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Chapter 1

Introduction

Recent advancements in wireless data networking and portable information appliances
have given the concept of mobile computing. Users can access information and ser-
vices irrespective of their movement and physical location. Wireless communication,
data processing and information services are becoming more and more important. With
the increasing use of mobile terminals and mobile applications, mobility is an extra-
functional feature which has become very significant. Mobility, being a vital aspect
of today’s mobile applications, must be built-in, not added as an afterthought, to all
communication infrastructures and computing devices.

Mobile terminals are exposed to vast environments. The mobility of a mobile ter-
minal gives rise to frequent disconnections, which are undesirable. These disconnec-
tions can be of two types: voluntary disconnections and involuntary disconnections;
the former ones are decided by the users and the latter ones, a result of absence of
wireless network signals. Disconnections can be very frequent and mobile terminals
should continue working even while they are disconnected from the network. Hence, a
mechanism is needed for measuring signal strength in order to anticipate for the forth-
coming disruption in the network connectivity. We can call it connectivity detector. In
addition, disconnection detector is necessary for the voluntary disconnection and invol-
untary disconnections in order to send an "alert" message to the other nodes declaring its
disconnection. [Temal and Conan, 2004] presents the idea of disconnection and failure
management in mobile applications.

Fault-tolerance is essential for distributed applications. Fault-tolerance comes in
two phases: fault detection and fault correction [Gärtner, 1999]. Fault detection helps
in maintaining application’s safety and fault correction aides in maintaining applica-
tion’s liveness. In pure asynchronous distributed systems, consensus is insolvable in the
presence of even one faulty process [Fischer et al., 1985]. This problem arises from the
fact that we cannot differentiate amongst the faulty processes and the processes which
are too slow. Nevertheless, unreliable failure detectors have been proposed, which help
us solve the problem of consensus [Chandra and Toueg, 1996]. Consensus allows pro-
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cesses to reach a common decision, which depends on their initial inputs, despite fail-
ures. Thus, consensus assists in both, fault detection as well as fault correction.

Group communication systems (GCSs) are widely recognized as powerful building
blocks for supporting consistency and fault-tolerance in distributed applications. The
basic idea supported by GCSs is the notion of multicast group. Multicast groups are
created on the fly by a group membership service. Traditionally, GCSs were gener-
ally employed in replicated objects and database consistency applications. Distributed
systems, such as GCSs, are built-up by connecting various machines or components
together through communication networks. They are prone to process crashes as well
as link failures. Failures may cause a component or several sets of components to de-
tach from the system, thus making a separate group disparting from the main network,
making partition of the system. Partitions may result in service reduction or degradation
but need not necessarily render the application completely unavailable. Partitions are a
fact of life in most distributed systems and they tend to become more frequent as the
geographic extent of the system grows or its connectivity weakens due to the presence
of mobile units and wireless links. Thus, the partitions should perform as autonomous
distributed systems providing services to their clients. The notion of partitionable GCS
is an example where all the partitions are allowed to proceed in their computations
[Montresor et al., 1999].

In this work, we are trying to establish a wireless group communication system
which can support collaborative work or data sharing among mobile hosts. Chapter 2
describes the existing work which we are going to reuse for our purposes. We describe
the notion of failure and disconnection detectors as well as group communication sys-
tem. In Chapter 3, we develop algorithms to differentiate among disconnection, failure
and partition and we specify the wireless group communication system. Finally, Chap-
ter 4 concludes the report and gives perspectives. Proofs of the algorithms can be found
in appendices.
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Chapter 2

Disconnection, Failure Detectors and
Group Communication Systems

We consider asynchronous distributed systems. They are distributed systems without
bounds on message delay, clock drift or time necessary to execute a step. The system
consists of processes and the processes communicate by message passing. As we have
no bound on message delay, we cannot distinguish if a message is only taking too long
to reach its destination or it is a failure [Fischer et al., 1985]. To circumvent this impos-
sibility result, [Chandra and Toueg, 1996] proposed failure detectors, which monitor a
subset of processes for failures and can make mistakes, thus the name unreliable failure
detectors.

Apart from failures, mobile computing presents another challenge for wireless dis-
tributed system developers, which arises from the mobility of terminals. A mobile pro-
cess, part of a distributed system, may not be slow or faulty but it may not find itself
connected to the network because it has moved out of the communication range. We call
them disconnections and they should be considered in the development of fault-tolerant
distributed applications.

Group Communication Systems (GCSs) support consistency and fault-tolerance in
distributed applications. Group communication systems provide multi-point to multi-
point communication by organizing processes in groups [Vitenberg et al., 1999]. GCSs
are powerful building blocks that facilitate the development of fault-tolerant distributed
systems using the variant of the state-machine approach.

In this chapter, existing works relating to failure and disconnection detectors, and
to group communication systems are presented. We precisely present disconnection
and failure and how we can classify the two in Section 2.1. Then, we detail the group
communication systems, types and properties in Section 2.2.
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2.1 Disconnection and Failure Detection

In Section 2.1.1, we present failure detectors which are used for failure detection in
asynchronous distributed settings. Mobility induced interruptions, called disconnec-
tions, are defined in the Section 2.1.2.

2.1.1 Failure Detection

Each process has an access to a failure detector module. Each module monitors a subset
of processes in the system, and maintains a list of those that it currently suspects to
have crashed. Failure detectors can be erroneous in their suspicions: they can suspect
that process p has crashed while it is still running. Later on, they will remove p from
the list of suspects if suspicion was erroneous. Mistakes made by failure detectors
should not stop the correct processes behaving according to the specifications. Failure
detectors introduce the concept of partial synchrony where the time to deliver a message
or to execute a process step is bounded but these bounds are unknown. By introduction
of such partial synchrony assumptions, it is possible to obtain practical solutions for
various problems. There are various other techniques for evading the impossibility result
like probabilistic solutions and initially dead processes but they are out of the scope of
this work.

Failure detectors have two properties in terms of their functionality. Completeness
states that there is a correct process which suspects every faulty process. Complete-
ness is an important property as it satisfies the safety requirements for a failure detector.
Completeness can be divided into two properties: weak completeness and strong com-
pleteness. Completeness in itself is not a useful property and has to be augmented with
an accuracy property which restricts the mistakes that failure detector can make. Thus,
accuracy states that no process is suspected before it crashes. Accuracy satisfies the
liveness requirements of a system. Accuracy is divided into four properties, which are
strong accuracy, weak accuracy, eventual strong accuracy, and eventual weak accu-
racy. Below we give the definitions of each of them.

1. Completeness :

• Strong Completeness : There is an instant after which every faulty process
is suspected by all the correct processes.

• Weak Completeness : There is an instant after which every faulty process is
suspected by at least one correct process.

2. Accuracy :

• Strong Accuracy : No process is considered faulty before it crashes.
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• Weak Accuracy : Some correct process is never suspected.

• Eventual Strong Accuracy : There is a time after which correct processes are
not suspected by any correct process.

• Eventual Weak Accuracy : There is a time after which some correct process
is never suspected by any correct process.

There are various forms of failure detectors that we find in the literature today.
Some perform failure detection by sending a ping message and waiting for the response
[Chandra and Toueg, 1996]. If they do not receive a response in a given time (timeout),
they declare a process to be faulty. This may be the simplest form of a failure de-
tector as they do not introduce various optimizations like exploiting network topology.
Then, there are those which send "heartbeat" messages to their neighbors and count the
heartbeats of their neighbors [Aguilera et al., 1997] (cf. Figure 2.1). This genre of fail-
ure detector only counts the heartbeats it receives from the neighboring processes and
passes this information to the upper layers for deciding which processes are faulty. The
version listed here is for partitionable networks. There are still those which randomly
select a process and send heartbeat to that process. The receiving process merges the
list of processes in the incoming processes with that of its own. Their authors call it
gossip-style failure detection [Renesse et al., 1998].

1 for every process p :
2 initialization :
3 for all q ∈ Π
4 Dp[q]← 0 {Dp is the output ofHB at p}
5 cobegin :
6 ‖ task 1 : repeat periodically
7 Dp[p]← Dp[p] + 1 {Increment p’s own heartbeat}
8 for all q ∈ Π such that q ∈ neighbor(p)
9 send(HEARTBEAT, p) to q
10 ‖ task 2 : upon receive(HEARTBEAT, path) from q
11 for all q ∈ Π such that q appears after p in path
12 Dp[q]← Dp[q] + 1
13 path← path.p
14 for all q ∈ Π : q ∈ neighbors(p) ∧ q appears at most once in path
15 send(HEARTBEAT, path) to q
16 coend

Figure 2.1: Heartbeat Failure Detector for Partitionable NetworksHB

Failure detection algorithms are mainly defined for the LAN environments. That’s
why most of the failure detection services scale badly as the number of members to
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be monitored increases. With the advent of world-wide distributed systems, it is be-
coming clear that the failure detection systems that are being used today in their lo-
cal settings (LAN), cannot simply be employed in their existing form for wide-area,
large-scale operation. Hence, large-scale failure detection needs more attention than just
trivially converting local-area failure detection to large-scale one. Hierarchical failure
detection is an example of how to adapt failure detectors for large-scale environments
[Bertier et al., 2003]. As shown in Figure 2.2, the system is composed of local groups,
mapped upon a LAN, bounded together by a global group space, called WAN groups,
where each group, either local or global, is a detection space.

LAN LAN GroupGroup

Host 3.2Host 3.1Host 2.1 Host 2.2Host 1.2

LAN Group

WAN GROUP

Host1.1

Host 1.3 Host 2.3 Host 3.3

Figure 2.2: Hierarchical Failure Detection

[Burns et al., 1999] have given another concept of large-scale failure detection us-
ing network topology, instead of randomly choosing members for gossiping. They try
to exploit Internet domains and sub-domains architecture for large-scale failure detec-
tion. Failure detectors for large-scale distributed and grid systems have been defined in
[Hayashibara et al., 2002]. A grid system may change its configuration during its exe-
cution and the failure detection service should be aware of configuration changes, and
should be able to alter itself according to these.

2.1.2 Connectivity and Disconnection Detection

With the advent of mobility in distributed applications, we have a new kind of problem
that may appear: the problem of disconnection while a distributed application is running
on the mobile terminal and the mobile terminal moves out of communication range.
We cannot classify it as a link or process failure because it has different properties.
For example, we can prevue the disconnection before it happens by monitoring the
signal strength. This requires to invent a new disconnection detector with a new set
of properties. [Temal and Conan, 2004] has already defined a disconnection detector
analogous to unreliable failure detector and its properties. In this section, we find out the
details of a connectivity detector based on the principles of signal strength and hysteresis
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mechanism. Then, we examine how to disseminate this information to other nodes about
the forthcoming disconnection, therefore, called a disconnection detector.

Connectivity detectors are based on the idea of physical connectivity managers and
logical connectivity managers, first presented in [Conan et al., 2002]. The idea is to
monitor the network resources to foresee the network disconnection. Physical connec-
tivity manager monitors different types of networks available to the mobile terminal in
order to enable the seamless switching. When a network disconnection occurs on the
link, which is used by the application, physical connectivity manager detects the discon-
nection event and notifies either the application or some other service. Physical connec-
tivity manager keeps monitoring the network activity and periodically attempts to re-
connect. In order to insulate the application from the insignificant variations in resource
level, the logical connectivity managers rely on hysteresis mechanism for smoothing
variations in resource availability (see Figure 2.3). In Figure 2.3-1, one can remark
that as long as the resource level remains lower than lowUp (resp. highUp ), the mo-
bile terminal remains disconnected (resp. partially connected). When the resource level
decreases but remains higher than highDown (resp. lowDown ), the mobile terminal
remains connected (resp. partially connected). Note that without Figure 2.3-2, there is
a risk of ping-pong around the values highDown and lowUp . So, when the resource
level decreases to the state E from the state F (resp. decreases to the state B from
the state C ) and the resource level again increases to highDown (resp. decreases to
lowUp ), the mobile terminal remains in the partially connected mode until it reaches
the value highUp (resp. lowDown ). In the later work [Temal and Conan, 2004], con-
nectivity detector algorithm and proofs were presented based on the hysteresis mecha-
nism.

A AB B

C C

DDE E

F F

lowDown lowDownlowUp lowUp

highDown highDownhighUp highUp

disconnected
connected
partially connected

variation
direction of

(1) (2)

Resource levelResource level

Figure 2.3: The hysteresis of logical connectivity management

The connectivity information is local to each node. Thus, there is a need for ex-
changing connectivity information such that a process could declare its disconnection
or reconnection to the other processes. For this reason, disconnection detectors (cf. Fig-
ure 2.4) were introduced which could transmit this local connectivity information to
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all the connected processes [Temal and Conan, 2004]. Disconnection detector, like fail-
ure detector, is described in abstract terms to generalize the model and not to give any
implementation-specific details. For this purpose, abstract properties like disconnection
completeness and disconnection accuracy have been defined:

• Strong disconnection completeness: There is a time after which all the discon-
nected processes are seen as disconnected by all the connected processes.

• Weak disconnection completeness: There is a time after which all the discon-
nected processes are seen as disconnected by at least one connected process.

• Strong disconnection accuracy: No process is seen as disconnected until it dis-
connects.

1 for every process p :
2 initialization :
3 discp ← ∅ {set of processes seen disconnected}
4 for all q ∈ Π
5 Np[q]← 0 {vector of received disc./rec. numbers}
6 cobegin :
7 ‖ task 1 : upon change mode notification
8 if getMode() = ‘d’
9 for all q ∈ Π \ discp

10 send(DISCONNECT, Np[p]) to q
11 Np[p]← Np[p] + 1
12 discp ← ∅
13 else if getMode() = ‘c’
14 for all q ∈ Π
15 send(RECONNECT, Np[p]) to q
16 Np[p]← Np[p] + 1
17 ‖ task 2 : upon receive(DISCONNECT, nq) from q
18 if q /∈ discp ∧Np[q] < nq then discp ← discp ∪ {q}
19 Np[q]← max(Np[q] + 1, nq)
20 ‖ task 3 : upon receive(RECONNECT, nq) from q
21 if q ∈ discp ∧Np[q] < nq then discp ← discp \ {q}
22 Np[q]← max(Np[q] + 1, nq)
23 coend

Figure 2.4: Disconnection DetectorDD
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2.1.3 Failure, Disconnection and Consensus

Three approaches have been suggested in [Temal and Conan, 2004] for unifying the
failure detectors and disconnection detectors. The first one proposes the use of connec-
tivity detection for failure detection. It is reasoned that the heartbeats can be configured
according to the connectivity. If the connectivity is good, it can send heartbeats to other
processes more frequently and vice versa. The processes can also, according to their
logical connectivity, negotiate the number of heartbeats they exchange. The second ap-
proach neglects the disconnected processes in consensus algorithm thus no message is
expected from them. Also, the processes, which disconnect while running the consensus
algorithm, never wait for a decision or termination. In the third approach, disconnec-
tion detectors and failure detectors are used together in order to optimize the heartbeat
algorithm so that heartbeats are sent only to the processes which are connected. Mobile
terminals have low battery capacity and network resources. Thus, these optimizations
can help saving battery power.

2.2 Group Communication System

The first known GCS was developed as a part of the Isis toolkit [Birman, 1986]. Group
communication systems enable processes, located at different nodes of a distributed
network, to operate collectively as a group, which is facilitated by a membership ser-
vice and the communication service that delivers the messages to the group members is
known as multicast service. An architecture for typical GCS is presented in Figure 2.5-
1, where membership and multicast services are built on top of an unreliable network.

Section 2.2.1 describes the safety properties of the membership and the multicast
service for the partitionable group communication systems. Liveness properties for
membership and multicast services are presented together in Section 2.2.2.

2.2.1 GCS Safety Properties

GCSs are prone to process crash and link failures. Thus, it would not be surprising if
some machine or process becomes faulty due to one of them. There might be cases
where only one component breaks off from the main group or there might be a group
of components which detach from the main group. Different group membership ser-
vices handle such situations in different ways. The main group continues its processing
and the segregated groups block while waiting for restoration of links. This type of
GCS is called primary component because only the primary group (with a majority of
processes) proceeds. Partitionable membership service allows all the components to
operate autonomously, that is, they do not block. Partitionable GCS allows multiple
disjoint views of the same group to exist concurrently in different network components.
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Figure 2.5: Architecture of a Group Communication System

Partitionable GCS was introduced as part of Transis [Amir et al., 1992]. Since then,
they have found their uses in resource allocation, system management, highly available
server, and collaborative computing applications.

Group communication systems organize processes in groups and each group is as-
sociated with a logical name. So, this is this logical name which is addressed while
sending a message to all the members of a group. The task of a membership service
is to maintain a list of currently active and connected processes in the group and a
unique identifier. When this list changes (with new members joining and old ones de-
parting or failing), the group membership service reports the change to the group mem-
bers. The membership service strives to deliver the same view (consisting of the same
member list and the same identifier) to mutually connected members. Events occur
at processes within the context of views that is why they are widely known as view-
oriented group communication systems. Partitionable membership service, defined in
[Dolev et al., 1996, Babaoglu et al., 2001, Fekete et al., 2001], has to know which pro-
cesses are currently part of the given partition. In particular, network partitions may
split the group into several clusters that may later merge when partitions are repaired.
There may well be many autonomous partitions existing in the system at the very same
time. The safety properties are necessary as they keep the overall system in a consistent
state. Below, we list safety properties for a partitionable membership service:

• Integrity: A local view on a process always includes itself. All the members in a
view should be mutually reachable from each other.

• Same Order: View installations at overlapping members occur in the same order.
In partitionable systems, it is unreasonable to require that all the correct processes
install views according to some total order due to the possibility of concurrent
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partitions. Yet, for a partitionable group membership service to be useful, the set
of views must be consistently ordered by those processes that do install them. If
two views are installed by a process in a given order, the same two views cannot
be installed in the opposite order by some other process.

• View Coherency: If a process in a view v ′ installs a new view v then all other
processes in that view v′ also install a new view v. It states that processes should
not stick to a view and should install new views while the network configuration
changes.

• Safety: Processes are removed only if they do not respond to the messages sent to
them. The idea is to avoid removing any processes from the views which are not
reachable from all the processes. This property prevents capricious view splitting
[Anceaume et al., 1995], a phenomenon where processes install views excluding
those which might be permanently reachable.

Multicast service provides its services in association with membership service to
deliver message to the members of the current view. Figure 2.5-2 shows that there are
various messages that are exchanged between a GCS and an application (cf. Figure 2.5):
namely send and receive are the primitives to send and to receive messages; Safe_prefix
message confirms the delivery of the received message that is received currently and
all the messages that were received before current message; View_chng informs the
application of a view change after the change in underlying configuration of processes.
If the two consecutive views are delivered to several processes, then exactly the same
multicast messages are delivered to these processes between these two views. This
is called virtual synchrony. Virtual synchrony provides a convenient framework for
the state machine replication approach: Since messages and views are delivered in the
same order to all non-faulty replicas, consistency is preserved. Below we list the safety
properties for a partitionable multicast service:

• Message Agreement: Two processes install the same view v in the same view v ′

then both of them receive the same set of messages in v.

• Same View Delivery: Two processes deliver the same messages in the same view.
The two properties are necessary for view synchrony. View synchrony helps in
consistency as there is no need for a state transfer between two processes after
a new view installation if both of them were members of the same view earlier.
This is especially useful for applications that implement data replication. But
additional information is required by processes to assess which processes satisfy
virtual synchrony, hence the next property helps.
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• Merging Views: Two merging views must have disjoint composition. Consider
the scenario depicted in Figure 2.6 where three processes p, q,and r have all in-
stalled view V1. At some point, process r crashes and process p becomes tem-
porarily unreachable from process q. Process p reacts to both events by installing
view V2 containing only itself before merging back with q and installing view V3.
Process q, on other hand, reacts only to the crash of r and installs view V3 exclud-
ing r. Suppose that p and q share the same state in view V1 and that p modifies
its state during V2. When p and q install V3, p knows immediately that their states
may have diverged, while q cannot infer this fact based on local information alone.
Therefore, q could behave inconsistently with respect to p. In an effort to avoid
this situation, p could collaborate by sending to q a warning message as soon as
it installs view V3, but q could perform inconsistent operations before receiving
such a message. The problem stems from the fact that views V1 and V2 that merge
to form view V3 have at least one common member (p).

  V1

P

R

R Crashes

P

Q

P
Q

V2

V3

V4

QP
Q
R

P

  V1

V2

P

Q

V3

R Crashes

Figure 2.6: Merging views: V1,V2,V3 and V4 are the views.

• Delivery Integrity: For every receive, there is an associated send event and each
process delivers a message at most once.

• Self Delivery: A correct process always delivers its own multicast messages.

2.2.2 GCS Liveness Properties

Liveness is an important complement to safety, since without requiring liveness, safety
properties can be satisfied by trivial implementation that do nothing. Liveness of GCSs
depends on the network conditions. We briefly list down the liveness properties for
membership as well as multicast service. Liveness properties are seen as a whole for
group communication systems because they, generally, depend on the underlying net-
work conditions and it is not important to separately define the two:

• Membership Precision: p installs a view V as its last view.
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• Multicast Liveness: Every message sent by a correct process is received by all the
correct processes.

• Self Delivery: p delivers every message it sent unless it crashed after sending it.

• Safe Indication Liveness: Every message sent in V is indicated safe by all other
correct processes.

• Membership Accuracy: If the system stabilizes the group membership is consis-
tent.

• Termination of Delivery: Every message sent is received or the sender installs a
new view.

2.3 Conclusion

In this chapter, we have considered asynchronous distributed systems. They are sys-
tems without bounds on message delay, clock drift or time necessary to execute a step.
The system consists of processes and the processes communicate by message passing.
Impossibility result hinders the detection of failures in these systems. For this, unre-
liable failure detectors have been introduced, which render partial synchrony in pure
asynchronous systems but this partial synchrony is necessary for fault-tolerance. Thus,
bounds are placed on execution of process steps or message delivery. Each process has
an access to a failure detector module. Each module monitors a subset of processes in
the system, and maintains a list of those that it currently suspects to have crashed. Fail-
ure detectors were, primarily, introduced for LAN environments. With the increase in
the geographical extent of distributed systems, failure detectors should also be adapted
with the spread of these systems. For that reason, wide-area failure detection is getting
more importance and a small survey of large-scale failure detection has been presented
in this chapter.

Advances in the mobile technology and increase in application mobility expose the
problem of disconnections, where an entity of an application may not find itself con-
nected to the other entities of the application. Disconnection detectors can be designed
by anticipating the disconnections while monitoring the signal strength of the network.
In this chapter, we have seen the abstract properties of disconnection detectors. Con-
nectivity detectors are local to each process. They continuously monitor the network
resource level according to various threshold levels. When the resource level decreases
below a threshold value, they declare the terminal to be disconnected. Information pro-
vided by connectivity detectors is local to each entity. Therefore, disconnection detec-
tors are designed and used to spread this information to other processes. Disconnection
detectors have abstract properties like completeness and accuracy.
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Group communication systems (GCSs) are widely recognized as powerful building
blocks for supporting consistency and fault-tolerance in distributed applications. GCS
provide strong fault-tolerance semantics as the group of processes make an agreement
over the correct processes and secondly, whenever processes exchange messages they
send and receive them without the loss of messages and sometimes, in their total order.
Group communication is a means for providing multi-point to multi-point communi-
cation by organizing processes in groups. Consequently, processes move in locksteps
while exchanging the same messages in the same order which is a variant of state-
machine approach. Thus, system developers can implement these systems according
to their requirements. GCSs have a membership service, which keeps a list of correct
processes and binds them into one view. In addition, Multicast service provides the ser-
vices for message exchange among the processes within a view. Group communication
systems provides two kinds of membership and multicast services. Primary component
GCSs ensure that there is only one view in the system and the processes which are not
part of that view are considered faulty, and henceforth, they are blocked. Partitionable
GCSs consider the fact that detached processes from the main view might be able to
provide services, may be in a degraded form. Partitionable GCSs support installation
of concurrent views to exist on processes which have detached from the main network.
They do not get blocked and do not stop providing their services. But, we need a modi-
fied set of properties for partitionable GCSs since they allow concurrent views to exist,
as a result needing reconciliation when they merge.
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Chapter 3

Disconnection, Failure and Partition

In Chapter 2, we have described in detail the failure and disconnection detectors. With
the increase in mobile computing, the weak connectivity model of wireless networks
is becoming more conspicuous, that is, there are more chances of disconnections due
to the constraints like communication range and battery power. While we move from
LAN environments to WAN and wireless environments, all-to-all connection has be-
come more of a myth than a reality. Mobile network models range from cellular net-
work, where only mobile hosts can roam around and the communication infra-structure
remains static and operational, to ad hoc networks, where the networks might not have
a basic infra-structure, therefore all nodes have to collectively make decisions.

In the absence of all-to-all communications, certain failures and disconnections
might divide the network, called partitions. These are possible within wireless as well
as wired networks. Within wired networks, there can be a router in the Internet which
disrupts traffic between two regions. Within wireless networks, there can be a host that
routes the traffic of other nodes, and upon its disconnection, the two set of processes
make two partitions. For this reason, partition detection is an important aspect of todays
distributed systems. In this chapter, we try to differentiate disconnections, failures, and
partitions. In Section 3.1, we try to distinguish between failures and partitions. The
same exercise is repeated for disconnections and partitions in Section 3.2. Section 3.3
details the algorithms which distinguish among the three: disconnection, failure, and
partition. In Section 3.4, we present wireless group membership properties and algo-
rithm.

3.1 Partition and Failure

We consider only crash failures in our work where a process halts prematurely and never
recovers. A failure occurs when a process crashes due to an internal failure and does
not make any progress. A partition on the other hand, is a problem of the network or
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a connecting node, while the processes do not crash. In the following paragraphs, we
explore these issues.

The general model of failure detection works as follows: the sender sends a "ping"
message and the receiver replies with an "ACK" message. Thus, both sender and re-
ceiver know that both of them are "alive". When there is an absence of a reply for a
certain amount of time, called "timeout", the sender declares the receiver as faulty, or
more generally "problematic". Figure 3.1-a shows that the message m is lost due to a
link failure even if both processes, p and q, are alive. Figure 3.1 depicts this situation
where a process q sends a message m to another process p. Figure 3.1-b shows that the
receiver crashes and does not reply to the message m. In both situations, the process
on the other side of the network is declared faulty, while that process is not respond-
ing or is not receiving the message due to link problems. This deficiency comes from
the inherent mechanism of failure detection using the "ping" message. Thus, we have
an impossibility result here that we cannot distinguish between link failure and process
failure, which we do not prove but only reason for its existence. This impossibility result
comes from the fact that we cannot distinguish between link failure and process failure
by the existing failure detection techniques, defined in Section 2.1.1.

Link Failures leading to Partitions(a)
Process Failures leading to Partitions(b)
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Figure 3.1: Failure and Partition

A partition occurs when two processes detach themselves such that every process
within the partition considers the other processes within the partition to be alive. In
the literature, processes outside a partition are considered to be faulty. Therefore, more
information needs to be collected for the distinction of failure and partition. One more
thing to note is the fact that for the reason of partitions detection we can call process
failure as equivalent to link failures. This is because a process failure may eventually
cause a link failure between two set of processes.

Two processes are called reachable if they can communicate with each other di-
rectly, or through some other process, which routes the messages to correct processes.
A number of events can cause the reachability of the processes to be changed into un-
reachability, namely link crashes, buffer overflows, incorrect and inconsistent routing
tables. A process crash, may as well, render the two processes as unreachable. Reacha-
bility is formally defined in Section 3.3.4.
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3.2 Partition and Disconnection

While failure detectors make it impossible to distinguish failures from partitions, dis-
connection detectors does not have this shortcoming because when a process discon-
nects, it sends a disconnection message to all the processes it is connected to. In this
section, we mainly discuss the peculiarities associated with disconnection detector. In
the following paragraphs, we elaborate the disconnection detector in terms of partition
detection and differentiating the two. Afterwards, we explain the reachability issues for
a disconnection detector.

As defined earlier, processes send an "alert" message before they disconnect. This
way processes can know of a disconnection leading to a partition. But, still we need ad-
ditional information to know if the disconnecting process is creating a situation depicted
in Figure 3.2. In the figure, process p disconnects by sending message ’d’ to detach two
sets of processes. One thing to note here is that with the disconnection message, process
q only knows about the disconnection of process p. Had it known it was connected to
process r through p, then it would have declared that process p disconnects to form two
partitions of the network. Hence, we need some network topology information, that
we develop in Section 3.3 for detecting any disconnection leading to partitions. One
more thing to consider is that processes might be disconnected and reconnect afterwards
restoring the original topology as in Figure 3.2.
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Disconnection leading to Partitions

Figure 3.2: Disconnection and Partition

We reuse the very same notion of reachability as introduced in Section 3.1, that is,
two processes are reachable if they can communicate with each other directly, or using
a third process as a router. Disconnections may change reachability as well. Looking at
Figure 3.2, we can infer that reachability of processes p and q changes completely thus
changing the reachability of other processes, making q unreachable to processes r and
s. Reachability is formally defined in Section 3.3.
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3.3 Partition Detection

The architecture for partition detection and membership management is presented in
Figure 3.3. Partition detection is performed using the information collected from the
disconnection detector and the failure detector. This information is used by the mem-
bership service for view formation. In the two preceding sections, we have seen that
we cannot distinguish amongst disconnection, failure and partition using the existing
works. Therefore, additional information has to be collected. We develop two algo-
rithms for partition detection: The neighborhood topology and the global topology. In
this section, we detail these two algorithms that we develop in the framework of this
work. First, we present our model in Section 3.3.1. In Section 3.3.3, the heartbeat al-
gorithm for partitionable networks is listed. In Section 3.3.2, we present the modified
version of disconnection detectors adapted for partitionable networks. In Section 3.3.4,
we present the partition detector based on neighborhood information. In section 3.3.5,
we present the partition detector based on global topology information.

Connectivity
Detector

Membership
Service

Detector
Disconnection Failure

Detector

Detector
Partition

Figure 3.3: Disconnection, Failure and Partition Detector

3.3.1 Model

A network is a directed graph G = (Π, Λ) where Λ ⊂ Π × Π. The system consists of
a set of n processes Π = {p1, p2 ..., pn}. Every pair of processes is connected by fair
communication path. We take the range T of the clock’s tick to be the set of natural
numbers. Processes do not have access to T : it is introduced for the convenience of
presentation.

Processes can fail by crashing, that is, by prematurely halting. A process fail-
ure pattern Fp is a function from T to 2Π, where Fp(t) denotes the set of processes
that have crashed through time t. Once a process crashes, it does not "recover",
that is, ∀t ∈ T : Fp(t) ⊆ Fp(t + 1). We define crashed(Fp) =

⋃
t∈T Fp(t) and
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correct(FP ) = Π \ crashed(FP ), the set of correct processes. If p ∈ crashed(FP ), we
say that p crashes in FP and if p ∈ correct(FP ), we say that p is correct in FP .

A link failure pattern FL is a function from T to 2Λ. FL denotes the set of links that
have crashed through time t. Crashed links do not recover, that is, ∀t ∈ T : FL(t) ⊆
FL(t+1). This is defined as crashed(FL) =

⋃
t∈T FL(t). If p→ q ∈ crashed(FL), we

say link between p and q crashes. If p→ q /∈ crashed(FL), we say p→ q is fair in FL.
A failure pattern F = (FP , FL) combines a process failure pattern and a link failure

pattern.
Formally, a disconnection detector history HDC is a function from Π × T to 2Π

where HDC(p, t) is the value of disconnection detector of process p at time t in HDC . If
q ∈ HDC(p, t) then we say that p considers q as disconnected at time t. Disconnection
detector DD is a function which maps each disconnection pattern DC to a set of dis-
connection history DD(DC). DC is a function from T to 2Π, where DC(t) is the set
of processes disconnected at time t. disconnected(DC) represents the set of processes
disconnected in DC, and connected(DC) = Π \ disconnected(DC) represents the set
of processes that are connected.

We consider a network with two types of links: links that are fair and links that
crash. A link can intermittently drop messages, but do so infinitely and if p repeatedly
sends a message to q, then q eventually receives that message. We consider fair links,
that is if p sends a message m to q an infinite number of times and q is correct, then q
receives m from p an infinite number of times.

Process q is reachable from process p if there is a fair path from p to q. If processes
p and q are mutually reachable (noted p � q) then they are considered to be in the
same partition, that is, q ∈ partition(p). The partition of process p with respect to F
is denoted partition(p). If p is faulty or disconnected, we define partition(p) = ∅. As
defined earlier, reachability can be affected by disconnections or failures. A partition
detector history HPD is a function from Π × T to 2Π where HPD(p, t) is the value of
partition detector of process p at time t in HPD. If q ∈ HPD(p, t) then we say that p
considers q as partitioned at time t.

3.3.2 Disconnection Detection with Partitions

In this section, the disconnection detector for partitionable networksDDP is presented.
The algorithm is a modified form of the algorithm presented in Section 2.1.2. We define
a new primitive called qr_neighbor_send. Using this primitive, a process can send a
disconnection message with reliability to all its neighbors. A process p tries to send a
disconnection message repeatedly to all of its neighbors and waits for acknowledgment
from the receiving process. Since the link is fair, sending a message infinitely means
that the message will be received. In case p receives the acknowledgment from the
receiving process, it stops sending the message. But if it disconnects before having any
acknowledgment from any neighboring process then it will have to send a disconnection
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message whenever it reconnects. This property is used in the proof of this algorithm. In
the following paragraphs, the algorithm is explained and its properties are listed. Proofs
are given in the appendices in Section A.1.

The disconnection detector for partitionable networks DDP is presented in Fig-
ure 3.4. The methods getMode() and getV oluntary() are getters of the variables m
(for the mode) and voluntary (that states whether there is a voluntary disconnection) of
the connectivity detector CD (cf. Section 2.1.2). The algorithm executes three parallel
tasks:

1. The first task executes if there is a change in the connectivity mode, which is
detected by the connectivity detector using the hysteresis algorithm (cf. Sec-
tion 2.1.2). If the terminal goes into a disconnected mode, the process sends a
DISCONNECT message to all of its neighbors. The disconnection message is
enumerated and paired with Np[p] in order to avoid the duplication of messages.
The counter Np[p] is incremented and the list of processes regarded as discon-
nected is emptied in order to avoid a conflict with the configuration when the
process reconnects itself. If the terminal, earlier disconnected, reconnects itself,
a RECONNECT message is sent to all the neighbors along with its counter Np[p].
It then increments the counter.

2. The second (resp. third) task handles the reception of DISCONNECT (resp.
RECONNECT) message sent by processes that disconnect (resp. reconnect). The
receiving process verifies if it has received this message earlier. If it has not
received this message earlier, it sends a DISCONNECT (resp. RECONNECT)
message to all its neighbors using the primitive qr_neighbor_send. The primi-
tive is used in order to make the message dissemination reliable over fair links
that may drop messages. Then, it appends the sender to (resp. removes the
sender from) the list of disconnected processes. We reuse the algorithm defined
by [Aguilera et al., 1999], therefore it need not to be proved again.

The intended model and properties are the same as described in Section 2.1.2. We
keep the same assumption that if a process disconnects then it reconnects to the same
set of process (in Section A.1, we drop this assumption). The abstract properties defined
for disconnection detector are:

• Strong disconnection completeness: There is a time after which all the discon-
nected processes are seen as disconnected by all the connected processes in the
same partition. Formally,

∀DC, ∀HDC ∈ DD(DC), ∃t ∈ T , ∀p ∈ disconnected(DC), ∀q ∈
connected(DC), ∀q ∈ partition(p), ∀t′ ≥ t : p ∈ HDC(q, t′)
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1 for every process p :
2 initialization :
3 discp ← ∅ {set of processes seen disconnected}
4 for all q ∈ Π
5 Np[q]← 0 {vector of received disc./rec. numbers}
6 cobegin :
7 ‖ task 1 : upon change mode notification with (modep, voluntaryp)
8 if modep = ‘d’ ∨ voluntaryp

9 for all q ∈ neighbor(p)
10 qr_neighbor_send(DISCONNECT, p, Np[p], p) to q
11 Np[p]← Np[p] + 1
12 discp ← ∅
13 else if modep = ‘c’ ∧ ¬voluntaryp

14 for all q ∈ neighbor(p)
15 qr_neighbor_send(RECONNECT, p, Np[p], p) to q
16 Np[p]← Np[p] + 1
17 ‖ task 2 : upon receive(DISCONNECT, q, nq, path)
18 if q /∈ discp ∧Np[q] < nq

19 for all r such that r ∈ neighbor(p) and r appears at most once in
path

20 send(DISCONNECT, q, Np[q], path)
21 discp ← discp ∪ {q}
22 notify disconnection of q
23 Np[q]← max(Np[q] + 1, nq)
24 path← path.p
25 ‖ task 3 : upon receive(RECONNECT, q, nq, path)
26 if q ∈ discp ∧Np[q] < nq

27 for all r such that r ∈ neighbor(p) and r appears at most once in
path

28 send(RECONNECT, q, Np[q], path)
29 discp ← discp \ {q}
30 notify reconnection of q
31 Np[q]← max(Np[q] + 1, nq)
32 coend

Figure 3.4: Disconnection Detector for Partitionable Networks DDP

• Weak disconnection completeness: There is a time after which all the discon-
nected processes are seen as disconnected by at least one connected process in the
same partition. Formally,
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∀DC, ∀HDC ∈ DD(DC), ∃t ∈ T , ∀p ∈ disconnect(DC), ∃q ∈
connected(DC), ∃q ∈ partition(p), ∀t′ ≥ t : p ∈ HDC(q, t′)

• Strong disconnection accuracy: No process is seen as disconnected by a process
in the partition until it disconnects. Formally,

∀DC, ∀HDC ∈ DD(DC), ∀t ∈ T ,
∀p ∈ partition(q), q ∈ Π−DC(t) : p /∈ HDC(q, t)

3.3.3 Heartbeat Failure Detector with Partitions

Heartbeat failure detector for partitions is based on the algorithm for partitionable net-
works defined by [Aguilera et al., 1999] (cf. Figure 4). Below, we list the algorithm and
its properties. Section A.2 in the appendices provide the proof of the algorithm.

The failure detector HBDP , taking into account partitions, is presented in Fig-
ure 3.5. The algorithm is divided into two parallel tasks:

1. In the first task, each process p periodically increments its own heartbeat. The
process sends a heartbeat message (HEARTBEAT, path) to all the neighbors.

2. The second task handles the receipt of messages of the form
(HEARTBEAT, path). Upon the receipt of such a message from process
q, p adds all the processes that appear after p in reachablep[q], avoiding
duplicated entries in the set. We have not explicitly defined that we are
avoiding duplicate entries but it is not very difficult to add a module that does
so. Therefore, reachablep[q] contains a list of processes that are not directly
connected to p but they can be communicated through process q. Henceforth,
the set reachable tries to collect information about the processes which can be
communicated through some neighbor. Process p increases the heartbeats of r
for all the processes that appear after p in path. Process p appends itself to path
and forwards this message (HEARTBEAT, path) to all the neighbors that appear
at most once in path.

There are few changes that have been introduced in original HB for partitionable
networks, consequently we do not need to prove the properties that have already been
proved by the authors. The only changes are:

1. Lines 5, 6 and 7 introduce a new set called reachable, for each neighbor.

2. Line 16 adds the processes appearing in path after p to reachable.

With all the changes, HBDP satisfies HB-Completeness and HB -Accuracy
(cf. Section A.2 for proof of the algorithm ).
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1 for every process p :
2 initialization :
3 for all q ∈ Π
4 Dp[q]← 0 {Dp is the output ofHBDP at p}
5 reachablep[q]← ∅
6 for all q ∈ neighbor(p) do {neighbor(p) is given at configuration time}
7 reachablep[q]← {q}
8 cobegin :
9 ‖ task 1 : repeat periodically
10 Dp[p]← Dp[p] + 1 {Increment p’s own heartbeat}
11 for all q ∈ Π such that q ∈ neighbor(p)
12 send(HEARTBEAT, p) to q
13 ‖ task 2 : upon receive(HEARTBEAT, path) from s
14 for all r ∈ Π such that r appears after p in path and q appears right next

to p in path
15 reachablep[q]← reachablep[q] ∪ {r} {Avoiding duplicate entries}
16 Dp[r]← Dp[r] + 1
17 path← path.p
18 for all r ∈ Π such that neighbors(p) ∧ r appears at most once in path
19 send(HEARTBEAT, path) to r
20 coend

Figure 3.5: Heartbeat Failure Detector for Partitionable NetworksHBDP

3.3.4 Partition Detection with Neighborhood Topology

Neighborhood topology tries to discover partition formation using the network topology
of the neighbors. The idea of neighborhood connectivity is to find the neighbors of the
neighbors. In Figure 3.6, process p tries to discover the neighbors of process w and q.
We construct our neighborhood topology in two layers, as shown in Figure 3.3. The
lower layer, consisting of HBDP and DDP, collects the reachability information and
passes it to the PDN , which uses this information for finding partitions in the network.
Partition detection starts as soon as a disconnection or failure is detected in the system.
In this section, the partition detector algorithm that uses the two previously defined al-
gorithms,DDP andHBDP for partition detection, is explained. The algorithm is listed
in below along with its properties. The proofs are given in appendices (cf. Section A.3).

The partition detector algorithm in Figures 3.7 and 3.8 is divided into four parallel
tasks:

1. The first task periodically examines the heartbeat counters and reachability sets.
First, the process gets a list of processes seen as reachable by HBDP . The set
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Figure 3.6: Reachability Pattern

reachablep, acquired from HBDP is made coherent with respect to local sets
in order to avoid any conflict with the local set of reachable processes. Thus,
all the processes seen as reachable by HBDP but disconnected, faulty or par-
tition locally are not added to the set reachablep. The difference between the
values of the new heartbeat and the old heartbeat is compared against a failure
detection threshold k. If the difference is less than the failure detection thresh-
old then the process is suspected to have crashed. The process certifies its mode
to be connected. The suspected process is added to the set faultyp, which con-
tains the process suspected to have crashed. Process q is then eliminated from
reachablep[q]. All the other processes in reachablep[q], which are not found in
the set reachablep[i] ∀i ∈ neighbor(p), are added to the set partitionp[q]. Thus,
in partitionp[q], we have all the processes that are no more reachable due to the
failure of p. A partition message send(pid, q, r, partq[r]) is sent to all the neigh-
bors. pid is used to discard any old messages still roaming in the network. It is
generated by a global entity and whenever a process want to send a new partition
message, it obtains a new pid and sends the message. fchg tracks the changes in
the set reachablep, is set to true. The set reachablep[q] is emptied. The other pos-
sibility is that of a false suspicion where a process is wrongly suspected to have
crashed. The process which was falsely suspected is removed from the list of
faulty processes. The processes believed to have partitioned due to the false sus-
picion are restored and fchg is set to true. If there is a change in the reachablep

(fchg set to true), the upper layers are reported of this change.

2. The second task monitors the disconnection notifications from process q and of
its own . If a process q sends a disconnection message, the process is added to the
set disconp. The disconnected process is then eliminated from reachablep. The
processes seen as reachable through q are then added to the set partitionp[q]. A
partition message, (pid, q, r, partq[r]), is sent to all the neighbors. pid is used to
discard any old messages still roaming in the network. It is generated by a global
entity and whenever a process want to send a new partition message, it obtains a
new pid and sends the message. Afterwards, the set reachablep[q] is emptied and
a notification is sent that there is a change in the reachable set. If a process q,
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earlier suspected to have crashed, sends a disconnection message, it is removed
from the faultyp set and it is appended to disconp set. If a process receives its
own disconnection message, the sets partitionp is emptied for all the processes
and the set reachable is emptied for all the neighbors.Finally, a reachable change
notification is sent.

3. The third task handles the reconnection messages. If a reconnection message is
received for a process q other than p and if q exists in the set neighbor(p), then
reachablep[q] is initialized to contain q. If a process receives its own reconnection
message, the configuration file containing the list of neighbors is reread to initial-
ize the network topology and all the neighbors are added to the list of reachable
processes.

4. The fourth task handles the reception of the messages of type
send(pid, q, r, partq[r]). Every process that receives such a message, after
verifying that it has not received message with this pid, appends the processes
mentioned in the message to the set partitionp to indicate the set of partitioned
processes. The processes seen as partitioned are removed from the list of
reachable processes. Then, it forwards this message to all its neighbors in order
to disseminate the partition information to all the processes within partition(p).

The abstract properties defined for the partition detector are:

• Strong partition completeness: There is a time after which all the partitioned pro-
cesses q are seen as partitioned by all the processes p /∈ partition(p) . Formally,

∀q ∈ Π \ {partition(p) ∪ faultyp ∪ disconp}, ∀HPD, ∃t ∈ T , ∀t′ ≥ t :
q ∈ HPD(p, t′)

• Strong partition accuracy: No correct and connected process is seen as partitioned
until it partitions. Formally,

∀q ∈ partition(p), ∀HPD, ∀q, ∀t ∈ T : q /∈ HPD(p, t)

3.3.5 Partition Detection with Global Topology

In this section, the second partition detector algorithm that uses the two previously de-
fined algorithms, DDP and HBDP for partition detection, is explained. In the follow-
ing paragraphs, the algorithm is listed along with its properties. The proof is given in
Section A.4.

The algorithm PDG is presented in Figure 3.9 and Figure 3.10. This algorithm
constructs a knowledge of global topology instead of neighborhood topology. In the
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1 for every process p :
2 initialization :
3 faultyp← ∅ {Processes suspected to be faulty}
4 disconp ← ∅ {Processes suspected to have disconnected }
5 fchg ← false {boolean stating whether faultyp changes}
6 reachablep ← ∅ {reachablep[q], ∀q ∈ neighbor(p)}
7 pid← 0 {Identifier for partition messages}
8 recv_pid← 0 {Tracks the received pid}
9 for all q ∈ Π
10 oldDp[q]← 0 {oldDp is the previous output ofHBDP at p}
11 Dp[q]← 0 {Dp is the output ofHBDP at p}
12 partitionedp[q]← ∅ {Processes suspected to be partitioned}
13 cobegin :
14 ‖ task 1 : repeat periodically
15 for all q ∈ Π \ disconp

16 reachablep ← getReachable() \ {disconp ∪ faultyp∪ partitionp} {Get
reachablep from HBDP}

17 if (Dp[q]− oldDp[q]) ≤ k {k: failure detection threshold}
18 ∧q ∈ reachablep {reachablep[q], ∀q ∈ neighbor(p)}
19 ∧getMode() = ‘c’ then
20 faultyp ← faultyp ∪ {q}
21 reachablep[q]← reachablep[q] \ {q}
22 if q ∈ neighbor(p)
23 for all r ∈ reachablep[q] such that reachablep[r] = ∅ ∧ ∀s ∈ Π \

{q} : r /∈ reachablep[s]
24 partitionp[q]← partitionp[q] ∪ {r}
25 fchg ← true
26 reachablep[q]← ∅ {Empty the corresponding entry}
27 pid← getP id() {Get an identifier for partition message}
28 for all r ∈ neighbor(p)
29 qr_neighbor_send(pid, p, q, partitionp[q]) to r
30 else if (Dp[q]− oldDp[q]) > k ∧ q ∈ faultyp {False suspicion}
31 faultyp ← faultyp \ q
32 for all r ∈ partitionedp[q] ∧ q ∈ neighbor(p)
33 reachablep[q]← partitionp[q]
34 fchg ← true
35 partitionp[q]← ∅
36 if fchg then notify new reachablep {Possible new view}
37 oldDp ← Dp {prepare next task’s execution}

Figure 3.7: Partition Detector with Neighborhood Topology PDN
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1 ‖ task 2 : upon disconnection notification of q
2 if p 6= q ∧ q ∈ reachablep

3 if q /∈ faultyp

4 disconp ← disconp ∪ {q}
5 reachablep[q]← reachablep[q] \ {q}
6 if q ∈ neighbor(p)
7 for all r ∈ reachablep[q] such that reachablep[r] = ∅ ∧ ∀s ∈

Π \ {q} : r /∈ reachablep[s]
8 partitionp[q]← partitionp[q] ∪ {r}
9 reachablep[q]← ∅ {Empty the corresponding entry}
10 pid← getP id() {Get an identifier for partition message}
11 for all r ∈ neighbor(p)
12 qr_neighbor_send(pid, p, q, partitionp[q]) to r
13 else if q ∈ faultyp

14 faultyp ← faultyp \ {q}
15 disconp ← disconp ∪ {q} {Do not recalculate partitionedp[q]}
16 else
17 partitionp ← ∅ {Empty the partitioned set for all q}
18 for all q ∈ neighbor(p)
19 reachablep[q]← ∅ {Empty the reachable set on self-disconnection}
20 notify new view reachablep {Possible new view with p only}
21 ‖ task 3 : upon reconnection notification of q
22 if q 6= p
23 partitionp[q]← ∅ {Empty the partitioned set for q}
24 disconp ← disconp \ {q} {Remove q from disconp}
25 if q ∈ neighbor(p)
26 reachablep[q]← {q} {Initialize if p ∈ neighbor}
27 else
28 for all q ∈ neighbor(p) {given at configuration time}
29 reachablep[q]← {q}
30 partitionedp[q]← ∅
31 notify new view reachable(p)
32 ‖ task 4 : upon receive(pid, q, r, part) from s
33 if recv_pid 6= pid
34 for all t ∈ part such that t /∈ faultyp

35 partitionp[r]← partitionp[r] ∪ {t} {faultyp ∩ partitionp = ∅}
36 reachablep[s]← reachablep[s] \ {t} {Remove from reachablep

of sending process}
37 for all t such that t ∈ neighbor(p)
38 qr_neighbor_send(pid, q, r, part)
39 recv_pid← pid
40 coend

Figure 3.8: Partition Detector with Neighborhood Topology PDN (Ctn’d)
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algorithm, p � q means that there is a fair path from p to q (p → q) and there is a
fair path from q to p (q → p). We assume that the topology (processes plus links) is
known at the starting time of the distributed application —i.e., there exist configuration
data describing the initial configuration of the distributed application and these data are
known to every process of the distributed application. Then, during the execution, new
processes and new links are explicitly added and committed by all the processes of a
partition. Each process updates the graph by tagging nodes due to disconnections, fail-
ure, or partitions. The basic functionality of the algorithm is the same except for some
minor changes such as the set reachable is kept implicit for each process and equals to
the relation Π \ (dp∪ fp ∪ pp). One major change is that partition message is not needed
to be sent to any neighbors. This is because the knowledge of partitions is global in this
algorithm and all the processes in the partition(p) can detect the process that have par-
titioned. Boolean variable fchg, in the first task, tracks the changes in reachability and
in case of a change, sends a notification to the concerned layers. Whenever a process
reconnects, it reconnects in the same neighborhood.

3.3.6 Topology and Application-based Decisions

Our work differentiates between physical topology and logical topology. The difference
between the physical topology and the logical topology comes from the fact that in our
work, we only consider two processes reachable if they have the ability of communicate
with each other. For us, this is a higher level of abstraction than actually looking at
physical links that link two or more processes. We combine the reachability informa-
tion with the physical topology by discovering the links connecting two neighbors in
PDN , meaning that we gather the reachability information with the help of the indi-
vidual neighbors. Consequently, every process constructs its local view by discovering
the processes reachable through a neighbor and collecting them in one set. Thus, a
neighborhood logical topology is built, instead of actual link in order to estimate the
connectivity patterns. The second algorithm, PDG keeps a global information of each
link and process. In case of link and process failures, the global topology is affected.
This change is seen by all the processes within the current partition and they tag the
links and processes.

Failure detectors and neighborhood information can only provide hints for applica-
tions. Thus, the sets of processes in the two partitions can only "speculate" what has
gone wrong on the other side, since they cannot communicate directly. It is the applica-
tion which will decide, considering its functionality, whether to drop the users or open
new connections to them. Thus, there can be an optimistic approach and a pessimistic
approach.

Processes can follow optimistic heuristics for the processes in the other partition.
The underlying idea is to consider the processes behind a faulty process to be correct.
The processes in the other partition can be waited for before dropping them off from
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1 for every process p :
2 initialization :
3 for all q ∈ Π
4 oldDp[q]← 0 {oldDp is the previous output ofHBDP at p}
5 Dp[q]← 0 {Dp is the current output ofHBDP at p}
6 pp ← ∅ {Processes suspected to be partitioned}
7 fp ← ∅ {Processes suspected to be faulty}
8 dp ← ∅ {Processes suspected to have disconnected }
9 fchg ← false {boolean stating whether fp changes}
10 cobegin :
11 ‖ task 1 : repeat periodically
12 fchg ← false
13 if p /∈ dp {current process not disconnected}
14 Dp ← getDp()
15 for all q ∈ Π \ (dp ∪ pp ∪ {p})
16 if |Dp[q]− oldDp[q]| ≤ k {k: failure detection threshold}
17 if q /∈ fp {q not already suspected}
18 fp ← fp ∪ {q}
19 fchg ← true
20 for all r ∈ Π\(dp∪fp∪pp) : ¬p � q in (Π\(dp∪fp∪pp), E)
21 pp ← pp ∪ {r}
22 for all q ∈ fp

23 if |Dp[q]− oldDp[q]| > k {false suspicion}
24 fp ← fp \ {q}
25 for all r ∈ pp : p � q in (Π \ (dp ∪ fp ∪ pp) ∪ {r}, E)
26 pp ← pp \ {r}
27 fchg ← true
28 if fchg then notify new view (Π \ (dp ∪ fp ∪ pp)
29 oldDp ← Dp {prepare next task’s execution}

Figure 3.9: Partition Detector with Global Topology PDG
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1 ‖ task 2 : upon disconnection notification of q
2 dp[q]← q
3 if q ∈ faultyq {q suspected before seen disconnected}
4 faultyq ← faultyq \ {q}
5 if q ∈ partitionq {fair path suspected before receiving the

disconnection message}
6 partitionq ← partitionq \ {q}
7 for all r ∈ Π \ (dp ∪ fp ∪ pp) : ¬p � q in (Π \ (dp ∪ fp ∪ pp), E)
8 pp ← pp ∪ {r}
9 notify new view (Π \ (dp ∪ fp ∪ pp)
10 ‖ task 3 : upon reconnection notification of q
11 if p = q {p reconnects, so no knowledge of failures...}
12 dp ← ∅
13 fp ← ∅ {begin assuming no faulty process}
14 for all r ∈ pp : p � q in (Π \ (dp ∪ fp ∪ pp) ∪ {r}, E)
15 pp ← pp \ {r}
16 else
17 dp ← dp \ {q}
18 for all r ∈ pp : p � q in (Π \ (dp ∪ fp ∪ pp) ∪ {r}, E)
19 pp ← pp \ {r}
20 notify new view (Π \ (dp ∪ fp ∪ pp)
21 coend

Figure 3.10: Partition Detector with Global Topology PDG (Ctn’d)
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the application. There might be a disconnection such that the routing process moved
out of the communication range without being able to send a disconnection alert. The
process may, sometime later, move in again. Another approach is to open new connec-
tions through alternative network resources to the processes in the other partition. This
can work where there is a possibility of various communication channels, for example,
WIFI or GPRS. Thus, a new route may be opened connecting all the processes in the
other partition and consequently, merging the two partitions. Henceforth, it will be the
application that, according to its performance needs, reposes its decision.

Depending on its requirements, an application may not want to delay its processing,
and may decide to drop the processes that are in the other partitions. The application
can do this as soon as the processes are partitioned. The two partitions may proceed in
their computations with degraded performance, but, as a consequence, the partitions do
not merge.

3.4 Wireless Group Membership Service

Group communication systems provide consistency and fault-tolerance in distributed
applications. With the rapid growth of mobile networks it is necessary to devise GCS
for wireless environments. In this section, we propose a membership service based on
the disconnection, failure and partition detection services (cf. Figure 3.3). The member-
ship service strives to build the views based on the information of the three detectors.
We try to build two solutions for each of the partition detector PDN and PDG. We use
the same underlying network model defined in Section 3.3.1. Section 3.4.1 defines the
general set of properties desired from the membership service. The outline of the mem-
bership algorithm is presented in Section 3.4.2. The idea of agreeing on the composition
of the sets of disconnected, faulty and partitioned processes is presented in Section 3.4.3

3.4.1 Membership Properties

Our set of properties have been carefully designed keeping in view the mobility of the
terminal. The set of specifications for the membership algorithm are:

• Self Inclusion: If process p installs a view V , then p is a member of V . Formally,

installs(p, V ):p ∈ V.members

• Local Monotonicity: If a process p installs a view V after installing view V ′

then the identifier of V is greater than that of V ′. Formally,
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ei = view_chng(p, V, T ) ∧ ej = view_chng(p, V ′, T ′) ∧ i > j:V.id > V ′.id

• Initial View Event: Every send, receive, and safe_prefix event occurs within
some view. Formally,

ti = send(p, m) ∨ ti = recv(p, m) ∨ ti = safe_prefix(p, m):viewof(ti) 6= ∅

• Eventual Strong View Accuracy: There is a time after which mutually reachable
processes belong to the same view. Formally,

∃t0, ∀t ≥ t0, q ∈ partition(p):∃t1, ∀t ≥ t1 : q ∈ view(p, t)

• Strong View Completeness:There is a time after which all the processes which
are not mutually reachable from p do not belong to the view including p. Formally,

∃t0, ∀t ≥ t0, ∀q, q /∈ partition(p):∃t1, ∀t ≥ t1 : q /∈ view(p, t)

3.4.2 Group Membership Algorithm

We propose only the sketch of the algorithm that we propose for the membership ser-
vice. This is a very simple membership service that operates on top of the two partition
detectors and tries to fulfill the properties defined in Section 3.4.1. The partition detec-
tor provides the set of reachable processes and the membership service tries to build a
view consisting of all the mutually reachable processes in reachablep (reachablep cor-
responds the variable in membership service). Every process p that detects a change
in its set reachablep sends a message (JOIN_VIEW, new_vid, reachablep) to all the
processes in the new set reachablep. We assume that there is an entity in the systems
that generates the view identifiers (vid). Thus, it generates view identifiers (vid) that
are monotonically increasing with time. Every process that receives the view change
message may be in two states: it may be in a view having a vid lower than that of the
sending process or the process is already in the process of changing a view. For the first
case, the process q accepts the message, changes its set reachableq according to the in-
formation sent by reachablep and sends an ACK message. The process that initiates the
view change process, adds all the processes which sent an ACK to the new view. A new
view message is sent to all the process in the new view of the form (new_vid, vcomp)
corresponding to new view identifier and the view composition respectively. If it re-
ceives a NACK from one or more processes, and that may occur when a process is
already in a view having a higher vid, restarts the algorithm with the higher vid. The
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process may also ABORT, depending on the requirements. Everyone joins a new view
on receiving a new view message. If a process is already in the view change process
and it receives a message with higher vid, it relays that message to all the processes so
that everyone knows of that new view message. Consequently, old view session ends
and the new one becomes the active membership proposal. A disconnected process may
install a new view consisting of its own so, it can carry on its computation even in the
disconnected mode. If the view initiator fails during the algorithm then the network
reachability changes and the processes are forced to start a instance of the membership
algorithm.

It can be shown that the above algorithm follows the membership properties de-
fined in Section 3.4.1. The first three properties can be shown to be satisfied in each
run. Eventual strong view accuracy and strong view completeness are satisfied by the
partition and disconnection detector because they satisfy these properties for every dis-
connection, failure and partition. If a process disconnects, fails or partitions, then, even-
tually, every correct and connected process satisfies these properties and suspects the
process as disconnected, failed or partitioned. Thus, this algorithm is simple enough
to be implemented in this form. But there are some applications which require more
stronger requirements for consistency and coherency. We consider that the above men-
tioned group membership algorithm can be adapted according to the needs.

In general, we can say that we have proposed a disconnection, failure and partition
detection service that can be a foundation for a group communication systems. The set
reachablep always proposes a set of reachable processes (reachable = Π\(dp∪fp∪pp

is in case of PDG), and all the processes in partition(p) at one moment can be-
come a part of the current view. One such membership algorithm has been proposed
by [Babaoglu et al., 2001]. They build their membership service on top of the set
reachable. In the original algorithm, they use only the failure detectors to build the
set reachable. They do not perform partition detection. We plan to reuse their member-
ship algorithm on top of the partition detectors defined above. A view is formed for all
the processes in the set reachable. The membership algorithm presented in their work
is a comprehensive one. But the only difference lies in the underlying model. In our
model, we consider links that do not recover after crashing. They consider links that
can recover even after they crash.

3.4.3 Group Agreement Algorithm

In this section, we present a sketch of an algorithm that operates on top of the two
partition detectors PDN and PDG. The distributed computation carried out by the
agreement service tries to build a consensus over the three sets of processes: dis-
connected, faulty and partitioned. Thus, where a group membership algorithm tries
to build a set of mutually reachable processes, group agreement algorithm proposes
an approach which has not been used before, that is, agreeing on the composition of
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non-reachable processes. We propose this algorithm because of the fact that the com-
position of these sets may diverge for individual process, hence requiring an agree-
ment. The consensus algorithm can be based on the rotating coordinator paradigm
used in [Chandra and Toueg, 1996]. They exchange an estimate until all the processes
decide. Using the same form, the three sets are exchanged by all the processes in
a partition(p) to agree on their composition. They mutually agree on the invariant
disconp ∩ faultyp ∩ partitionp = ∅ for PDN . For the algorithm PDN , they agree
on the invariant dp ∩ fp ∩ pp = ∅. Eventually, they mutually agree on the processes
seen as disconnected, faulty or partitioned and avoiding any wrong suspicion in terms
of disconnection, failure and partition. Consequently, deciding which processes are not
reachable by agreeing on the three sets and the reason, why they are not reachable by
agreeing on the individual composition of the three sets. This algorithm can be used
by applications that rely on the composition of the three sets for making critical deci-
sions. For example, an application does not drop all the processes suspected to have
partitioned and waits for them while there is a process appears in the set partitionp but
actually it has failed. Thus, making an agreement on the set of faulty processes can stop
application waiting indefinitely.

3.5 Conclusion

In this chapter, we have defined two partition detectors based on the information pro-
vided by disconnection and failure detectors.

The first partition detection algorithm uses the information provided by HBDP to
calculate the neighborhood topology. A set is created for every neighbor and this is
appended with the processes that are reachable through that neighbor. Consequently,
partitions are detected if a connecting process disconnects or fails and the processes
reachable through that neighbor are tested for reachability. If they are not reachable
through other processes, a partition is declared. This information is sent to other hosts
through reliable primitive qr_neighbor_send. Two invariants are maintained during
the execution of the algorithm: disconp ∩ faultyp ∩ partitionp = ∅ and reachablep =
Π \ (disconp ∪ faultyp ∪ partitionp.

The second partition detector creates a global view of the network topology. Ini-
tially, every process and every link is known and is added to the graph G. Then every
process that connects and new link is created, this change is committed in the graph is
added to this graph. In this way, a global view of the network topology is maintained
by every process. In case of a disconnection or a failure, every process, knowing the
global topology, calculates any processes that might have partitioned. The invariant
dp ∩ fp ∩ pp = ∅ is maintained during the execution of the algorithm. If there are net-
work partitions, every partition keeps track of its the changes visible to the partition and
this information is made global on merges.
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There are two categories of heuristics for the processes detected to be partitioned.
The optimistic approach, considers every process in the partition to be correct. The
application may not drop such processes but waits for them until the link disconnecting
such processes restores, in case of a disconnection. Another work around may be to
open new connection to the processes on the other side of the partition. The pessimistic
approach considers the processes in the other partition to be faulty and they are dropped
from the application as soon as they partition.

We have defined only sketches of the group membership service because we could
not complete their proofs. The partition detector defined in Section 3.3.4 and Sec-
tion 3.3.5 can support any membership service that builds it views consisting of the
members of the reachable set. We define a new paradigm for agreeing on the processes
not in the partition and reason for their absence from the partition, as seen by processes
in the partition. These processes make an agreement over the composition of the three
sets disconnected, faulty and partitioned.
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Chapter 4

Conclusions and Perspectives

Mobile Computing is gaining more and more importance with time. Need of the day is
to target the problems which are emerging due to mobility of the terminals. Disconnec-
tion is one of such problems, which springs up when a mobile terminal moves out of
the communication range. Disconnection can be very frequent and may depend on the
mobility pattern of the user. Another problem that may occur in both fixed and wireless
network is the problem of process and link crashes. These may hamper the progress of a
distributed application or may render it completely unavailable. Thus, there is a need to
detect and correct such unexpected behavior. There can be a scenario where disconnec-
tion or failure of a process can render two set of components completely unreachable,
called partitions.

Group communication systems define a powerful paradigm for distributed systems
where processes take the very same steps and exchange the same set of messages in
order to preserve the overall consistency of the application. Processes are organized
as multicast groups, called views. Every process within a view shares the same set
of messages, which is called view synchrony. Primary group communication system
allows only one view to exist at one time. Partitionable group communication services
allow multiple views to progress in their computations.

In this work, we have tried to distinguish the three: disconnection, failure and par-
tition. Disconnection and failure may lead to the formation of autonomous network
components which can only communicate within their groups. We have modified the al-
ready existing disconnection detector to work for partitionable networks with fair links.
The already existing heartbeat failure detector for partitionable networks has been mod-
ified to discover the reachability patterns of the underlying network. In the first partition
detector, we try to discover the neighborhood topology. The idea of neighborhood topol-
ogy is to discover the processes that are reachable from some neighbor. If that neighbor
disconnects and fails, all the processes that were reachable only through that neighbor
are declared to have partitioned. The second partition detector builds an overall view of
the system with the initial processes and links. Afterwards, every new process and link
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is committed by all the processes. In case of failure or disconnection, the reachability
between two processes is verified and if the disconnection and failure has affected reach-
ability, the unreachable processes are added to the list of partitioned processes. Since we
cannot ascertain the status of partitioned processes, we try to develop the heuristics or
opinions based on the application requirements. These speculations can be optimistic
and pessimistic. Certain ideas for optimization of failure detection can be developed
based on the collected topology information.

Wireless group communication systems are becoming need of the day with the in-
creasing use of wireless applications. Users can share collaborative applications, they
can play multi-player games and they keep data consistency while they use wireless
group communication systems. The membership service defined can be used to assist
the use of such applications. We think that our solution is weak enough to be imple-
mented.

During this work, we tried to search for any existing work for partition detection
and we found nothing. Thus, we are giving here a framework for partition detection
which is a general one, that is the solution proposed does not depend on network type
or network topology. This framework can be adapted for various application types. We
have already provided the a draft version of algorithm which supports reconnections in
different partitions, along with its propreties (cf. Section A.5).We foresee that the dis-
connection, failure and partition detection can be based on one generic service, which
can minimize the number of messages exchanged between various processes. For mo-
bile terminals, where the battery is already too small to support normal operation of
few hours, the computations and message complexity can be a huge burden. Conse-
quently, there is a need for optimizing algorithms for their effectiveness. In this work,
we only consider the processes and the links that never recover from a failure. Efforts
are required in order to adapt them for a general failure model where links can fail and
recover . Another advancement can be the addition of a multicast layer to complete the
view synchrony model. The message exchange that reveals the neighborhood topology
is based on a crude model. It doesn’t serve to reveal the global topology because of the
nature of the messages. One way is to ameliorate the message passing in order to reveal
the global connectivity patterns. Thus, everyone detects the formation of a partition.
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Appendix A

Disconnection, Failure and Partition

A.1 Disconnection DetectorDDP

In this section, we present the proof of the algorithmDDP , presented in Section 3.3.2.

Lemma 1 If two processes p and q are in the same partition then every message sent
by p is received by q.

Proof. This lemma has already been proved in [Aguilera et al., 1999], in the proof of
Lemma 25 for their algorithm in Figure 4. We present it here precisely for our purposes.
If p and q are in the same partition then there is a fair and simple path from p to q and
every message sent infinitely often from p to q is received infinitely often by q. Thus,
every message sent by p to q is eventually received. 2

Lemma 2 Strong Disconnection Accuracy No process p is seen as disconnected by a
process in p’s partition until p actually disconnects.

Proof. We can see in Figure 3.4 that a process adds another process to the set of dis-
connected processes, discp only in line 21 of the algorithm. This instruction is executed
only when a process receives a disconnection message from a process that has not been
added to the set of disconnected processes and earlier no message has been received
from that process. Another possibility is that the process may receive the disconnection
message from some other process. If the message is found to be new, —i.e. not an
"older" disconnection —, the process indicated in the message will be added to the list
of disconnected processes. Otherwise, the message will be ignored. 2

Lemma 3 Strong Disconnection Completeness There is a time after which all the dis-
connected processes are seen as disconnected by all the connected processes in their
partition.
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Proof. There can be four cases. In the first case, a process p successfully sends the
disconnection message to all its neighbors. Using the algorithm, this message is suc-
cessfully disseminated to all the processes in the partition of p by Lemma 1 and the defi-
nition of the primitive qr_neighbor_send. In the second case, p sends the disconnection
message to at least one correct and connected process q. If q does not disconnect after re-
ceiving disconnection of p then it successfully disseminates this message as done in the
first case. But if the process q disconnects right after receiving the DISCONNECTION

message of p, or p disconnects just before sending a DISCONNECTION message, the
message is sent whenever process p reconnects to the network. This is because of the
properties of the primitive qr_neighbor_send; messages are saved in the mobile termi-
nal’s cache and are sent when the terminal reconnects. Hence, strong completeness is
satisfied whenever the mobile terminal reconnects.

The fourth case is a subtle one. Since the links are fair, process p sends a message
just before its disconnection but the link may drop this message. No process will ever
know of the disconnection and the process will be suspected faulty. For alleviating this
problem and for making the disconnection message to be sent in a reliable manner, we
use the primitive qr_neighbor_send that sends a message relaibally on fair links. 2

Theorem 1 Algorithm DDP implements a disconnection detector which satisfies
strong disconnection completeness and strong disconnection accuracy.

Proof. From Lemmata 2 and 3. 2

A.2 Heartbeat Failure Detector with PartitionsHBDP

In this section, the proof of the algorithmHBDP , given in Section 3.3.3 is presented.

Lemma 4 At each correct and connected process p, for each neighbor q, the set
reachablep[q] eventually contains every correct and connected process r, such that there
is a fair path from p to r through q and r is in the partition of p.

Proof. This lemma is trivially true for all neighbors of p (lines 6 and 7 in the initial-
ization phase).

In the proof of Lemma 25 in the original algorithm [Aguilera et al., 1999], it is stated
that if there is a fair path between two processes p and r, (we rename q as r for our con-
venience), such that (p1, p2, .., pi) is a simple fair path from p to r and (pi, pi+1, ..., pk)
is a simple fair path from r to p, so that pi = r and p1 = pk = p, then p sends the
message (HEARTBEAT, Pj) an infinite number of times to r where Pj = (p1, ..., pj)
for j = 1, ..., k. Since there is a fair path from p to r, r receives messages of the
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form (HEARTBEAT, Pj) an infinite number of times. Thus, there is at least one pro-
cess p2 ∈ neighbor(p) which forwards all the messages from p to r either directly or
indirectly.

In the proof of lemma 25, it is proved that these messages reach process pk−1, which
then forwards them to p. As a consequence, p receives messages (HEARTBEAT, Pk−1),
where Pk−1 is of the form p, p2.., r, .., pk−1. Thus, letting p2 = q, p successfully adds r
into the set reachablep[q], using line 15. 2

Lemma 5 If a process r is only reachable from process p through q, where p ∈
neighbor(q), then the process r will only appear reachable through q in all the pro-
cesses in p ∈ neighbor(q).

Proof Figure 3.6 shows the arrangement of processes where r is accessible to p
through q only. We show that r appears only in reachablep[q] at p. ∀i ∈ neighbor(p),
p constructs the set reachablep[i] by adding all the processes to the set reachablep[i]
in such a way that i appears after p in path. The processes that are appended to
reachablep[i] appear after p and i in path. Consider a message m initiated by process p
in the direction of w. Message m traverses up to process u and returns to p. Process p
appends processes u and v to the set reachablep[w]. Thus, u and v only appear reach-
able through w. Now, this message m is forwarded to q since q appears at most once in
path (path = p, w, v, u, p). Message m travels up to process t and arrives at q. But q
will not forward this message to p since p already exists twice in path. This way process
r never appears in reachablep[w]. Message m will disappear after it reaches every host
on both sides of the network (avoiding the ping-pong effect). Thus, every process that
is reachable through a process q will only appear to be reachable through that process.
Consequently, a process reachable from one and only one neighbor q will appear in the
set of reachablep[q] at process p. 2

Lemma 6 HB-Completeness At each correct process p, the heartbeat sequence of ev-
ery process not in the partition of p is bounded.

Proof. We do not change the message passing of the original HB and the functional-
ity added does not change the working of the original algorithm. Our additions try to
extract the neighborhood reachability information from the heartbeat messages. Since
messages are sent and received by all the correct processes in the same way, the com-
pleteness property is not modified. Thus,HBDP satisfiesHB-Completeness . 2

Lemma 7 HB-Accuracy At each process p, the heartbeat sequence of every process is
nondecreasing, and at each correct process p, the heartbeat sequence of every process
in the partition of p is unbounded.
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Proof. This also follows from the proof of the original algorithm. And as said in
Lemma 6, we do not interfere with the message exchanging functionality of the original
HB. Thus, the accuracy property holds for this algorithm as well. 2

Theorem 2 HBDP satisfiesHB-Completeness andHB -Accuracy.

Proof. From Lemmata 6 and 7. 2

A.3 Partition Detection Using Neighborhood Topology
PDN

Lemma 8 All the processes within partition(p) are eventually added to reachablep

(reachablep represents the set of all the reachablep[q]).

Proof We prove this lemma by contradiction. Consider a process q that is in
partition(p) and is not found in reachablep. In the first case, the process is wrongly
suspected and and the eventual strong accuracy property of HBDP will ensure that q
will be added to reachablep because it is reachable from p. The second case may be
that the process q has just reconnected. If p is the neighboring process and it receives a
reconnection message, then process p adds process q to the set of reachable processes
(line 26 cf. Figure 3.8). If this is not a neighboring process then the HBDP will add
the process q to reachablep using Lemma 4. In the final case, the system has just started
and eventually the network topology will be discovered, thus adding the process to the
set reachablep. Thus, a process in partition(p) is added to the set reachablep, a con-
tradiction. 2

Lemma 9 All the processes not in partition(p) are eventually added to the set faultyp,
disconp, or partitionp (partitionp represents the set of all partitionp[q]).

Proof We prove this lemma by contradiction. Consider a process q that is not in
partition(p) but still it is found in the set reachablep, that is HBDP considers the
process reachable and it is not considered as faulty, disconnected or partitioned. So, the
heartbeat of q at HBDP of p is unbounded. This suggests that there is a fair path from
process p to process q. Therefore p and q are in the same partition, a contradiction. 2

Lemma 10 If a process q fails then there is a time after which every process p ∈
neighbor(q) considers q faulty and adds all the processes connected to p through q
to the set partitionedp[q] if the processe are no more reachable from p.
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Proof If a process q fails then the heartbeat of q, which was earlier in the partition of p,
will be bounded at p according to the property of strong completeness ofHBDP . Even-
tually, this process will be considered as faulty and will be added to the set faultyp[q]
by each neighbor according to the statement 20 in the algorithm in Figure 3.7. Then,
process p scans the set reachablep[q] for every process that is suspected to have parti-
tioned by the failure of process q. If a process is found in reachablep[r], that is process
s is still reachable through r, then no action is taken. But, if process s is not found in
the set reachablep for all the processes, that is, it is not reachable any more according
to Lemma 5, then s is added to the set partitionp[q], meaning that s has partitioned due
to the failure of q. 2

Lemma 11 If a process q disconnects then there is a time after which every process
p ∈ neighbor(q) considers q as disconnected and adds all the processes connected to p
through q to the set partitionedp[q], if the processes are no more reachable from p.

Proof If a process q disconnects then the process p eventually receives a disconnec-
tion message from q according to the property of strong disconnection completeness of
DDP . Eventually, this process will be considered as disconnected and will be added
to the set disconp[q] by each neighbor according to the statement 4 in the algorithm in
Figure 3.8. Then, process p scans the set reachablep[q] for every process s that was in
reachablep[q] and that is suspected to have partitioned by the failure of process q. If
the process is found in reachablep[r]— i.e. process s is still reachable through r—, no
action is taken. But, if process s is not found in reachablep, that is, it is not reachable
any more according to Lemma 5, then s is added to the set partitionp[q], implying that
s has partitioned due to the disconnection of q. 2

• Lemma 12 There is a time after which every process r that breaks up from a
partition(p) due to the disconnection of a connecting process q is seen as parti-
tioned by all the correct and connected processes in partition(p).

Proof Every process r that breaks off (that is, the process that is connecting this
process to partition(p)) from partition(p) does that because it was connected to
the partition by a process q that has disconnected. The situation is depicted in Fig-
ure 3.6 where q disconnects making two distinct groups that are unreachable from
each other. If a process q disconnects, it is likely to send a disconnection message.
We can have two cases. Either every process receives this message (according to
strong disconnection completeness of DDP) or this disconnection message does
not reach any neighbors of q, which causes the processes to timeout on q, which
is considered as failure. So, here we only treat the first case. The process r suc-
cessfully sends the disconnection message to all the processes. Lemma 12 infers
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that the neighbors that receives this disconnection message start executing task 2
(line 1 in Figure 3.8). While executing task 2, it is found out that r is only reach-
able through q. This is done by scanning the set reachablep for all the neighbors.
Since r is reachable through q only for process p, according to Lemma 5 process
p will not see r reachable through any other process, that is, it will not appear
in reachablep[w] in Figure 3.6. Process p will add r to partitionp[q] (line 8 of
Figure 3.8) and will be sent to other processes. The partition message is sent to
every process i in partition(p), which adds process r to its set partitioni[q]. 2

• Lemma 13 There is a time after which every process r that breaks up from a
partition(p) due to the failure of a connecting process q is seen as partitioned by
all the correct and connected processes in partition(p).

Proof Every process r that breaks off from partition(p) does that because it
was connected to the partition by a process q that has failed. The situation is
depicted in Figure 3.6. If the process q fails, every process eventually times-out
on q (according to Lemma 18). The neighbors that time-out on q start executing
task 1 (line 14 of Figure 3.7). According to Lemma 10, every process considers r
to have partitioned due to the failure of q. Lemma 5 shows that since the process r
is reachable only through p, it will not appear reachable to process p through some
other neighbor. Process p will add r to partitionp[q] (line 24 of Figure 3.7). A
partition message will be sent to all the processes about the partition of r. Thus,
every process s that receives the partition message, executes task 4 (line 32 of
Figure 3.8) and adds process r to the set partitions[q]. 2

Theorem 3 PDN satisfies Strong Partition Completeness.

Proof From Lemmata 12 and 13. 2

Lemma 14 Strong Partition Accuracy There is a time after which every process that is
reachable from p appears in partition(p).

Proof A process is considered partitioned only if the connecting process fails or dis-
connects. In Figure 3.6, process r becomes unreachable and thus, partitioned from p
in two cases: either q disconnects or fails, or either any of the link between p and q
fails. The second case is eventually considered as a failure because the heartbeat of
q times-out at p, the result is the same as the first case. If process q remains correct
and there are no link failures, no disconnection message will be generated or no process
will time-out. Disconnection messages are generated only when the process disconnects
(Section 3.3.2). Task 2 of the algorithm will not be executed and eventually, no process
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considers r as partitioned or unreachable. If every process receives a timely heartbeat
from q, it will not be suspected as a failure and thus task 1 will not consider q faulty
satisfying strong partition accuracy in both cases. 2

Lemma 15 Every process that eventually appears in partitionp, faultyp, or disconp,
eventually does not appear in reachablep.

Proof From Lemmata 8 and 9. 2

Lemma 16 Every process that eventually appears in reachablep, eventually does not
appear in partitionp, faultyp, or disconp.

Proof From Lemma 8, we know that every process in partition(p) is added to the set
reachablep at some process p. It is obvious from the algorithm that every time we add
something to the set reachablep, we remove it from one of the three sets. A process may
leave the set faultyp and is added to the set reachablep after a false suspicion. Secondly,
after a reconnection message a process is added to the set reachablep if a neighbor
receives the message and the process is removed from the set disconp (line 23 and 26
in Figure 3.8). The third case occurs when a false suspicion is detected. The process
is removed from the set faultyp and is added to the set reachablep. Non-neighboring
process will be eventually added to the set reachablep according to Lemma 8. 2

Lemma 17 Every process q, q /∈ partition(p) appears either disconnected, partitioned
or faulty, that is partitionedp ∩ faultyp ∩ disconp = ∅.

Proof There can be three cases where a process becomes unreachable from a process
p. The heartbeat of a process q may timeout at process p. In this case, the process is
added to the set faultyp only if it doesn’t exist in either of disconp or partitionp. The
same is true for the disconnection as well, that is, no process is added to the set disconp

if it already exists in faultyp or partitionedp; whenever we receive a disconnection
message from a process, we receive that because the process is reachable. This is im-
possible for a process to be partitioned if it is already disconnected or faulty since it will
exist in reachablep[q] in that case. If the process has not disconnected or failed before
and it is not suspected to have partitioned then it will appear in reachablep according to
Lemma 8. Thus, it will be added to partitionedp[q] and will no more be reachable and
will not appear in disconnected or faulty according to the test conditions on line 11 and
28. 2

Theorem 4 PDN satifies the invariant reachablep = Π − {faultyp ∪ disconp ∪
partitionp}.
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Proof From Lemmata 15 and 16. 2

Lemma 18 Strong Completeness There is an instant after which every faulty process,
not in partition(p) is suspected by all the correct processes in partition(p).

Proof From Lemma 6, we know that the heartbeat of every process q, which is not
in the partition of p, is bounded. Thus, all the processes in partition(p) will time-out
on the failure detection threshold k. Consequently, every process in partition(p) will
consider q as faulty. 2

Lemma 19 Eventual Strong Accuracy There is a time after which correct processes
are not suspected by any correct process processes in partition(p).

Proof From Lemma 7, we know that the heartbeat counter of every process q, which
is in the partition of p, is unbounded. Thus, no process in the partition(p) will time-
out on the failure detection threshold k and consequently, no process will consider q as
faulty. 2

Theorem 5 PDN implements a failure detector which satisfies strong completeness
and eventual strong accuracy.

Proof From Lemmata 18 and 19. 2

A.4 Partition Detection with Global Topology PDG

Lemma 20 Every process that disconnects in partition(p) is seen as disconnected and
only as disconnected by all processes in partition(p).

Proof If a process disconnects then it sends a disconnection message to all the reach-
able processes. The process that receives the disconnection message from DDP exe-
cutes task 2. The process is added to the set of disconnected processes. If the process
was earlier wrongly suspected to have failed instead of being considered disconnected
then it is removed from the set of the faulty processes. Since every process that dis-
connects is seen as disconnected according to Lemma 3. Thus, all the processes that
receive disconnection message, see the sending process to have disconnected and pro-
cess is seen to have disconnected. 2

Lemma 21 Every process q that fails in partition(p) is seen as faulty and only as faulty
by all the processes in partition(p).
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Proof If a process q fails then every process that considers q reachable, will timeout
on the heartbeat of q. Task 1 is executed and thus, the process is considered to be faulty
and will be added to the set of failed processes. A failed process can never be seen
as disconnected because disconnections are announced. A process that fails may be
appended to the set pp because the connecting process had failed before. In this case,
the process will only appear in the set pp and will be removed from the set of reachable
processes, that is Π \ (dp ∪ fp ∪ pp). Thus, a faulty process may append itself into the
set fp or pp. But it will not appear in both of the sets at the same time. 2

Lemma 22 Every process that partitions from a partition(p) is considered to be par-
titioned by all the processes in partition(p).

Proof A process or a set of processes can partition from the network in two ways. Ei-
ther the connecting process fails or disconnects. At every disconnection or failure, the
reachable processes are tested if they have partitioned. Every process that is reachable
from the process is considered to be partitioned and added to the set pp. In this way, ev-
ery process that partitions, that is it is no more reachable due to failure or disconnection
of another process is added to the set pp and thus, considered as partitioned and only
partitioned. 2

Theorem 6 dp ∩ fp ∩ pp = ∅ is maintained by PDG.

Proof From lemmata 21, 20, and 22.

A.5 Reconnections without Preserving Neighborhood
PDN*

In this section, we present a modified version of the partition detector for the scenar-
ios where reconnections do not occur in the same neighborhood. A process can use the
broadcase mechanism for finding its new neighbors in the broadcast networks, e.g, wire-
less networks. A process can also obtain a list of its new neighbors by requesting the
list from a predefined server where broadcast is not possible e.g, GPRS networks. This
means whenever a process reconnects, it may reconnect to a totally new set of processes
or to a new partition. In this case, the properties defined for disconnection detector in
Section 3.3.2 are rendered useless. This is because disconnection completeness may
not be fulfilled if the process reconnects in a new neighborhood after a disconnection.
In Section A.5.1, we devise a new set of properties for disconnection detector which
may not see processes connecting to the same neighborhood. The algorithm is retained
because it satisfies these properties without any changes.
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A.5.1 Modified Properties for DDP

• Disconnection Reliability: If one correct and connected process receives a
DISCONNECT (resp. RECONNECT) message then every correct and connected
process receive the disconnection message. Formally,

∀DC, ∀HDC ∈ DD(DC), ∃t ∈ T , ∀p ∈ disconnected(DC), ∀q ∈
connected(DC), ∀q ∈ partition(p), ∀t′ ≥ t : p ∈ HDC(q, t′)

• Strong Disconnection Accuracy: No process is seen as disconnected by a process
in the partition until it disconnects. Formally,

∀DC, ∀HDC ∈ DD(DC), ∀t ∈ T ,
∀p ∈ parition(q), q ∈ Π−DC(t) : p /∈ HDC(q, t)

A.5.2 Proof for DDP

Lemma 23 Strong Disconnection Accuracy No process p is seen as disconnected by a
process in p’s partition until p actually disconnects.

Proof. This proof is same as that of Lemma 2.

Lemma 24 Disconnection Reliability If one correct and connected process receives a
DISCONNECT (resp. RECONNECT) message then every correct and connected pro-
cess receive the disconnection message.

Proof. In Lemma 3, we proved that if a process successfully sends a message and
the message is received by at least one correct process then the received disconnection
message is received by all the processes in partition(p). 2

Theorem 7 DDP satisfies strong disconnection accuracy and disconnection reliability.

Proof From lemmata 24 and A.5.2. 2

A.5.3 PD − I∗

We present the modified version of the algorithm PD − I called PD − I∗. It inherits
the same proof and properties from algorithm presented in Section 3.3.4. So, we only
list the modified algorithm.
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1 for every process p :
2 initialization :
3 faultyp ← ∅ {Processes suspected to be faulty}
4 disconp ← ∅ {Processes suspected to have disconnected }
5 fchg ← false {boolean stating whether faultyp changes}
6 reachablep ← ∅ {reachablep[q], ∀q ∈ neighbor(p)}
7 pid← 0 {Identifier for partition messages}
8 recv_pid← 0 {Tracks the received pid}
9 for all q ∈ Π
10 oldDp[q]← 0 {oldDp is the previous output of HBDP at p}
11 Dp[q]← 0 {Dp is the output of HBDP at p}
12 partitionedp[q]← ∅ {Processes suspected to be partitioned}
13 cobegin :
14 ‖ task 1 : repeat periodically
15 for all q ∈ Π \ disconp

16 reachablep ← getReachable() \ {disconp ∪ faultyp∪ partitionp} {Get
reachablep fromHBDP}

17 if (Dp[q]− oldDp[q]) ≤ k {k: failure detection threshold}
18 ∧q ∈ reachablep {reachablep[q], ∀q ∈ neighbor(p)}
19 ∧getMode() = ‘c’ then
20 faultyp ← faultyp ∪ {q}
21 reachablep[q]← reachablep[q] \ {q}
22 if q ∈ neighbor(p)
23 for all r ∈ reachablep[q] such that reachablep[r] = ∅ ∧ ∀s ∈ Π \

{q} : r /∈ reachablep[s]
24 partitionp[q]← partitionp[q] ∪ {r}
25 fchg ← true
26 reachablep[q]← ∅ {Empty the corresponding entry}
27 pid← getP id() {Get an identifier for partition message}
28 for all r ∈ neighbor(p)
29 qr_neighbor_send(pid, p, q, partitionp[q]) to r
30 else if (Dp[q]− oldDp[q]) > k ∧ q ∈ faultyp {False suspicion}
31 faultyp ← faultyp \ q
32 fchg ← true
33 partitionp[q]← ∅
34 if fchg then notify new reachablep {Possible new view}
35 oldDp ← Dp {prepare next task’s execution}

Figure A.1: Partition Detector with Neighborhood Topology PDN*
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1 ‖ task 2 : upon disconnection notification of q
2 if p 6= q ∧ q ∈ reachablep

3 if q /∈ faultyp

4 disconp ← disconp ∪ {q}
5 reachablep[q]← reachablep[q] \ {q}
6 if q ∈ neighbor(p)
7 for all r ∈ reachablep[q] such that reachablep[r] = ∅ ∧ ∀s ∈

Π \ {q} : r /∈ reachablep[s]
8 partitionp[q]← partitionp[q] ∪ {r}
9 reachablep[q]← ∅ {Empty the corresponding entry}
10 pid← getP id() {Get an identifier for partition message}
11 for all r ∈ neighbor(p)
12 qr_neighbor_send(pid, p, q, partitionp[q]) to r
13 else if q ∈ faultyp

14 faultyp ← faultyp \ {q}
15 disconp ← disconp ∪ {q} {Do not recalculate partitionedp[q]}
16 else
17 partitionp ← ∅ {Empty the partitioned set for all q}
18 for all q ∈ neighbor(p)
19 reachablep[q]← ∅ {Empty the reachable set on self-disconnection}
20 notify new view reachablep {Possible new view with p only}
21 ‖ task 3 : upon reconnection notification of q
22 if q 6= p
23 partitionp[q]← ∅ {Empty the partitioned set for q}
24 disconp ← disconp \ {q} {Remove q from disconp}
25 if q ∈ neighbor(p)
26 reachablep[q]← {q} {Initialize if p ∈ neighbor}
27 else
28 for all q ∈ neighbor(p) {given at configuration time}
29 reachablep[q]← {q}
30 partitionedp[q]← ∅
31 notify new view reachable(p)
32 ‖ task 4 : upon receive(pid, q, r, part) from s
33 if recv_pid 6= pid
34 for all t ∈ part such that t /∈ faultyp

35 partitionp[r]← partitionp[r] ∪ {t} {faultyp ∩ partitionp = ∅}
36 reachablep[s]← reachablep[s] \ {t} {Remove from reachablep

of sending process}
37 for all t such that t ∈ neighbor(p)
38 qr_neighbor_send(pid, q, r, part)
39 recv_pid← pid
40 coend

Figure A.2: Partition Detector with Neighborhood Topology PDN* (Ctn’d)
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A.6 Optimizing Failure Detection

Failure detection is a service which is necessary for a distributed system. But at the
very same time its cost should not be too high, that is the failure detection should detect
failures with as much efficiency as possible. There are various techniques, we think,
can ameliorate the detection of failures in a distributed system. We present them in the
following sections.

Reachability and neighborhood information can be exchanged as route information
is exchanged by Internet routers in order to optimize the route information. One of the
advantages that can be obtained from is by exchanging the neighbors information in
order to avoid sending partition messages to all the processes. Every process p may
know the neighbors of each process. In case of a disconnection or a failure of a pro-
cess, p can infer the partitioned processes from reachability information combined with
neighborhood information.

One way to rectify the problems of failure detection in large-scale environments is
to divide the network in different groups based on the underlying topology. As seen
in Section ??, these groups are, however, built on the knowledge of network topology
in a way that the topology information is already known. The idea we present here,
although only theory, suggests the use of topology information at the runtime in order
to adapt the failure detection. This can be a good idea in wireless networks where the
topology is not known at the beginning and where reducing the number of messages in
the system consumes lesser battery and network resources, to mention a few. Hierar-
chical failure detection should be designed in such a way that the processes with most
number of neighbors should be designated as group leaders. For example in Figure 3.6,
the failure detection can be mended, after the first topology discovering message, such
that processes u, v and w should be within the local scope of p, and r, s and t in the local
scope of q. Processes p and q, which make the global scope, only exchange their heart-
beats or the heartbeats of the all the members of the group in one message to decrease
the message complexity. The local and global scopes may be inferred by analyzing the
reachability information at each process.

xiii


