An experience in adaptation in the context of
mobile computing

Nabil Kouici, Denis Conan, and Guy Bernard

GET / INT, CNRS UMR SAMOVAR
9 rue Charles Fourier, 91011 Evry, France
{Nabil.Kouici, Denis.Conan, Guy.Bernard}Qint-evry.fr

Abstract. Mobile computing with hand-held devices such as personal
digital assistants and mobile phones is becoming an alternative to clas-
sical wired computing. In such environments, a disconnection is a nor-
mal event and should not be considered as an interruption of service
freezing the application. As surveyed in the literature, there is much
work dealing with mobile information access that demonstrates that the
laissez-faire approach (adaptation to mobility performed only by the ap-
plication) and the transparent approach (adaptation performed solely
by the middleware) are not adequate, thus leading to the collaboration
strategy in which both the application and the middleware participate to
the adaptation. In this paper, we describe our experience in developing
an approach to specify the adaptation of distributed component-based
applications and in designing a platform that adapts applications.

Key words: Adaptation, mobile computing, component orientation.

1 Introduction

With the evolution of wireless communication, mobile computing with hand-held
devices such as personal digital assistants and mobile phones is becoming an al-
ternative to classical wired computing. In such environments, a disconnection is a
normal event and should not be considered as an interruption of service freezing
the application. We make the distinction between two kinds of disconnections:
voluntary disconnections when the user decides to work on their own for saving
battery or communication costs, or when radio transmissions are prohibited as
aboard a plane; and involuntary disconnections due to physical wireless commu-
nication breakdowns such as in an uncovered area or when the user moves out of
the reach of base stations. We also consider the case where the communication is
still possible but not at an optimal level, resulting from intermittent communi-
cation, low-bandwidth, high-latency, or expensive networks. As a consequence,
the mobile terminal may be strongly connected (connected to the Internet via a
fast and reliable link), disconnected (no network connection to the Internet), or
weakly connected (connected to the Internet via a slow link).

More and more, the distributed application’s entities can spread over fixed
terminals [14], or over fixed and mobile terminals [18]. In the first case, the

distributed entities present on the mobile terminals are very often lightweight
entities such as client’s GUI which access data and computation servers installed
in fixed hosts. In the second case, a mobile terminal can be a client for servers and
can be a server for other hosts. This last case was less frequently studied in mobile
environments because of the limited capacity of mobile terminals and because of
the difficulty in implementing these applications with traditional object-oriented,
database-oriented, or file-oriented design and programming paradigms.

In addition, as the development of distributed applications converges to-
wards component-based applications designed with component-oriented middle-
ware such as EJB, CCM and .Net, new opportunities appear to better address
the application complexity by separating the functional and the extra-functional®
concerns.

In this paper, we present our experience in developing an approach to specify
the adaptation of distributed component-based applications for the continuity
of service during disconnection, and in designing a platform that adapts the
application to resource availability variations for detecting and preparing dis-
connections.

The remainder of this paper is organised as follows. Section 2 gives the moti-
vations and related work, and introduces the three types of adaptation that we
used, namely static, dynamic and auto-adaptation. Before the detailed report on
the experience, Section 3 overviews the solution to disconnection management.
Next, Sections 4, 5 and 6 develop how the solution is built based on static,
dynamic and auto-adaptation, respectively. Finally, Section 7 summarises the
adaptation requirements elicited and presented during the paper, and concludes
the paper.

2 Motivations and related work

The need to keep working while being disconnected raises the problem of data
and code availability. Our approach aiming at solving this problem is to adapt
distributed execution to the characteristics of mobile environments. According
to [17], the adaptation to mobility can be performed by the application (laissez-
faire strategy), by the middleware (transparent strategy), or by both the ap-
plication and the middleware (collaboration strategy). As surveyed in [7], there
is much work dealing with mobile information access which demonstrates that
the laissez-faire and the transparent approaches are not adequate. We then let
the end-user intervene during the development of the application (via the archi-
tect) and during the execution by expressing preferences. The first intervention
is through the addition of use cases specific to disconnection management: for
instance, the end-user wants to make the choice between a few full-fledged func-
tionalities and many more but degraded ones, or wants to give priorities when it
is possible to do things a better than usual. The second end-user’s intervention

! In this paper, the extra-functional concerns, when they are provided by a middleware,
are called middleware services.

is during the execution. To this aim, contextual information such as the connec-
tivity mode of the mobile terminal is displayed to the user. The reason for this
display is that the end-user wants to somewhat change their behaviour during
disconnections. Furthermore, as already mentioned, the end-user wants to make
choices in terms of functionalities accessed during disconnections.

As stated in [3, 4], in addition to be prepared before the execution during ap-
plication’s development (static adaptation) or triggered by actors? during the ex-
ecution (dynamic adaptation), adaptation can also be automatically performed
by the middleware that reacts to some changes in the context of the application
during execution (auto-adaptation adaptation). This latter adaptation consists
in transparent switching between the various configurations of the application
specified in the static adaptation. These configuration changes are triggered and
controlled by the middleware which auto-adapts according to the needs of the
application and of the context. [2] analyses requirements of applications and the
system to cope with dynamically changing execution environment. In our ap-
proach, the end-user is also involved in the process of eliciting the requirements
for the auto-adaptation.

In addition, auto-adaptation is performed thanks to reflection [15]. The prin-
ciple is to allow software part to introspect and adapt its own functioning ac-
cording to the available resources. Reflection also leads to a better separation
between functional and extra-functional concerns. Reflection is already used in
middleware design to achieve reconfiguration and adaptation required by mobile
computing [1, 5]. There are mainly two kinds of reflection. The behavioural reflec-
tion is concerned with the reification of computations and their behaviour: for
example, the dispatching of requests and the addition of pre- or post-treatments.
The structural reflection is concerned with the underlying structure of the ap-
plication (object, component. . .): for example, the capability of representing the
structures of components using meta-data. In our work, we intensively use re-
flection.

In component-oriented middleware such as CCM, EJB and .Net, the extra-
functional concerns are limited in terms of their number and their type. Several
approaches for the integration of extra-functional concerns have been proposed.
The most used are Aspect-Oriented Programming (AOP) [9] and the compo-
nent/container paradigm [19]. In the first approach, the code implementing the
extra-functional concern (called aspect) is developed independently and weaved
throughout the implementation of the functional concerns. In the second ap-
proach, the component only contains functional concerns (the business logic)
and the container provides the execution environment. Extra-functional con-
cerns are handled and enforced by the container, using standardised frameworks
and techniques such as code generation. Many works have been carried out in
the integration of extra-functional concerns into containers. In that area of in-
terest, the most studied extra-functional concerns are persistency, transactional
support, security, and distribution. [13] integrates the management of the quality
of service into EJB containers, [16] integrates transactional policies into CCM

% Systems or end-users external to the application.

containers, and [8] proposes a reflective transaction service management which
uses behavioural and structural reflection to allow new transaction services to be
installed and used according to the needs of the application. However, the sub-
ject of our study, disconnection management, is rarely considered in component-
oriented middleware.

3 Overview of the solution to disconnection management

The principal of our solution is to cache the server entity of the remote host
on the mobile terminal and use it during disconnection according to the con-
cept of disconnected operation [10]. For that very reason, a local proxy of the
remote component, called a disconnected component, achieves the same func-
tionalities as the component in the remote server, but is specifically built to
cope with disconnection and weak connectivity. The solution is then twofold.
Firstly, the distributed application must be built in such a way that it specifies
the behaviour while being disconnected. This is accomplished by using some
meta-data to specify application’s components and functionalities: which com-
ponents or functionalities can be cached? And which ones must be present in
the mobile terminal for the disconnected mode? Secondly, the adaptation during
execution must choose the policies specified at the software architecture’s de-
sign time according to the execution context and the decisions of the end-users.
To this aim, we organise the architecture of containers so that they orchestrate
the middleware services specifically designed for detecting disconnection events
and for caching components according to the application’s profile, which can be
dynamically overloaded by the end-users.

4 Static adaptation

We have introduced a meta-model for designing applications that deal with dis-
connections. This meta-model is based on meta-data that define an application
profile. The disconnectability meta-data indicate whether a component residing
on a remote server can have a proxy component on the mobile terminal (the
disconnected component). If this is the case, the original component is said to
be disconnectable. Software architects set the disconnectability meta-data since
they have the best knowledge of the application semantics. Furthermore, discon-
nectability implies design constraints that the developers must respect. Next, the
necessity meta-data indicate whether a disconnected component must be present
on the user terminal. Clearly, the necessity applies only on disconnectable compo-
nents. The necessity is specified both by application’s developers and end-users.
The former stake-holders provide a first classification in developer-necessary and
developer-unnecessary components, and the latter stake-holders can overload a
developer-unnecessary component to be user-necessary at runtime. Finally, the
priority meta-data indicate the priority between components.

However, end-users are only aware of application functionalities and unaware
of components which are used to perform these functionalities. Thus, we define

a service as a set of components that interact with each others to achieve a func-
tionality. The application as a whole may be regarded as a set of services which
are accessed by users through a GUIL Thus, we define two types of interactions:
intra-service (between components in the same service) and inter-services (be-
tween services). However, the local use of a service during a disconnection may
require the presence of others services in the cache. Solving this issue leads to
the determination and the computation of dependencies between services [11].
These dependencies are presented within a directed graph where nodes denote
services and edges denote the “use” dependency which is annotated with the
necessity meta-data. In addition, service availability in disconnected mode im-
plies the presence of some components which are used for achieving this service.
Thus, by analogy, component dependencies are also drawn within the depen-
dency graph where nodes denote components and edges denote dependencies
between components.

The development process is based on the “Facade” design pattern [6] and
the “4+1” view model [12]. The “Fagade” design pattern allows to simplify the
access to a set of related components by providing a single entry point, thus,
reducing the number of components presented to end-users. The “441” view
model makes possible the organisation of the software architecture in multiple
concurrent views (use cases, logical, process, development, and physical). Each
one addresses the concerns of some of the various stake-holders of the distributed
application. In addition, it helps in separating the functional and extra-functional
concerns.

5 Dynamic adaptation

The use of the “Facade” design pattern during application development reduces
the number of components presented to the GUI, thus simplifying the design
of the GUI. During execution, the GUI can present to the end-user the list of
services offered by the application and their corresponding meta-data (discon-
nectability, necessity, and priority). The end-user uses this list to overload the
necessity of some unnecessary services at it suits. These overloads lead to a
propagation of the meta-data intra- and inter-services. More details about ne-
cessity propagation are given in [11]. The role of the initial application profile
is the identification of the minimum set of services (and thus components) that
must be cached at launching time. In fact, the middleware refuses to start the
adaptation on the mobile terminal if there is not enough memory space in the
cache for these components. In consequence, a change in the necessity at run-
time provokes a dynamic management of the content of the cache. Two important
issues exist in managing the cache. The two mechanisms of the cache manage-
ment, deployment and replacement, take into account these meta-data and use
reflection to dynamically introspect components and modify their meta-data.
This is where structural reflection is used in the dynamic adaptation. There-
fore, the deployment mechanism load new components when the end-user tags
service as user-necessary, and the replacement mechanism uses the priority of

user-necessary and unnecessary services when there is not enough memory size,
evicting firstly less-priority unnecessary components.

6 Auto-adaptation

In our approach, the auto-adaptation is performed using a specific container
architecture and the application transparently benefits from the middleware ser-
vices provided by the platform.

In the component/container paradigm, the communication between the con-
tainer and the component is done through interfaces: Internal interfaces used
by the component developer and provided by the container to assist in the im-
plementation of the component’s behaviour; call-back interfaces used by the
container and implemented by the component, either through generated code or
directly, so that the component can be deployed into the container. The com-
munication infrastructure between components is controlled by the container
through entities called controller. In most of the component models, the con-
tainer offers at least two controllers. The first one acts as a pre-request intercep-
tor intercepting all incoming requests and the other one acts as a post-request
interceptor intercepting all outgoing requests. For disconnection management,
we add five controllers in the container: A local connectivity detector to detect
disconnections, an access to the cache management service, an access to the
logging service, and an access to the reconciliation management service. Each
controller is related to a middleware service.

Each component is executed within the container. In this container, all the
incoming (resp. outgoing) requests of the component are intercepted by the pre-
request (resp. post-request) interceptor which interacts with the other controllers
for the disconnection management. This is where behavioural reflection is used.

7 Conclusion

In summary, the paper reported an experience in using adaptation in mobile
computing for dealing with disconnection management. Table 1 summarises the
adaptation requirements elicited and presented during the paper. The table has
three dimensions: the type of reflection (structural vs. behavioural), the type
of adaptation (static vws. dynamic vs. auto-adaptation), and the different re-
quirements’ stake-holders (gathered into three groups: architect, developer, and
middleware for itself).

Our position is to claim that before being adapted during execution, an appli-
cation must be modelled and its variation points clearly defined in the software
architecture. This is particularly of utmost importance for extra-functionalities
that require a collaboration strategy such as disconnection management for
which the different stake-holders (from the architect to the end-user) intervene
by giving preferences. The modelling leads to an application’s profile that is used
as an input and modified in a controlled manner by the middleware and by the
end-user during execution.

Static adaptation

Dynamic adaptation

Auto-adaptation

cies, e.g. deployment and
replacement strategies for
cache management

Developer: Insertion in the
containers of orchestration
of middleware services, here
cache management and con-
nectivity detection

decides to work on their
own for saving battery or
communication costs, or
when radio transmissions
are prohibited as aboard a
plane

Structural [Architect: Provision of an|End-user: Change (over-|Middleware: Transparent
reflection initial application’s pro-|load) of application’s pro-|deployment and replace-
file, e.g. UML tagging for|file for cache management|ment of disconnected
saying which components|through a GUI components in the cache
must/may be cached according to the meta-data
Developer: Insertion in the initialised in descriptors
containers of interposition and overloaded by the
for cache management and end-users
connectivity detection, and
design and development of
disconnected components
Behavioural | Architect: Definition of con-| End-user: Display of con-|Middleware: Transparent
reflection textual information, e.g.|nectivity information as an|switching between local
what is strong, weak or|iconic image, and voluntary|and remote invocation, and
null connectivity, and speci-|disconnection through a|detection of connectivity
fication of adaptation poli-|GUI when the end-user|information for involuntary

disconnection

Table 1. Adaptation requirements with the different stake-holders.

To conclude, we outline to open issues. Currently, the designs of the discon-
nectable components for the remote host and their corresponding disconnected
counterparts for the mobile terminal are completely distinct. How can it be
envisioned that the design of the latter components is just a specialisation, a
parameterisation... of the former ones? Could we use aspect weaving at design
time for this? Dealing with this issue is necessary before foreseeing the possibil-
ity to adapt component-based legacy applications to extra-functionalities that
require a collaboration strategy. In addition, a practical limitation of the current
platform is that full-fledged containers —i.e., composed of all the possible extra-
functional properties— are very big to be loaded and deployed on the mobile
terminal. How can we dynamically add extra-functional “aspects” at runtime?

References

1. A. Al-bar and I. Wakeman. A Survey of Adaptative Applications in Mobile Com-
puting. In Proc. ICDCS Workshop on Smart Appliances and Wearable Computing,
pages 246-251, Mesa, Arizona, USA, Apr. 2001.

C. Becker and G. Schiele. Middleware and Application Adaptation Requirements

and their Support in Pervasive Computing. In Third International Workshop on
Distributed Auto-Adaptive and Reconfigurable Systems, Providence, Rhode Island,
USA, May 2003.

E. Bruneton. Un support d’exécution pour l’adaptation des aspects non-fonctionnels

des applications réparties. PhD thesis, INPG, Grenoble, France, 2001. In French.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

C. Canal, J.-M. Murillo, and P. Poizat. Coordination and Adaptation Techniques
for Software Entities. In J. Malenfant and B. Ostvold, editors, ECOOP Workshop
Reader, volume 3344 of LNCS, pages 133-147, Oslo, Norway, June 2004.

L. Capra, G. Blair, C. Mascolo, W. Emmerich, and P. Grace. Exploiting Reflection
in Mobile Computing Middleware. ACM SIGMOBILE Mobile Computing and
Communications Review, 1(2):34-44, 2002.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of
Reusable Object-Oriented Software. Addison Wesley, 1994.

J. Jing, A. Helal, and A. Elmagarmid. Client-Server Computing in Mobile Envi-
ronments. ACM Computing Surveys, 31(2):117-157, June 1999.

R. Karlsen and A. Jakobsen. Transaction Service Management: An Approach
Towards a Reflective Transaction Service. In Proc. 2nd Middlware International
Workshop on Reflective and Adaptive Middleware, Rio de Janeiro, Brazil, June
2003.

G. Kiczales, J. Lamping, M. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In Proc. European Conference on
Object-Oriented Programming, volume 1241 of Lecture Notes in Computer Science,
pages 220-242. Springer-Verlag, Jyviskyld, Finland, 1997.

J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File
System. In Proc. 13th ACM Symposium on Operating Systems Principles, pages
213-225, Pacific Grove, USA, May 1991.

N. Kouici, D. Conan, and G. Bernard. Caching Components for Disconnection
Management in Mobile Environments. In International Symposium on Distributed
Objects and Applications, DOA, Larnaca, Cyprus, Oct. 2004.

P. Kruchten. Architectural Blueprints: The 441 View Model of Software Archi-
tecture. IEEE Software, 12(6):42-50, Nov. 1995.

A. Meguel. Integration of QoS Facilities into Component Container Architectures.
In Proc. Fifth IEEE International Symposium on Object Oriented Real-Time Dis-
tributed Computing, pages 394-401, Washington, DC, USA, May 2002.

L. Mummert, M. Ebling, and M. Satyanarayanan. Exploiting Weak Connectivity
ofr Mobile File Access. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP’95), Copper Mountain resort,CO, Dec. 1995.

N. Parlavantzas, G. Coulson, M. Clarke, and G. Blair. Towards a Reflective
Component-based Middleware Architecture. In Proc. Workshop on Reflection and
Metalevel Architectures, Sophia Antipolis, France, June 2000.

R. Rouvoy and P. Merle. Abstraction of Transaction Demarcation in Component-
Oriented Platforms. In Proc. 4th ACM/IFIP/USENIX International Middleware
Conference, volume 2972 of Lecture Notes in Computer Science, pages 305-323,
Rio de Janeiro, Brazil, June 2003. Springer-Verlag.

M. Satyanarayanan. Fundamental Challenges in Mobile Computing. In Proc. 15th
Symposium on Principles of Distributed Computing, pages 1-7, Philadelphia, USA,
1996.

D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. Man-
aging Update Conflicts in Bayou: A Weakly Connected Replicated Storage System.
Proc. 15th Symposium on Operating Systems Principles, 1995.

M. Volter. Server-side Components—A Pattern Language. In Proc. Sizth European
Conference On Pattern Languages of Programs, Irsee, Germany, July 2001.

