of 

measurements) performance of subspace-based estimators derived in the Gaussian context to real ellip- 

tical symmetric (RES), circular complex elliptical symmetric (C-CES) and non-circular CES (NC-CES) dis- 

tributed observations in the same framework. First, the asymptotic distribution of M -estimates of the or- 

thogonal projection matrix is derived from those of the M -estimates of the covariance matrix. This allows 

us to characterize the asymptotically minimum variance (AMV) estimator based on estimates of orthog- 

onal projectors associated with different M -estimates of the covariance matrix. A closed-form expression 

is then given for the AMV bound on the parameter of interest characterized by the column subspace 

of the mixing matrix of general linear mixture models. We also specify the conditions under which the 

AMV bound based on Tyler’s M -estimate attains the stochastic Cramér-Rao bound (CRB) for the complex 

Student t and complex generalized Gaussian distributions. Finally, we prove that the AMV bound attains 

the stochastic CRB in the case of maximum likelihood (ML) M -estimate of the covariance matrix for RES, 

C-CES and NC-CES distributed observations, which is equal to the semiparametric CRB (SCRB) recently 

introduced. 

© 2020 Elsevier B.V. All rights reserved. 

1

 

t  

m  

i  

e  

o  

s  

t  

d  

t  

w  

s  

t  

i  

p  

t  

i  

o  

C  

c  

t  

a  

p  

a  

t  

a  

r  

c

 

r  

r  

m  

p  

R  

h

0

. Introduction 

Noisy linear mixtures of signals in which the parameter of in-

erest is characterized by the mixing matrix are very common in

any applications, including array processing and linear system

dentification (see e.g., [1–3] ). To get rid of the nuisance param-

ters, subspace-based estimates obtained by exploiting the orthog-

nality between a sample subspace and a parameter-dependent

ubspace have been exploited since the seminal paper [4] that in-

roduces the multiple signal classification (MUSIC) algorithm for

irection of arrival (DOA) estimation. These methods are always

he object of active research in many applications (see e.g., [5,6] ),

ith generally many possible algorithms (see e.g., [7] for special

tructures of the mixing matrix). In these noisy linear mixtures,

wo statistical models have been commonly used [8] . If the signals

n the mixture are nonrandom, but rather unknown deterministic

arameters, the model is called deterministic or conditional and

he associated CRB on the parameter of interest is called determin-
∗ Corresponding author. 
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stic CRB. Otherwise, they are random and the model is a stochastic

r unconditional model and the associated CRB is called stochastic

RB. Note, however, that, the deterministic CRB is not asymptoti-

ally achievable by the maximum likelihood estimator with respect

o the number of snapshots, while the stochastic CRB is attain-

ble. Considering the family of subspace-based estimators, it was

roved [9] in the context of DOA estimation for circular (C-CG)

nd generally non-circular complex Gaussian (NC-CG) observations,

hat there exists among these estimators, an AMV estimator or an

symptotically best consistent estimators (ABC) introduced by Po-

at and Friedlander [10] and Stoica et al [11] , respectively, whose

ovariance attains the stochastic CRB. 

We are mainly interested in this paper, to extend the previous

esults in [9] to both (i) generic noisy linear mixture whose pa-

ameters of interest are characterized by the columns space of the

ixing matrix, (ii) orthogonal projectors derived from the princi-

al subspace of different M -estimates of the covariance, and (iii)

ES (see e.g. [12] ), C-CES (see e.g. [13] ) and NC-CES [14] (intro-

uced in [15] under the name Generalized CES) distributed obser-

ations. First, we extend to NC-CES distributions, the asymptotic
istribution of the M -estimate of the covariance as well as the 

https://doi.org/10.1016/j.sigpro.2020.107644
http://www.ScienceDirect.com
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asymptotic distribution of the associated projectors. This allows us

to consider the RES, C-CES and NC-CES distributions in the same

framework and to give a common closed-form expression of the

AMV bound on the parameter of interest based on the projectors.

We prove in particular that the AMV bound attains the stochastic

CRB in the case of ML M -estimate of the covariance matrix for all

RES, C-CES and NC-CES distributions with finite fourth-order mo-

ments. We specify the conditions under which the AMV bound as-

sociated with the projector derived from Tyler’s M -estimate attains

the stochastic CRB for the complex Student t and complex general-

ized Gaussian distributions. Finally, we prove that the SCRB intro-

duced in [16] and the stochastic CRB for the parameters of interest

depending on the covariance matrix resulting from a noisy linear

mixture model are equal. 

This paper is organized as follows. Section 2 specifies the gen-

eral parametric model of RES, C-CES, and NC-CES distributed noisy

mixtures and formalizes any subspace-based algorithm as a map-

ping linking an M -estimate of the covariance matrix to the esti-

mate of the parameter of interest. The problem formulation and a

brief review of AMV estimators are given in Section 3 . Section 4 re-

views different properties of M -estimates of the covariance matrix

for RES and C-CES distributions and extends them to NC-CES dis-

tributions. This allows us to deduce the asymptotic distribution of

the associated M -estimates of the orthogonal projection matrices

and then derive a closed-form expression of the AMV bound based

on projector statistics, enabling us to prove that this one attains

the CRB in the case of ML M -estimate of the covariance matrix for

all RES, C-CES and NC-CES distributions. Section 5 presents simula-

tion results to validate the theoretical results, and finally this paper

is concluded in Section 6 . 

The notations used throughout this paper are the following.

Vectors and matrices are denoted by bold-faced lowercase and

uppercase letters, respectively. ∗, T , and 

H respectively represent

the conjugate, the transpose and the conjugate transpose oper-

ators and the symbol + stands for T in the real case and for
H in the complex case. |.|, (. ) # and span(.) are the determinant,

Moore-Penrose inverse and range space of a matrix, respectively.

→ d denotes convergence in distribution, ∼ means ”distributed

as” and = d stands for ”shares the same distribution as”. N R ( 0 , R )

and N C (0 , R , C ) denote the zero-mean real (resp., complex) val-

ued Gaussian distributions, where R and C are the covariance and

complementary covariance matrices, respectively. vec( · ) is the vec-

torization operator that turns a matrix into a vector by stacking

the columns of the matrix one below another which is used in

conjunction with the Kronecker product A �B as the block matrix

whose ( i, j ) block element is a i,j B and with the vec-permutation

matrix K q which transforms vec( C ) to vec( C 

T ) for any q × q matrix

C . The matrix J is the exchange matrix ( 
0 I 

I 0 
) . 

2. Data model and subspace-based estimation 

2.1. General parametric model 

Assume that you have a set of K independent and identically

distributed zero-mean N -dimensional RES, C-CES or NC-CES dis-

tributed data snapshots (y k ) k =1 ,.,K , such that the probability den-

sity function (p.d.f.) can be written 

1 as: 

p(y k ) = | �| −1 / 2 g r 
(
y T k �

−1 y k 
)

(real case) , (1)

= | �| −1 g c 
(
y H k �

−1 y k 
)

(circular complex case) , (2)
1 These expressions are consistent with the ones given in [12] , [13] and [14] for 

the RES, C-CES and NC-CES, respectively, because the normalizing constant is here 

included in the functions g r and g c . 

w  

m  

H  
 | ̃  �| −1 / 2 g c 

(
1 

2 

˜ y H k ̃
 �−1 ˜ y k 

)
(non-circular complex case) , (3)

here ˜ y k 
def = (y T 

k 
, y H 

k 
) T and ̃

 �
def = ( 

� �
�∗ �∗) with � and � are N × N

ermitian positive definite and complex symmetric matrices, re-

pectively called scatter and pseudo-scatter matrices. The func-

ions g r (.) and g c (.) : R 

+ �→ R 

+ satisfy δN,g r 
def = 

∫ ∞ 

0 t N/ 2 −1 g r (t) dt < ∞
nd δN,g c 

def = 

∫ ∞ 

0 t N−1 g c (t) dt < ∞ . The r.v. y k admits the following

tochastic representation: 

 k = d 

√ 

Q k Tu k , (real [12] and circular complex [13] cases) ,

(4)

 d 

√ 

Q k Tv k , (non-circular complex case [14]) , (5)

here the random variables Q k and u k [resp. Q k and v k ] are in-

ependent. u k is uniformly distributed on the unit real or com-

lex N -sphere and v k is defined by [14] v k = �1 u k + �2 u 

∗
k 
, where

1 
def = 

�+ + �−
2 , �2 

def = 

�+ −�−
2 , �+ 

def = 

√ 

I + �κ and �−
def = 

√ 

I − �κ ,

ith �κ is an N × N diagonal matrix containing the non-circularity

oefficients (κn ) n =1 ,.,N of y k [17] satisfying 0 ≤κn ≤ 1, and � =
T H and � = T�κT T are factorizations of � and �, respectively,

here T has full rank. We note that Eq. (5) is equivalent to ˜ y k = d 
 

Q k ̃
 �1 / 2 ˜ u k with 

˜ u k 
def = (u 

T 
k 
, u 

H 
k 
) T and that in the complex circular

ase v k and Eq. (3) reduce to u k and Eq. (2) , respectively. 

It follows from Eqs. (4) and (5) that the quadratic/Hermitian

orms 

 

+ 
k 
�−1 y k = d Q k (real and complex circular cases) , (6)

1 

2 

˜ y H k ̃
 �−1 ˜ y k = d Q k (non-circular complex case) , (7)

nd hence the p.d.f. of the 2nd-order modular variate Q k (or the

uadratic/Hermitian forms) is given by 

p(q k ) = δ−1 
N,g r 

q N/ 2 −1 

k 
g r (q k ) (real case) , (8)

 δ−1 
N,g c 

q N−1 
k 

g c (q k ) (complex case) . (9)

Furthermore, to remove the so-called scale ambiguity, the

ensity generators g r and g c are here constrained such that

N+1 ,g r /δN,g r = δN+1 ,g c /δN,g c = N or equivalently E(Q k ) = N given

hat 2nd-order moments exist [13, (20)] , to ensure that the scat-

er matrix � and the extended scatter matrix ˜ � are equal to the

ovariance matrix R y 
def = E(y k y 

H 
k 
) and the extended covariance ma-

rix R ˜ y 
def = E( ̃ y k ̃  y H 

k 
) , respectively. 

We assume that the covariance � matrix in Eqs. (1) and

2) takes the following structured form: 

= A ( θ) R x A 

+ ( θ) + σ 2 
n I , (10)

here R x is a P × P (with P < N ) positive definite, real-valued sym-

etric or Hermitian matrix in the real and circular complex case,

espectively. In the non-circular complex case, we assume that the

xtended covariance matrix ˜ � in Eq. (3) takes one of the following

tructured forms: ˜ = ̃

 A r ( θ) R r ̃
 A 

H 
r ( θ) + σ 2 

n I , (11)

˜ = ̃

 A c ( θ) R ˜ x ̃
 A 

H 
c ( θ) + σ 2 

n I , (12)

here R r is a P × P (with P < 2 N ) positive definite, real-valued sym-

etric matrix and R ˜ x is a 2 P × 2 P (with P < N ) positive definite

ermitian matrix structured as ( 
R x C x 

C 

∗
x R 

∗
x 

) . ˜ A r ( θ) and 

˜ A c ( θ) are
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2 We remind that a sequence of estimators of a parameter is weakly consistent if 

it converges in probability to this parameter. 
3 This differential matrix D is defined by the relation ̂ θK = alg (s y,K ) = 

alg (s ( θ)) ︸ ︷︷ ︸ + D (s y,K − s ( θ)) + o(s y,K − s ( θ)) . 
tructured 2 N × P and 2 N × 2 P matrices, respectively, with 

˜ A r ( θ) =
A ( θ) 

A 

∗( θ) 

)
and ˜ A c ( θ) = 

(
A ( θ) 0 

0 A 

∗( θ) 

)
. 

We assume that the real-valued parameter of interest θ ∈ R 

L is

haracterized by the subspace generated by the columns of the full

olumn rank matrices A ( θ), ˜ A r ( θ) and 

˜ A c ( θ) . The nuisance param-

ters are ρ and σ 2 
n where ρ collects the real and imaginary parts

f the unknown matrices R x , R r or R ˜ x . 

This case of a low-rank plus identity covariance matrix is com-

only used in signal processing to account for low dimensional

ignals embedded in white noise. This is in particular the case of

he general noisy linear mixture model: 

 k = A ( θ) x k + n k . (13)

This low-rank signal in full-rank noise data model Eq.(13) en-

ompasses many far or near-field, narrow or wide-band DOA mod-

ls with scalar or vector-sensors for an arbitrary number of pa-

ameters per source x k,p (with x k 
def = (x k, 1 , ., x k,P ) 

T ) and many other

odels as the bandlimited SISO, SIMO [2] and MIMO [3] channel

odels. For example, parametrization Eq. (11) can be applied for

OA estimation modeling with rectilinear or strictly second-order

ources and for SIMO channels estimation modeling with BPSK or

SK symbols [18] where θ represents both the localization param-

ters (azimuth, elevation, range) and the phase of the sources, and

he real and imaginary parts of channel impulse response coeffi-

ients, respectively. Whereas, parametrization Eq. (12) is used for

OA modeling with generally non-circular complex sources. 

We note that x k and n k cannot be both elliptical symmetric

istributed as the family of elliptical symmetric distributions is

ot closed under summation except for the Gaussian distribution.

ut fixing both the structure of the covariance matrices � (10) or
 Eqs. (11) and (12) and the elliptical symmetric distribution of

 k Eqs. (1), (2) or (3) can be considered as good approximations

hanks to the flexibility of the family of the elliptical symmetric

istributions. Furthermore, this family of distributions offers ro-

ustness to outliers and heavy tailed samples. 

.2. Subspace-based estimation 

Since the parameter of interest θ is characterized by the sub-

pace generated by the columns of the full column rank matrices

 ( θ), ˜ A r ( θ) or ˜ A c ( θ) , a simple way to get rid of the nuisance pa-

ameters ρ and σ 2 
k 
, is to consider subspace-based algorithms as

he following mapping: 

(y 1 , ., y k , ., y K ) � −→ R K � −→ �K 
alg � −→ ̂

 θK , (14)

here R K can be either any estimate R y,K of R y or any estimate

 ˜ y ,K of R ˜ y 
def = E( ̃ y k ̃  y H 

k 
) , and �K denotes either the orthogonal pro-

ection matrix �y,K associated with the so-called noise subspace

f R y,K or the orthogonal projection matrix � ˜ y ,K associated with

he so-called noise subspace of R ˜ y ,K . The functional dependence
 

K = alg ( �K ) constitutes an extension of the mapping 

( θ) 
def = I − B ( θ)[ B 

+ ( θ) B ( θ)] −1 B 

+ ( θ) 
alg � −→ θ, (15)

n the neighborhood of �( θ) with B ( θ) can either be A ( θ), ˜ A r ( θ)

r ˜ A c ( θ) . Each extension alg(.) specifies a particular subspace algo-

ithm, whose conventional MUSIC algorithm [4] based on �y,K and

on-circular MUSIC algorithms [19] based on � ˜ y ,K for parametriza-

ion Eq. (11) can be seen as examples in DOA estimation. 
. Problem formulation and brief review of AMV estimators 

.1. Problem formulation 

The existence of a lower bound for the covariance of the

symptotic distribution of DOA-estimates given by an arbitrary

eakly consistent subspace-based algorithm has been proved in

9] . This bound can be used as a benchmark against which to as-

ess the asymptotic statistical accuracy of any subspace-based al-

orithms. This bound which is itself generally lower bounded by

he stochastic CRB derived from the arbitrary likelihood functions

elated to the observations, and it has been proved in [9] to be

qual to the stochastic CRB in the case of circular and non-circular

aussian observations associated with the parameterizations Eqs.

10) and (12) , respectively. The problem, we tackle here, is to ex-

end these results to the subspace-based algorithms built from

ifferent M -estimates of scatter matrix in Eq. (10) [resp. in Eqs.

11) and (12) ] of RES/C-CES [resp. of NC-CES] distributed obser-

ations where the parameter of interest θ is characterized by the

ubspace generated either by the columns of the full column rank

atrices A ( θ), ̃  A r ( θ) or ̃  A c ( θ) for arbitrary parametrizations. 

.2. Brief review of AMV estimators 

For the reader’s convenience, we briefly summarize here the

ecessary background of the AMV estimators. Let s y,K be a se-

uence of statistics which is a weakly consistent 2 estimate of s ( θ)

or which θ is identifiable from s ( θ). We suppose that s y,K (function

f ( y 1 , . . . , y K )) is asymptotically Gaussian distributed with zero

ean and a possibly singular covariance matrix R s , i.e., 
√ 

K (s y,K −
 ( θ)) → d N R (0 , R s ) (real case), N C (0 , R s , C s ) (complex case). Let
 

K be an estimator of the unknown parameter θ defined by a 

apping alg(.): s y,K 
alg � −→ ̂

 θK , which is differentiable w.r.t. (Re( s ( θ),

m( s ( θ)) whose differential matrix 3 is denoted by D , we therefore

et by the standard theorem of continuity (see e.g., [20, p. 122] )
 

K ( ̂  θK − θ) → d N R (0 , R θ ) where R θ satisfies the following theorem

roved in [21] . 

heorem 1. The covariance matrix R θ of the asymptotic distribu-

ion of a weakly consistent estimate ̂ θK of θ given by any algo-

ithm considered as a differentiable mapping s y,K �→ ̂

 θK = alg (s y,K ) is

ounded below by the real symmetric matrix R 

AMV ( s ) 

θ
= (S + R 

# 
s S) −1 

ith S def = 

ds ( θ) 
d θ

: 

 θ = DR s D 

+ ≥ (S + R 

# 
s S) −1 , (16)

if the following two conditions hold: 

pan (S) ⊂ span (R s ) and s ∗y,K = Ps y,K , (17)

where P is a permutation matrix. 

Furthermore, under the assumptions of Theorem 1 , it has been

lso proved in [21] , that the following nonlinear least square esti-

ate achieves the lower bound (16) : 

 

K = arg min 

ω ∈ R L 
[ s y,K − s ( ω )] + R 

# 
s [ s y,K − s ( ω )] . (18)

We note that the asymptotic covariance of the nonlinear least

quare estimate Eq. (18) is preserved if the weighting matrix is re-

laced by any weakly consistent estimate W T of R 

# 
s [21] . 
θ
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4. Efficiency of projector-based estimators 

4.1. M -estimate of covariance matrices 

Let us first focus our attention on the estimation of the co-

variance matrix R y . The practical applications of array processing

generally require the use of a sample covariance matrix (SCM)

R y,K 
def = 

1 
K 

∑ K 
k =1 y k y 

+ 
k 
, which is the ML estimator for real or circu-

lar complex Gaussian distributed observations. However, the per-

formance of SCM-based subspace algorithms can be drastically de-

graded in heavy-tailed scenarios, as shown in [13, sec.VII.C] with

MUSIC DOA estimation algorithm. In these scenarios, if the density

generator g r (.) of the RES Eq. (1) distributions [resp., g c (.) of C-CES

distributions Eq. (2) ] is known, the ML estimate of R y is solution

of the implicit equation in �T : 

�K = 

1 

K 

K ∑ 

k =1 

φ(y + 
k 
�−1 

K y k ) y k y 
+ 
k 
, (19)

where φ(t) 
def = − 2 

g r (t) 
dg r (t) 

dt 
[resp. φ(t) 

def = − 1 
g c (t) 

dg c (t) 
dt 

] for RES [resp.

C-CES] distributions. The solution of Eq. (19) is unique. It can be

obtained by an iterative fix point algorithm, given any initial sym-

metric or positive definite Hermitian matrix �0 and that the ob-

servations, y k , fulfill certain mild regularity conditions [24] [13,

sec.V.A] . When the density generator g r (.) of the RES distribu-

tions and [resp., g c (.) of the C-CES distributions] is unknown, M -

estimators have been proposed to estimate R y . They are also so-

lutions of the implicit equation Eq.(19), where φ(.) in Eq. (19) is

replaced by a real-valued non-negative weight function u (.) which

is not related to a particular RES or C-CES distribution. Tyler’s and

Huber’s M -estimators are examples of such estimators (see e.g.,

[13, sec.V.C] ). Existence and uniqueness of the solution �u 
K 

of Eq.

(19) have been proved in the real case provided that u (.) satisfies

a set of general conditions (called Maronna conditions) stated by

Maronna in [22] . These conditions have been extended to the com-

plex case in [23] and [13] . Under these conditions, it has been also

proved in the real case that the solution of Eq. (19) can be derived

by an iterative fix point algorithm [24] . The sequence �u 
K 

of solu-

tions of Eq. (19) converges in probability to �u proportional to R y 

[13, (45)] : 

�u = σu R y , (20)

where σ u depending on u (.) and the RES [28, sec.3 ex.3] or C-CES

[13, (46)] distribution of y k , is solution of 

E[ u (Q k /σu ) Q k /σu ] = N, (21)

where Q k has the same distribution as the symmetric/Hermitian

form Eq. (6) , and has p.d.f. Eq. (8) in real case and Eq. (9) in com-

plex case. 

Consider now the estimate of the extended covariance matrix

R ˜ y associated with the NC-CES distribution Eq. (3) . Following sim-

ilar proof than Eq. (19) from the p.d.f. Eq. (3) [13, sec. V.A] , we get

the following implicit equation: 

˜ �K = 

1 

K 

K ∑ 

k =1 

φ
(

1 

2 

˜ y H k ̃
 �−1 
K 

˜ y k 

)
˜ y k ̃  y H k . (22)

where φ(t) 
def = − 1 

g c (t) 
d c (t) 

dt 
. For the NC-CG distribution (i.e., g c (t) =

exp (−t) ), we have φ(t) = 1 , which yields the extended SCM 

˜ �K =
1 
K 

∑ K 
k =1 ̃  y k ̃  y H 

k 
as the unique ML of ˜ �. Similarly, an extended M -

estimator of R ˜ y denoted by ˜ �u 
T 

is defined to be any positive def-

inite Hermitian matrix that solves Eq. (22) with φ( t ) is replaced by

u ( t ) (as defined above) such that 

˜ �u 
K = 

1 

K 

K ∑ 

k =1 

u 

(
1 

2 

˜ y H k ̃
 �u −1 

K ˜ y k 

)
˜ y k ̃  y H k . (23)
Using the one-to-one mapping ˜ y k �→ ȳ k defined by ȳ k = M ̃

 y k 

ith M 

def = 

1 
2 ( 

I I 

−i I i I 
) and ȳ k 

def = [ Re (y T 
k 
) , Im (y T 

k 
)] T , it follows that

˜ 
 

H 
k ̃

 �u −1 

K 
˜ y k = ȳ H 

k 
�̄u −1 

K 
ȳ k with 

¯ u 
K 

def = M ̃

 �u 
K M 

H (24)

nd therefore Eq. (23) is tantamount to: 

¯ u 
K = 

1 

K 

K ∑ 

k =1 

u 

(
1 

2 

ȳ T k �̄
u −1 

K ȳ k 

)
ȳ k ̄y 

T 
k . (25)

Noting that ȳ k ∈ R 

2 N is RES distributed with covariance R ȳ =
( ̄y k ̄y 

T 
k 
) = M ̃

 �M 

H = MR ˜ y M 

H , and therefore the M -estimate solu-

ion of Eq. (23) inherits all the properties provided above for the

ES distributions. In particular �̄u 
K 

converges in probability to �̄u 

roportional to R ȳ and thus ˜ �u 
K 

also converges in probability to ˜ �u 

roportional to R ˜ y : 

˜ 

u = σu R ˜ y = σu ̃
 �, (26)

here σ u is also similarly deduced from [28] : 

˜ 

u = E 

(
u 

(
1 

2 

˜ y H k ̃
 �u −1 

˜ y k 

)
˜ y k ̃  y H k 

)
, (27)

hich successively gives the following equal-

ties: I = E(u ( 1 2 ̃
 y H 
k ̃

 �u −1 
˜ y k ) ̃

 �u −1 
˜ y k ̃  y H 

k 
) , 2 N =

(u ( 1 2 ̃
 y H 
k ̃

 �u −1 
˜ y k ) Tr ( ̃  �u −1 

˜ y k ̃  y H 
k 
)) , N = E(u ( 1 2 ̃

 y H 
k ̃

 �u −1 
˜ y k ) 

1 
2 ̃

 y H 
k ̃

 �u −1 
˜ y k ) ,

 = E(u ( 1 2 ̃
 y H 
k ̃

 �−1 ˜ y k /σu ) 
1 
2 ̃

 y H 
k ̃

 �−1 ˜ y k /σu ) , and from Eq. (7) , 

[ u (Q k /σu ) Q k /σu ] = N, (28)

here Q k has p.d.f. Eq. (9) . 

Finally, note that the normalized SCM estimate studied in

25] : R y,K 
def = 

1 
K 

∑ K 
k =1 S (y k ) S 

H (y k ) with S (y k ) 
def = y k / ‖ y k ‖ if y k  = 0

nd S (0 ) 
def = 0 , which is not an M -estimate of R y , is not the object

f our study. 

.2. Asymptotic distribution of the projector estimator 

To apply Theorem 1 to the statistic s y,K = vec (�y,K ) in the real

nd circular complex cases and to s y,K = vec (� ˜ y ,K ) in the non-

ircular complex case, we need to derive their asymptotic distri-

utions and to check the conditions Eq. (17) . Note that the asymp-

otic distribution of vec( �y,K ) has been given for the real and cir-

ular complex case in [26] and in the circular complex case in [27] .

his asymptotic distribution has been derived from the asymptotic

istribution of any M -estimate of R y derived for the real case in

28, sec.3 ex.3] , and for the circular complex case in [29, rel. (7)

nd (12)] . These asymptotic distributions have the following form,

hen the arbitrary weight function u (.) satisfies the Maronna’s

onditions [22] : 
 

K ( vec (�y,K ) − vec (�y ( θ)) → d N R (0 , R πy 
) in the real case (29)

 C (0 , R πy 
, C πy 

) in the circular complex case (30)

ith 

 πy 
= 

ϑ 1 

σ 2 
u 

L [(U 

T 
� �y ( θ)) + (�T 

y ( θ) � U )] and C πy 
= R πy 

K N 2 

(31)

here 

U 

def = σ 2 
k 

S # R y S 
# with S 

def = A ( θ) R x A 

+ ( θ) and 

ϑ 1 
def = 

E[ u 

2 (Q k /σu ) Q 

2 
k 
] 

N(N + 2)(1 + 2[ N(N + 2)] −1 c u ) 2 
and 
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4 Note that in this case 
da H 

θ

d θ
(H 

T � �( θ)) da θ
d θ

is real-valued. 
L 
def = I + K N 2 in the real case (32) 

ϑ 1 
def = 

E[ u 

2 (Q k /σu ) Q 

2 
k 
] 

N(N + 1)(1 + [ N(N + 1)] −1 c u ) 2 
and 

L 
def = I in the circular complex case , (33) 

here σ u is the solution of (21) and c u 
def = E[ u ′ (Q k /σu ) Q 

2 
k 
/σ 2 

u ] [28,

ec.3 ex.3] , [13, (47)] , where u ′ (x ) 
def = du (x ) /dx and the p.d.f. of Q k 

s given by Eqs. (8) or (9) . 

As pointed in [30] and [13] , Tyler’s M -estimator, i.e., solution of

q. (19) with weight u (t) = 

N 
t , does not satisfy Maronna conditions

22] . However, it has been proved for RES distributions in [30] that,

fter normalizing the solution of Eq. (19) such that Tr (R 

−1 
y �u 

K 
) = N,

he sequence �u 
K 

converges in probability to R y and is asymptot-

cally Gaussian distributed. These properties have been extended

o C-CES distributions in [31] . Following the perturbation analy-

is of projection matrix of [26] , the associated projector �y,K is

lso asymptotically Gaussian distributed and Eqs. (31), (32) and

33) follow with σu = 1 and ϑ 1 = ϑ 1 , Tyler independently of the RES

nd C-CES distributions with: 

 1 , Tyler = 

N + 2 

N 

, in the real case (34) 

 

N + 1 

N 

, in the complex case . (35) 

The asymptotic distribution of vec (� ˜ y ,K ) can be proven sim-

larly to Eq. (33) , using the asymptotic distribution of any M -

stimate R ˜ y ,K of R ˜ y . This follows from the asymptotic distribution

f any M -estimate �̄u 
K 

of R ȳ which is given from [28, sec.3 ex.3] by:

 

K ( vec ( ̄�u 
K ) − vec (σu R ȳ )) 

L → N R (0 , R �̄u ) , (36)

ith R �̄u = ϑ 1 (I + K (2 N) 2 )(R ȳ � R ȳ ) + ϑ 2 vec (R ȳ ) vec T (R ȳ ) , where

oth ϑ1 and ϑ2 are also specified in [28, sec.3 ex.3] and [29,

el. (7)] by replacing N by 2 N . It follows from Eq. (24) , that

he sequence vec ( ̃  �u 
K 
) is also asymptotically Gaussian distributed

ith asymptotic covariance R ˜ �u and complementary covariance

 ˜ �u given by: 

 ˜ �u = (M 

∗−1 
� M 

−1 ) R �̄u (M 

−T 
� M 

−H ) 

= ϑ 1 [(M 

∗−1 R ȳ M 

−T ) � (M 

−1 R ȳ M 

−H ) 

+ K (2 N) 2 { (M 

−1 R ȳ M 

−T ) � (M 

∗−1 R ȳ M 

−H ) } ] 
+ ϑ 2 vec (M 

−1 R ȳ M 

−H ) vec H (M 

−1 R ȳ M 

−H ) 

= ϑ 1 [(R 

∗
˜ y � R ˜ y ) + K (2 N) 2 (C ˜ y � C 

∗
˜ y )] 

+ ϑ 2 vec (R ˜ y ) vec H (R ˜ y ) , (37) 

nd C ˜ �u = R ˜ �u K (2 N) 2 where C ˜ y 
def = E( ̃ y k ̃  y T 

k 
) = R ˜ y J = MR ȳ M 

T . Then

sing the standard perturbation result associated with the map-

ing R ˜ y ,K = R ˜ y + δR ˜ y �→ � ˜ y ,K = � ˜ y + δ� ˜ y for orthogonal projectors

32] (see also the operator approach in [33] ) applied to � ˜ y associ-

ted with the noise subspace of R ˜ y : 

(� ˜ y ) = −� ˜ y ( θ) δ(R ˜ y ) ̃ S # − ˜ S # δ(R ˜ y ) � ˜ y ( θ) + o 
(
δ(R ˜ y ) 

)
, (38)

here ˜ S 
def = 

˜ A r ( θ) R r ̃
 A 

H 
r ( θ) or ˜ S 

def = 

˜ A c ( θ) R ˜ x ̃
 A 

H 
c ( θ) , the asymptotic

ehaviors of � ˜ y ,K and 

˜ �u 
K 

are directly related. The stan-

ard theorem of continuity (see e.g., [20, p. 122] ) on reg-

lar functions of asymptotically Gaussian statistics applies:
 

K 

(
vec (� ˜ y ,K ) − vec (� ˜ y ( θ)) 

) L → N C 

(
0 , R π ˜ y 

, C π ˜ y 

)
with 

 π ˜ y 
= 

ϑ 1 

σ 2 
u 

[( ̃  S T # � � ˜ y ( θ)) + (�T 
˜ y ( θ) �˜ S # )] R ˜ �u 

×[( ̃  S T # � � ˜ y ( θ)) + (�T 
˜ y ( θ) �˜ S # )] , (39) 
nd C π ˜ y 
= R π ˜ y 

K (2 K) 2 . Then plugging Eq. (37) into Eq. (39) and using

˜ y ( θ) ̃  S # = 0 , C ˜ y = R ˜ y J and 

˜ S # R ˜ y � ˜ y ( θ) = 0 , we get the following

esult after simple algebraic manipulations: 

esult 1. The sequence 
√ 

K 

(
vec (� ˜ y ,K ) − vec (� ˜ y ( θ)) 

)
converges in

istribution to the zero-mean Gaussian distribution N C (0 , R π ˜ y 
, C π ˜ y 

)

here: 

 π ˜ y 
= 

ϑ 1 

σ 2 
u 

(I + K (2 N) 2 (J � J ))[( ̃  U 

T 
� � ˜ y ( θ)) 

+ (�T 
˜ y ( θ) � ˜ U ) and C πy 

= R πy 
K (2 N) 2 , (40) 

here ϑ1 is associated with the 2 N -dimensional RES distributions

iven in [28, sec.3 ex.3] , and can be simplified as: 

 1 = 

E[ u 

2 (Q k /σu ) Q 

2 
k 
] 

N(N + 1)(1 + [ N(N + 1)] −1 c u ) 2 
. (41) 

ith c u 
def = E[ u ′ (Q k /σu ) Q 

2 
k 
/σ 2 

u ] and σ u is solution of Eq. (21) where

he p.d.f. of Q k = d 
1 
2 ̄y 

H 
k 
�̄−1 ȳ k = 

1 
2 ̃

 y H 
k ̃

 �−1 ˜ y k is given by Eq. (9) and

 

 

def = σ 2 
k ̃

 S # R ˜ y ̃
 S # . 

Note that Result 1 also applies to Tyler’s M -estimator from the

symptotic distribution of R �̄u Eq. (36) where ϑ1 can be obtained

rom the value associated with the real case Eq. (34) by replacing N

y 2 N with σu = 1 and ϑ 1 , Tyler = 

2 N+2 
2 N = 

N+1 
N which is independent

f the NC-CES distributions. 

.3. Subspace AMV bound 

Note that from Eqs. (31) and (40) R πy = 

ϑ 1 
σ 2 

u 
R 

C −CG 
πy 

and R π ˜ y 
=

ϑ 1 
σ 2 

u 
R 

NC −CG 
π ˜ y 

, where R 

C −CG 
πy 

and R 

NC −CG 
π ˜ y 

are in the specific DOA mod-

ling Eqs. (10) and (12) , the covariances of the asymptotic distri-

utions of the projectors given by [9, rel.(3.4)] and [9, rel.(3.6)] ,

espectively, and which are associated with the SCM estimate for

he C-CG and NC-CG distributions, respectively [9, Lemma 1] . Be-

ause, under the C-CG and NC-CG distributed observations, the

roofs of span (S) ⊂ span (R 

CG 
πy 

) and span (S) ⊂ span (R 

CG 
π ˜ y 

) given in

9, Appendix A] are valid for an arbitrary parametrization of A ( θ),

 r ( θ) and A c ( θ), then the first condition of (17) also holds, i.e.,

pan (S) ⊂ span (R πy ) and span (S) ⊂ span (R π ˜ y 
) . The second con-

ition of (17) is trivially valid by the structure of both statistics

y,K and � ˜ y ,K . Consequently, Theorem 1 applies to the statistics

ec( �y,K ) and vec (� ˜ y ,K ) , and the following result is proved in the

ppendix. 

esult 2. The covariance matrix R θ of the asymptotic Gaussian

istribution of any weakly consistent estimate ̂ θK of θ given by

ny algorithm considered as a differentiable mapping �y,K �→ ̂

 θK =
lg (�y,K ) [resp., � ˜ y ,K �→ ̂

 θK = alg (� ˜ y ,K ) ] for RES and C-CES [resp.,

C-CES] distributed observations is bounded below by R 

AMV ( �) 

θ
: 

 θ ≥ R 

AMV ( �) 

θ
= ϑ 1 β

σ 2 
n 

2 

[
Re 

(
da + 

θ

d θ
(H 

T 
� �( θ)) 

da θ
d θ

)]−1 

, (42)

here: 

a θ
def = vec (A ( θ)) , H 

def = R 

+ 
x A 

+ ( θ) �−1 A ( θ) R x and �( θ) 
def = �y ( θ)

n the real and complex circular case, 

a θ
def = vec ( ̃  A r ( θ)) , H 

def = R r ̃
 A 

H 
r ( θ) ̃  �−1 ˜ A r ( θ) R r and �( θ) 

def = � ˜ y ( θ)

n the complex non-circular case 4 associated with the structured

xtended covariance Eq. (11) and 
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C  
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a θ
def = vec (A ( θ)) , H 

def = 

(
R x A 

H ( θ) , C x A 

T ( θ) 
)˜ �−1 

(
A ( θ) R x 

A 

∗( θ) C 

∗
x 

)
and

�( θ) 
def = �y ( θ) in the non-circular complex case associated with

Eq. (12) and β = 2 [resp., 1] in the real [resp., complex] case. 

It is important to note that the cost functional in Eq. (18) de-

pends either on R 

# 
π or R 

# 
˜ π depending on the distribution of obser-

vations, which can be replaced by weakly consistent estimates W k 

obtained from consistent estimates of �y , R y , S , σ 2 
n (or � ˜ y , R ˜ y , ̃

 S ,

σ 2 
n ). 

4.4. Efficiency 

Let’s consider here that R y and R ˜ y are estimated using the ML

M -estimate as in Eqs. (19) and (22) from RES/C-CES and NC-CES

distributed observations, respectively. We prove in the Appendix

that σu = 1 in Eqs. (32), (33) , and (41) , and that these expressions

of ϑ1 reduce to: 

ϑ 1 , ML = 

E[ φ2 (Q k ) Q 

2 
k 
] 

N(N + 2)(1 + 2[ N(N + 2)] −1 E[ φ ′ (Q k ) Q 

2 
k 
]) 2 

with 

φ(t) = − 2 

g r (t) 

dg r (t) 

dt 
in the real case (43)

= 

E[ φ2 (Q k ) Q 

2 
k 
] 

N(N + 1)(1 + [ N(N + 1)] −1 E[ φ ′ (Q k ) Q 

2 
k 
]) 2 

with 

φ(t) = − 1 

g c (t) 

dg c (t) 

dt 
in the complex case , (44)

where the p.d.f. of Q k is respectively given by Eqs. (8) and (9) . 

Otherwise, for C-CES and NC-CES distributed observations, the

concentrated stochastic CRBs on the parameter of interest θ char-

acterizing the associated projection matrices have been given in

[14] . Following similar steps as in [14] , and using the Fisher in-

formation matrix derived in [34] , the stochastic CRBs for real and

complex cases take the following general form (with the same no-

tations as in Result 2 ): 

CRB ( θ) = 

β

ξ2 

σ 2 
n 

2 

[
Re 

(
da H 

θ

d θ
(H 

T 
� �y ( θ)) 

da θ
d θ

)]−1 

, (45)

with 

ξ2 = 

E[ φ2 (Q k ) Q 

2 
k 
] 

N(N + 2) 
, in the real case (46)

= 

E[ φ2 (Q k ) Q 

2 
k 
] 

N(N + 1) 
, in the complex case . (47)

Note that for DOA modeling with scalar sensor array whose

output are C-CG distributed, we have g(t) = e −t , u (t) = 1 and β =
ξ2 = 1 , and therefore, (45) reduces to the well-known relation for

a single parameter per source case: 

CRB ( θ) = 

σ 2 
n 

2 

{ Re 
(
(D 

H ( θ) �y ( θ) D ( θ)) � H 

T 
)} −1 , (48)

where A ( θ) 
def = [ a (θ1 ) , ., a (θP )] , D ( θ) 

def = 

[ 
da (θ1 ) 

dθ1 
, ., 

da (θP ) 
dθP 

] 
and

a (θp ) p=1 ,.P are the steering vectors. 

Comparing Eq. (42) to Eq. (45) , the following result is proved in

the Appendix 

Result 3. For RES, C-CES and NC-CES distributed observations, we

have ϑ 1 , ML ξ2 = 1 and thus the AMV bounds Eq. (42) based on the

projector statistics associated with the ML estimate of the covari-

ances are equal to the stochastic CRB (45) . 

R 

AMV ( �) 

θ, ML 
= CRB ( θ) . (49)
Therefore, the AMV estimators Eq. (18) based on projectors as-

ociated with ML M -estimate of the covariance are asymptotically

fficient w.r.t. the number K of measurements. Furthermore, the

quality ϑ 1 ξ2 = 1 and the relations Eqs. (31) and (40) imply that

ll specific subspace-based algorithms built on the ML estimate of

 y [resp. R ˜ y ], that are asymptotically efficient for RG or C-CG [resp.

C-CG] distribution, are also asymptotically efficient for RES or C-

ES [resp. NC-CES] distributions. This is particularly the case in the

OA modeling for the conventional MUSIC algorithm applied to a

ingle source [35] and to uncorrelated sources when the signal-to-

oise ratio of all sources tend to infinity [36] . 

The following result is proved in the Appendix: 

esult 4. The RES, C-CES and NC-CES ML M -estimator dependent

symptotic variance parameter ϑ 1 , ML = 1 /ξ2 in (43) and (44) are

pper bounded by the one associated with the Tyler’s M -estimator

qs. (34) and (35) as 

 1 , ML < ϑ 1 , Tyler = 

N + 2 

N 

, in the real case (50)

 1 , ML < ϑ 1 , Tyler = 

N + 1 

N 

, in the complex case (51)

nd consequently 

RB ( θ) = R 

AMV ( �) 

θ, ML 
< R 

AMV ( �) 

θ, Tyler 
. (52)

For example, for the complex generalized Gaussian distribution

ith exponent β > 0, it was evaluated that ϑ 1 , ML = 

N+1 
N+ β [26] . It is

lear that ϑ1,ML < ϑ1,Tyler and ϑ1,ML / ϑ1,Tyler ≈ 1 for N � 1 or small val-

es of β which are associated with heavy-tailed distributions. 

Result 4 proves that the AMV subspace estimators based on

yler’s M -estimator of the covariance matrix are not efficient. To

btain a truly robust efficient subspace-based estimator, one has

o find M -estimators with an appropriate u ( t ) such that ϑ1 be close

r equal to ϑ1,ML . 

In general the stochastic CRB associated with a finite-

imensional parameter of a distribution whose p.d.f. is character-

zed by a functional form, is lower bounded by the semiparametric

RB (denoted by SCRB( θ)) introduced by [37] when this functional

orm is unknown. This SCRB has been studied for RES and C-CES

istributions in [38] and [16] , respectively. In particular, a closed-

orm expression of the semiparametric CRB has been derived in

16] for the DOA parameter of C-CES distributed observations. It is

iven by 

CRB ( θ) = 

1 

ξ2 

σ 2 
n 

2 

{ Re 
(
(D 

H ( θ) �y ( θ) D ( θ)) � H 

T 
)} −1 , (53)

hich happens to be equal to the stochastic CRB. This property

eems to have been overlooked in [16] . By slightly modifying and

xtending the proof given in the support document of [16] to gen-

ral RES, C-CES and NC-CES distributed noisy linear mixture mod-

ls Eq. (13) , we have proved the following result: 

esult 5. The stochastic CRB on the parameter of interest θ that

haracterizes the column space of A ( θ), ˜ A r ( θ) or ˜ A c ( θ) is not re-

uced when the density generator g (.) of the RES, C-CES or NC-CES

istribution is known, viz: 

RB ( θ) = SCRB ( θ) . (54)

We note that this property is very specific to the parameter of

nterest characterized by the column space of the mixing matrix.

his property is explained by the fact that this column space does

o depend on the density generator g ( t ). It is important, however,

o note that if the AMV estimator Eq. (18) is efficient w.r.t. the

tochastic CRB, it is no longer efficient w.r.t. the semiparametric

RB because the AMV estimator is built from the ML M -estimate

f the covariance matrix based on the knowledge of the density

enerator g ( t ). 
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Fig. 1. Non-circular stochastic CRB (45) and MSEs obtained with AMV subspace-based estimator (18) build from � ˜ y ,K versus SNR (and versus DOA separation �α = | α2 − α1 | ) 
for non-circular complex Student t -distributed observations with ν = 4 . 1 . 
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1

=5

=30

=10

=3

Fig. 2. Ratio r 
def = R AMV ( �) 

α1 , ML 
/R AMV ( �) 

α1 , Tyler 
versus N for different values of ν . 
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. Numerical illustrations 

This section illustrates the theoretical asymptotic results pro-

ided in Section 4 , focusing on the DOA estimation model for rec-

ilinear correlated signal sources [14] , for which the observation

ata follows a NC-CES distribution with a structured extended co-

ariance matrix ˜ � given by Eq. (11) . We consider throughout this

ection that P = 2 narrowband equal-power source signals with

ower σ 2 impinge on an ULA of N = 6 sensors for which the steer-

ng vectors are a (αk ) = (1 , e iπ sin αk , . . . , e i (N−1) π sin αk ) T , k = 1 , 2 ,

here αk are the DOAs relative to the normal of array broad-

ide. The matrices A ( θ) and R r in Eq. (11) are given by A ( θ) =
 a (α1 ) e 

iφ1 , a (α2 ) e 
iφ2 ] where the phases φk associated with differ-

nt propagation delays are assumed fixed, but unknown during the
 ν
rray observation with θ
def = (α1 , α2 , φ1 , φ2 ) 

T , and R r = σ 2 

[
1 ρ
ρ 1 

]
ith ρ is the correlation factor. The signal-to-noise ratio (SNR) is

efined as 10 log 10 (σ
2 /σ 2 

n ) dB. 

We use the AMV estimator in Eq. (18) to estimate the DOA α1 

rom the covariance estimate and to calculate the empirical mean

quared error (MSE) E( ̂  α1 − α1 ) 
2 from 10 0 0 Monte Carlo runs, by

ssuming that y k , k = 1 , . . . , K = 500 , follows a non-circular com-

lex Student’s t distribution with a number of degrees of freedom

(0 < ν < ∞ ). The corresponding stochastic representation is given

y (5) for Q k ∼ NF 2 N,ν , where F n,q denotes the F-distribution

ith n and q degrees of freedom [13, sec. IV.A] , which has fi-

ite second and fourth-order moments, respectively, for ν > 2 and

> 4. 
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Table 1 

Parameter ϑ1 used in the illustrations. 

Student’s ML M -estimator Tyler’s M -estimator SCM 

ϑ1 
N+ ν/ 2+1 

N+ ν/ 2 
N+1 

N 
1 
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b

R  

 

I  

t

R

A  

a

P  

e  

f  

(  

−  

f  

E

P  

e  

c

E  

E

w

T∫

b  

t  
In the illustrations below, we consider three covariance esti-

mates: the complex Student’s ML M -estimator and the complex

Tyler’s M -estimator (which does not depends on the distribution

of Q k ) for which the associated weight functions φ( t ) and u ( t ) in

Eqs. (22) and (23) are respectively defined in [13] by φ(t) = 

2 N+ ν
ν+2 t 

and u (t) = 

N 
t . The SCM estimator corresponding to the ML in the

Gaussian case is obtained with u (t) = 1 . 

The following table gives the values of the parameter ϑ1 in-

volved in different asymptotic covariance matrices for the com-

plex Student’s ML-estimator [26] , the complex Tyler’s M -estimator

[31] and the SCM estimator. 

Fig. 1 (a) and (b) illustrate the validation of theoretical

Results 2 and 3 . These figures display the non-circular stochastic

CRB Eq. (45) and the MSEs of the subspace-based estimator Eq.

(18) with consistent estimate of R 

# 
˜ π built from � ˜ y ,T derived from

for Student’s ML M -estimator, Tyler’s M -estimator and SCM. It can

be seen from these figures that the empirical MSEs associated with

the Student’s and Tyler’s M -estimator reach the stochastic CRB as

SNR or DOA separation increases. We also observe that the AMV

subspace-based estimator based on Tyler’s M -estimator has close

performance as the one based on Student’s ML M -estimator. On

the other hand, as expected, the AMV subspace-based estimator

based on SCM has poor performance in the presence of heavy-

tailed complex non-circular observations. 

Fig. 2 illustrates Result 4 , by plotting the ratio r 
def= 

R AMV ( �) 
α1 , ML 

/R AMV ( �) 
α1 , Tyler 

= ϑ 1 , ML /ϑ 1 , Tyler = 

N (N + ν/ 2+1) 
(N+1)(N+ ν/ 2) 

< 1 versus N

for different values of ν , where ϑ1,ML and ϑ1,Tyler are the values

of ϑ1 associated, respectively, with Student’s ML M -estimator and

Tyler’s M -estimator, given in Table. 1 . It can be seen from this

figure that, for a small value of ν (heavy-tailed distribution),

the AMV bound associated with the Student’s ML M -estimator

becomes closer to the one associated with Tyler’s M -estimator as

N increases. In other words, the AMV estimate built from Tyler’s

M -estimator becomes efficient in the sense that it asymptotically

achieves the stochastic CRB when N � 1 and ν not too large. 

6. Conclusion 

This paper has derived the asymptotic (in the number of mea-

surements) distribution of estimates of the orthogonal projector

associated with different M -estimates of the covariance matrix in

the context of RES, C-CES, and NC-CES distributed observations

whose covariance is low rank structured, in the same framework.

Then it has presented the AMV subspace-based estimator of the

parameter of interest characterized by the column subspace of the

mixing matrix for general linear mixtures models, associated with

the M -estimates of the covariance matrix. It has given a com-

mon closed-form expression of the AMV bound which can be used

as a benchmark against which the subspace-based algorithms are

tested. This has allowed us to prove that this AMV bound attains

the stochastic CRB in the case of ML M -estimate of the covari-

ance matrix for RES, C-CES, and NC-CES distributed observations,

and to specify the conditions for which the AMV bound based on

Tyler’s M -estimate attains this stochastic CRB for complex Student

t and complex generalized Gaussian distributions. Finally, it has

proved that this stochastic CRB is equal to the semiparametric CRB

recently introduced. However, the AMV estimator is not efficient

w.r.t. the semiparametric CRB, which raises the question of finding

an efficient estimator w.r.t. this CRB, which is a challenge. 
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ppendix A 

roof. Proof of Result 2: In [9] it has been proved, for the DOA

odeling with both C-CG and NC-CG (with parametrization (12) )

bservations, that R 

AMV ( �) 

θ
= 

σ 2 
k 
2 

[ 
Re 

(
da H 

θ
d θ

(H 

T 
� �y ( θ)) 

da θ
d θ

)] −1 

ith the notations of Result 2 and that, respectively,

 

C −CG 
πy 

= (U 

T 
� �y ( θ)) + (�T 

y ( θ) � U ) and R 

NC −CG 
π ˜ y 

= ( ̃  U 

T 
�

˜ y ( θ)) + (�T 
˜ y 
( θ) � ˜ U ) . This expression of R 

AMV ( �) 

θ
is straight-

orwardly extended to the parametrization Eq. (11) . As the proof

oes not depend on the parametrization of A ( θ), Eq. (42) is valid

ith β = 1 for the C-CES and NC-CES distributions for both Eqs.

11) and (12) parametrizations from Eq. (31) . 

For the RES distributions, the derivation of R 

# 
πy 

from Eq. (31) is

ot direct. Because L 2 = 2 L , we get 

 πy 
= 

1 

2 

L [(U 

T 
� �y ( θ)) + (�T 

y ( θ) � U )] L T = 

1 

2 

LR 

C −CG 
πy 

L T . 

ollowing the derivation of the AMV bound given in [10] , this

ound is the result of the minimization: 

 

AMV ( �) 

θ
= min 

D S= I 
DR πy 

D 

T = 

1 

2 

min 

D S= I 
(DL ) R 

C −CG 
πy 

(DL ) T . (55)

Checking that L S = 2 S with S def = 

d vec (�y ) 

d θ
, the constraints D S =

 and DL S = 2 I are equivalent, and therefore Eq. (55) is tantamount

o 

 

AMV ( �) 

θ
= 2 min 

(DL / 2) S= I 

(
DL 

2 

)
R 

C −CG 
πy 

(
DL 

2 

)T 

. 

s a result, the steps of the derivation for the C-CES distributions

pply and we get Eq. (42) with β = 2 for RES distributions. �

roof. Proof of rel. Eqs. (43) and (44) When the ML estimate of

ither R y or R ˜ y is considered for RES and C-CES distributions or

or NC-CES distributions, the solution of either Eq. (21) or Eq.

28) is σu = 1 because E[ u (Q k ) Q k ] = E[ φ(Q k ) Q k ] = N from φ(t) =
2 

g r (t) 
dg r (t) 

dt 
[resp., φ(t) = − 1 

g c (t) 
dg c (t) 

dt 
] with Eq. (8) [resp., Eq. (9) ]

or RES [resp., C-CES or NC-CES] distributions and consequently

qs. (43) and (44) are proved. �

roof. Proof of Result 3 Comparing Eq. (42) to Eq. (45) , Eq. (49) is

quivalent to ϑ 1 ξ2 = 1 . To prove this relation, consider first the

omplex case for which it is tantamount to: 

[ φ2 (Q k ) Q 

2 
k ] = N(N + 1) + E[ φ′ (Q k ) Q 

2 
k ] . (56)

Using the p.d.f. Eq. (9) of the r.v. Q k , we straightforwardly get: 

[ φ2 (Q k ) Q 

2 
k ] − E[ φ′ (Q k ) Q 

2 
k ] = 

∫ ∞ 

0 

δ−1 
N,g c 

q N+1 d 
2 g c (q ) 

dq 2 
dq, 

here ∫ ∞ 

0 

δ−1 
N,g c 

q N+1 d 
2 g c (q ) 

dq 2 
dq = [ δ−1 

N,g c 
q N+1 dg c (q ) 

dq 
] ∞ 

0 

−(N + 1) 

∫ ∞ 

0 

δ−1 
N,g c 

q N 
dg c (q ) 

dq 
dq. 

he second term can be simplified as follows 
 ∞ 

0 

δ−1 
N,g c 

q N 
dg c (q ) 

dq 
dq = [ δ−1 

N,g c 
q N g c (q )] ∞ 

0 − N 

∫ ∞ 

0 

δ−1 
N,g c 

q N−1 g c (q ) dq = −N, 

ecause lim q →∞ 

q N+1 dg c (q ) 
dq 

= lim q →∞ 

q N g c (q ) = 0 using the fact

hat the fourth-order moment of Q is assumed finite and
k 
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 ∞ 

0 δ−1 
N,g c 

q N−1 g c (q ) dq = 1 . Hence, 
∫ ∞ 

0 δ−1 
N,g c 

q N+1 d 
2 g c (q ) 

dq 2 
dq = N(N + 1) ,

hus concluding the proof. The real case is similarly proved by re-

lacing N(N + 1) by N(N + 2) in Eq. (56) and using the p.d.f. Eq.

8) . �

roof. Proof of Result 4 Using in the complex case ϑ 1 , ML =
N (N +1) 

E[ φ2 (Q k ) Q 2 k 
] 

from Result 3 and Eq. (46) and (E[ φ(Q k ) Q k ]) 
2 =

 

2 , the Cauchy-Schwarz inequality (E[ XY ]) 2 ≤ E[ X 

2 ] E[ Y 2 ] with X =
(Q k ) Q k and Y = 1 gives ϑ1,ML ≤ ϑ1,Tyler with equality if and only

f the r.v. φ(Q k ) Q k is constant. Since φ(t) = − 1 
g c (t) 

dg c (t) 
dt 

, this

roperty is equivalent to g c (t) = t a where a is constant. Since

here is no constant a such that δN,g c 
def = 

∫ ∞ 

0 t N−1 t a dt < ∞ , the

quality ϑ 1 , ML = ϑ 1 , Tyler is not possible. The real case is similarly

roved. �
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