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Abstract

The intrinsic features of wireless communications remain the key factor that still
limits the performance of mobile applications. It is therefore crucial to provide enabling
middleware technology to mask wireless communications limitations and to ease mo-
bile and recent pervasive, applications development. This article describes a frame-
work, called Domint, which adapts legacy CORBA applications so that they can keep
working when weakly connected or even disconnected. A proxy object represent-
ing the remote server object called “disconnected object”, is deployed automatically
within the client execution unit. Connectivity management relies on a reconfigurable
hysteresis mechanism to avoid too frequent state transfers and switchings between
the disconnected object and the remote server object. Application-transparent switch-
ing is provided at the middleware level through the use of portable interceptors. We
show performance results of a prototype on both PC (with Windows 2000 and Redhat
Linux) and an iPAQ PDA (with Windows CE and Linux Familiar).

1 Introduction

Since the early 90’s, the field of mobile computing has witnessed tremendous research
and technological advances. With wireless communications and mobile hand-held or
wearable devices becoming a reality, new applications where users can have access to
information anytime, anywhere are made possible. In the future IT society, mobility will
be the rule and no longer the exception. The emergence of the new field of pervasive
computing as a successor to both distributed systems and mobile computing enforces
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this vision: environments will be “saturated with computing and communication capability,
yet gracefully integrated with human users” [24].

Today, distributed applications development is facilitated by the use of standard mid-
dleware technology providing services such as identification, directory, security or event
notification. In 2001, the OMG adopted a specification for Wireless Access and Termi-
nal Mobility in CORBA [18]. This specification provides a support for mobility of users
at the middleware level. The key features of the specification include the mobile Inter-
operable Object Reference (IOR), which hides the mobility of invoked objects hosted on
mobile terminals, and the GIOP (General Inter-ORB Protocol) tunnelling protocol, which
enables hand-off and message forwarding in a transport-independent fashion. Wireless
CORBA allows applications, both client and server, to reside on a mobile terminal that
does not have a fixed network access point. This technology is already available. Our
work relies on Wireless CORBA for handling transient network disconnections; however
additional mechanisms are still required to deal with long-time disconnections and these
will be described in this article.We propose to benefit from state-of-the-art middleware
technology and validate our approach by demonstrating the feasibility of running an Ob-
ject Request Broker (ORB) compliant with CORBA 2.4 on a Personal Digital Assistant.
In this article, we focus on the client mobile terminal and demonstrate that some current
hand-held devices and a fortiori future mobile devices can embed our framework, which
uses a full-length CORBA implementation.

Our main contribution is to propose a framework, called Domint, which adapts legacy
CORBA applications so that they can keep working even when weakly connected or dis-
connected. Weak connectivity results from intermittent communication, low-bandwidth,
high-latency or expensive networks [13]. We distinguish between two kinds of disconnec-
tions: voluntary disconnections when the user decides to work on their own to save bat-
tery life or communication costs, or when radio transmissions are prohibited, e.g. aboard
a plane; and involuntary disconnections due to physical wireless communication break-
downs such as when the user has moved out of reach of a base station. Obviously,
connectivity semantics in a mobile environment is different from what is expected in a
connected environment. We consider that this difference is acceptable as long as the
user always knows what the connectivity level is, via a graphical user interface for in-
stance. The primary focus of Domint is on the mechanisms allowing work continuity how-
ever the connectivity level. We do not address data consistency and conflict resolution in
this article.

The key ideas supported by the Domint framework are the following. A proxy object
representing the remote server object and called a disconnected object, is deployed auto-
matically within the client execution unit. Being an object means that both data and code
are present thus the benefits of the mobile code technology can be valuable [5]. Connec-
tivity management relies on an hysteresis mechanism to avoid too frequent state transfers
and switchings between the disconnected object and the remote server object. For this
purpose we introduce a first-class partially connected mode, in addition to the connected
and disconnected modes. Application-transparent switching is provided at the middleware
level (rather than at the operating system level like in Odyssey [14]). This is in line with the
end-to-end argument [22] stating that a functionality is often best implemented at a higher
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layer at an end system to match application’s specific requirements [26]. This comes with
all the advantages of language, operating system and network interoperability of CORBA
middleware technology.

The remainder of this article presents the Domint architecture, implementation and
prototype performance. Section 2 develops the design rationale and overviews the ar-
chitecture. The connectivity management mechanism is detailed in Section 3. Section 4
describes the way transparent switching between the different modes is performed, while
Section 5 is dedicated to the design of disconnected object and the interactions with the
logging mechanisms. Section 6 evaluates the performance of a prototype using an email
browser as application example. In Section 7 we survey related work, and we conclude
in Section 8.

2 Design Rationale and Architecture

In a classical distributed application with strong connectivity, the graphical user interface is
loaded on the mobile terminal and the server objects are hosted on machines of the wired
network. Keeping working while disconnected implies transferring some elements from
the servers to the mobile terminal before losing connectivity, logging operations or state
changes during the disconnection, and re-integrating when re-connecting. This section
first presents the design rationale and then the architecture of Domint.

2.1 Design Rationale

The weak connectivity of mobile environments in conjunction with the relative resource
poverty of hand-held devices leads to two main trade-offs: hardware-dependent non-
interoperable system support with limited services versus full-service general interoper-
able system support; and autonomous applications versus inter-dependent distributed
applications.

Even in the CORBA world that provides interoperability intrinsically, the first trade-off is
exemplified by the existence of the minimum CORBA specification [16] as a subset of the
full-length CORBA specification including numerous services, facilities and domain spec-
ifications. In our work, CORBA is chosen for its ability to be used in multiple domains and
for providing extensibility mechanisms such as portable interceptors to build application-
transparent services (cf. Section 4). The prototype presented in Section 6 demonstrates
that some current hand-held devices and a fortiori future mobile devices can embed our
framework, that includes a complete ORB. In addition, in order to make the functionality
of application server objects available even when disconnected, proxy objects that we
call disconnected objects are created on the mobile terminal. A disconnected object is
a CORBA object which is similar in design and implementation to the remote object, but
specifically built to cope with disconnection and weak connectivity. It is the application de-
signer’s responsibility to balance between a straightforward design and a more complex
one that adapts better to connectivity variations. Rover [9] makes a distinction between
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per-application caches of Relocatable Dynamic Object (RDO) and a global cache. Dis-
connected objects, being CORBA objects, are accessible from anywhere, so from all the
applications of the mobile terminal. Section 5 gives patterns for the development of such
disconnected objects, even if this is not the main focus of this article. Another rationale for
letting the disconnected object being a CORBA object is that it can use standard CORBA
services such as naming, event notifications or transactions independently of the Domint
framework.

The trade-off between autonomous applications and interdependent distributed ap-
plications is well explained in [23] where the range of adaptation strategies results in
three design alternatives: no system support (laissez-faire strategy); collaboration be-
tween the applications and the system (application-aware strategy); and no change to
the applications (application-transparent strategy). Previous work [9, 12, 14, 19, 28] has
demonstrated the possibility that a system can provide good performance even when the
network bandwidth varies over several orders of magnitude, but shows also the need for
application intervention to improve agility (speed and accuracy) in reaction to changes in
resource availability and to specify fidelity in terms of data consistency.

In our work, in order to deal with multiple applications concurrently, some parts of re-
source management and log management (respectively the management of resources
such as network bandwidth and the propagation of logged requests) are centralised and
application-transparent. In addition, these services are achieved by CORBA objects and
accept requests from the application for better adaptation. The application-aware re-
source management service abstracts to applications in the CORBA world connectivity
information provided by the operating system. More precisely, it accepts requests to mod-
ify the per-application perception of which resources and resource levels correspond to
bad, weak or strong connectivity, thus improving agility. The application-aware log man-
agement service is run by a CORBA object able to act as a representative of the discon-
nected objects during the re-transmission of the logged requests. It also accepts some
code from the latter objects in the form of CORBA Objects By Value (OBV) to interpret
the logged requests and to perform for example, log compaction, hence improving fidelity.

2.2 Architecture

The architecture of Domint is depicted in Figure 1. The two sub-figures present UML-like
collaboration diagrams of the client sending the first request to a remote object when the
connectivity is strong and then sending a request in the case of weak connectivity, re-
spectively. In the rest of the section, the different entities of the architecture are presented
and then the collaborations are explained.

2.2.1 Role of Domint entities

All the rectangles in Figure 1 represent CORBA objects. The portable interceptor PI is
also a CORBA object but a local one, that is to say, it cannot be called outside of its con-
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Figure 1: The Domint architecture: (a) interactions during the first call to a remote object in
the case of strong connectivity, corresponding to the connected mode; the next client’s requests
sent in the connected mode do not generate the requests italicised; (b) interactions during a call to
the same remote object in the case of weak connectivity, corresponding to the partially connected
mode. The remote object is hosted on a machine of the wired network while all the other entities
are executed on the mobile terminal.
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taining execution entity1. All the requests from and the replies to the client are intercepted
by the PI. On request sending, the PI acts as a switch between the disconnected object
DO, and the remote object RO. On response reception, the PI detects possible commu-
nication failures between the sending of the request and the reception of the response.
The client user interface (Client in the diagrams) and the PI belong to the same execu-
tion entity whereas the disconnected objects manager DOM, the resource manager RM,
the connectivity manager CM, the DO and the log manager LM are grouped in another
execution entity, also on the mobile terminal. On the other hand, in our use case, the ex-
ecution entity comprising the remote object is hosted on a machine of the wired network.
The execution entity of the managers is launched before that of the client and can handle
multiple applications. Except the connectivity manager, the managers are single objects.

Either the client is a legacy application to which disconnected objects are associated
via application-transparent portable interceptors or it obtains the reference of the DOM
for example from a file stored on the mobile terminal. The DOM is the entry point to find
the other managers. The RM is a factory of CMs. A CM accomplishes the abstraction
of connectivity information related to one resource. The policy currently implemented
associates a CM per logical link between a client and a remote object; it is the finest
granularity at the middleware level. We can easily imagine other policies such as one CM
per application or one CM per remote host. To simplify the first design, the DO and the
corresponding CM are created on PI’s demand during the first call to the remote object
and stay alive till the end of the client’s execution. When to create DOs and for which
remote objects is an open issue not treated in this article.

2.2.2 First call handling in connected mode

Figure 1-a shows the interactions during the first call to a remote object in the case of
strong connectivity, in the connected mode. In the diagram, each numbered line with a
forward arrow is a CORBA request, that is a synchronous call “à la” RPC[2]. The requests
1 and 3 are particular cases: request 1 is intercepted by the PI that does not interpret it but
lets the ORB transmit it as request 3 to the remote object. Between these two requests,
the following happens.

The PI searches for the reference of the CM in its internal map and concludes that it is
the first call to this remote object by this client. The PI asks the DOM (2.1) the reference
of the RM, from which it will get the reference of the CM that is going to manage the
connectivity (2.2). The RM searches for the reference of the CM in its internal map and
concludes that it is the first call to this remote object by this client. The RM creates
the DO (2.2.1) and the associated CM (2.2.2). During its construction, the DO gets the
references of the RM and the LM by calling the DOM (2.2.1.1 and 2.2.1.2) and provides
the LM (2.2.1.3) with data and code in the form of a CORBA OBV to interpret future DO
requests drawn in Figure 1-b. Having the references of the CM, the PI decides where
the client’s request must be issued (cf. Section 4 for the decision table). In this scenario

1In the article, an execution entity is an address space used by several threads and containing a single
ORB instance.

6



where the connectivity is strong, PI lets the mobile terminal access the remote object for
this client’s request (3).

In the connected mode, like in Coda [13], we “don’t punish strongly-connected clients”:
they experience no more than the delay of the interceptions on the round-trip-time of their
calls. As a result, the DO cannot keep up to date with the latest requests. Therefore, the
DO periodically calls the remote object for an incremental state transfer (4.2). Of course,
the DO tests the connectivity before by calling the CM (4.1.2). If the DO doesn’t know the
CM reference, it asks for it first (4.1.1). The next client’s requests sent in connected mode
do not generate the requests italicised in Figure 1-a.

2.2.3 Weak and null connectivity handling

When the connectivity becomes weak or null, forcing the client to enter into the partially
connected or disconnected modes respectively, the PI indicates to the ORB to transmit the
client’s requests to the DO as in Figure 1-b. The client’s request is intercepted by the PI
(1). The PI obtains the connectivity information from the CM (2) and lets the ORB transmit
the client’s request to the DO (3). The requests that follow are application-dependent
because the DO is built by the application designer. For the sake of clarity, we give two
possible ends to this scenario: 5.a and 5.b (cf. Section 5 for a more insightful discussion
about the role of the DO and the LM).

If the client’s request is interpreted as providing information to the remote object, case
5.a, the DO updates its state and prepares a new request, called a DO request, for the
remote object. The simplest case is when the DO request is equivalent in parameters’
content and operation name to the client’s request. Next, the DO encodes the DO request
in a data container called a CORBA ����� and sends the ����� to the LM (5.a.1). Periodically,
the LM decodes the logged request with a method of the OBV provided previously by
the DO in Figure 1-a, request 2.3, tests the connectivity (5.a.2.1) and then if possible
—i.e. partially connected mode—, forwards the DO request to the remote object.

The second case 5.b happens for example when the client’s request is interpreted by
the DO as a request that is going to return information to the client. If the size of the log
given by the LM (5.b.1) is null and the connectivity information obtained from the CM (5.b.2)
permits wireless communication with the remote object —i.e. partially connected mode—,
the DO first tries to load the information requested by the client from the remote object
(5.b.3), and next, updates its state before returning the information to the client. Otherwise,
the DO returns to the client the information which it got during the last incremental state
transfer and which it is keeping up to date with the client’s last requests.

3 Connectivity Managers

Connectivity managers are entities dedicated to the estimation of network connectivity.
Domint follows the end-to-end argument [22] in taking the “highest” entity —i.e. CORBA
objects— that can do the estimation without doing redundant work in several entities. A
connectivity manager handles a logical connection between a client on the mobile terminal
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and a remote object on the wired network, however many the number of wireless physical
connections that link the two objects at a given time and regardless of whether the logical
connection corresponds to different wireless physical connections over time. Connectivity
managers rely on network monitoring entities that effectively measure the resource levels:
network activity, available bandwidth, transmission cost, round-trip time. . . The monitoring
can be provided by non-CORBA entities, and preferably, by the operating system. Con-
nection monitors can be organised, for instance, in hierarchical structures controlled by
a resource manager; the Domint’s resource manager could be the representative in the
CORBA world of this resource manager.

The design rationale of connectivity managers is many-fold. Firstly, as already ex-
plained in Section 2, in order not to “punish strongly-connected clients” [13], while strongly
connected, client’s requests go directly to the remote object. Secondly, in order to “insu-
late applications from insignificant variations in resource level” [14], an hysteresis mecha-
nism is designed; it is detailed in the next paragraph. Thirdly, in order to “expose network
connectivity to applications and permit applications” and users “to be involved in con-
nectivity related decisions” [9], users’ interfaces can set the parameters of the hysteresis
mechanism and can obtain and display connectivity information. Of course, users can dis-
connect or re-connect voluntarily by invoking operations ��������� � �	�
����
�� or ���
��� � �	�
����
�� ;
these calls are not addressed to the connectivity managers, but to the remote objects,
and are intercepted and treated by the PI (cf. Section 4).

3.1 Hysteresis mechanism

The connectivity managers rely on a hysteresis mechanism for smoothing variations in
network resource availability (cf. Figure 2-a). The hysteresis defines three modes: dis-
connected when the request is only performed by the disconnected object on the mobile
terminal; connected when the request is only performed by the remote object on the
wired host; partially connected when the request is performed by the disconnected object
which also transmits the call to the remote object. Since the disconnected object does
not perform the operations when the client is (directly) connected to the remote object, it
will become out-of-date. So, when going from connected to partially connected, a state
transfer is necessary. When the client is either disconnected or partially connected, the
local copy processes all the operations and is up-to-date, except for messages that were
recently received by the remote object. Then, when going from partially connected to
connected, a flushing of the log is necessary.

What we define as the “ping-pong effect” occurs when small variations around a re-
source level imply back and forth state transfers or log flushings. In [7], Harbus points
out a similar effect, the “boomerang effect”, in the context of process migration. The
common solution to the latter problem is solved using two thresholds. In our case, since
the situation occurs in two cases —i.e. state transfer and log flushing—, an hysteresis
mechanism, which includes four thresholds, is necessary. On the diagram 2-a.1, when
the resource level increases and is lower than ��������� (resp. ����������� ), the mobile terminal
is disconnected (resp. partially connected). When the resource level decreases and is
higher than ��������� �!� � (resp. ������� ��� � ), the mobile terminal is connected (resp. partially
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Figure 2: The hysteresis of the connectivity management: (a) the hysteresis defines three
modes and without the two diagrams there still exists a risk of the “ping-pong effect” around the���������	��
��

value and around the 
 ��
���� value; (b) the UML state diagram of the hysteresis shows
the assignment of the mode whether or not the client asks for a voluntary disconnection and the
assignment of the � ����
������ boolean variable which indicates whether the disconnected object and
the log manager can transmit the DO requests to the remote object.

connected). Without the diagram 2-a.2, observe that there would still exist a risk of the
“ping-pong effect” around the � ������� ��� � value and another one around the ��������� value.
Thus, when the connection arrives in state � from state � (resp. in state � from state � )
and the resource level becomes higher than � ����������� � (resp. lower than ��������� ), the mode
remains “partially connected” up to the � ��������� value (resp. down to the ������� ��� � value).

The UML state diagram of the hysteresis is drawn in Figure 2-b. The state which
immediately follows the initial state and which immediately precedes the final state is
state � , so that each client’s first request to a remote object and the end of the application
—i.e. corresponding to a ���
�����	� � 
�� call on the ORB instance— occur while the mobile
terminal is strongly connected. The hysteresis keeps evolving whether or not the client
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asks for voluntary disconnection. On the contrary, whether the disconnected object and
the log manager can transmit the DO requests to the remote object depends on voluntary
disconnection. This is indicated by the � �!��������� boolean variable.

3.2 Reconfigurability of the hysteresis

The versatility of the hysteresis mechanism allows to cater for different kinds of applica-
tions and for various environment characteristics. The choice of the value of the different
thresholds ( ������� ��� � , ��������� , ����������� , � ����������� � ) must be done carefully and depends on
the type of resource. Let us take as an example the available bandwidth; threshold values
then represent a percentage of this bandwidth. Small threshold values (shifting the hys-
teresis to the left) correspond to a pessimistic case where the connected mode is rarely
used, while high values (shift to the right) represent an optimistic assumption where par-
tially connected and disconnected modes are not often visited. We can also configure a
large hysteresis (small values for ������� �!� � and ��������� and large values for � ������� ��� � and
� ��������� ), priveledging the partially connected mode to deal with an instable environment
where weak connectivity is the rule. On the opposite, having a narrow hysteresis with
very close threshold values is not recommended. This would mean that the partially con-
nected mode is traversed very rapidly, at the risk of a ping-pong oscillation between the
two extreme modes. Moreover, the agility of Domint and its ability to adapt to environ-
ment changes such as a sudden unexpected disconnection is limited by the rapidity of
the underlying ORB in detecting a communication failure.

Finally, the hysteresis is reconfigurable meaning that thresholds’ value can be changed
dynamically by the application, or on a decision of the user via a graphical user interface.
This enables Domint to adapt easily to various operating scenarios such as transparent
network roaming and long disconnection management as presented in [4].

4 Transparent Switching between Modes

Portable interceptors is the CORBA mechanism used by CORBA services to transparently
add extra-functional services to applications. Section 4.1 gives a short introduction to
CORBA portable interceptors and Section 4.2 develops the use of portable interceptors
in the Domint framework, which adopts this approach of application-transparent service
support.

4.1 Portable Interceptors Use

“Portable interceptors are hooks into the ORB through which ORB services can intercept
the normal flow of execution of the ORB” [15]. Portable interceptors are instantiated and
registered to an ORB during the creation of the ORB instance by invoking the method��� ��� � � � ��
�� .

Client-side interceptors introduce five interception points in a request and reply se-
quence on the client side. Two of them take place before a request is sent by the ORB.
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The last three allow the reply to be parsed: normal (successful) or exceptional, or other
than normal and exceptional, before the control returns to the client. When registered in
an execution entity, a client-side interceptor acts on every request and reply, regardless
of which types of components the IORs have. Nevertheless, client-side interceptors can
parse the IOR profile of the target object, find a specific component, read the data included
in the component, and apply special treatments based on this information, hence for in-
stance distinguishing between requests to the remote object (e.g. request 1 of Figure 1-b)
and requests to the managers or the disconnected objects (e.g. request 2 of Figure 1-
b). In addition, client-side interceptors can know the identity of the object adapter which
manages the sender, thus for instance distinguishing the client’s request (e.g. request 1
of Figure 1-b) from requests sent, for example, from the interception points (e.g. request
3 of Figure 1-b).

4.2 Transparent Switching between Modes

We now detail the way we perform the transparent switching between modes using IOR
and client-side interceptors. When the server on the wired host starts, an IOR interceptor
is registered at the creation of the ORB. Therefore, some or all of the server’s objects
can have the “disconnected mode” policy; this is up to the application. When the user’s
graphical user interface (GUI) starts, an IOR interceptor and a client-side interceptor are
registered at the creation of the ORB. The IOR interceptor of the client is the same as
the server’s. In order to treat every request to disconnected objects, all the disconnected
objects created on the mobile terminal possess the “disconnected mode” policy. Depend-
ing on the state changes of the connection, the client-side request interceptor can build a
CORBA �	�!��� ����� � � ��� �
��� exception indicating the change of request target IOR and raise
that exception. The exception is automatically managed by the ORB. The effect is a trans-
parent switching of target object: From the remote object to the disconnected object and
vice versa.

Table 1 gives the decision table contained in the PI for the transparent switching be-
tween modes. Events activating the decision are client’s requests. The first two inputs are
boolean variables: � ��� � ������� � and �����
�
��� , indicating whether the user asks for a voluntary
disconnection and whether the ORB sent the previous client’s request to the remote ob-
ject, respectively. The next two inputs are the mode and the name of the operation ( ����� �����
in the table). The actions to perform are on the right side of the table: reversing the
two boolean variables � ��� � ������� � and �������
��� , and raising of �	�!��������� � � �	� �
��� exceptions
( �	�!��������� in the table). Raising a � �!��������� � � ��� �
��� exception means re-transmitting the
same client’s request, with the variables � ��� � ������� � and �������
��� that may have changed,
and also intercepting the latter client’s request. When actions include a throw action, it
is the last one. In order to disconnect (resp. re-connect) voluntarily, the application calls
the � ������� � �	�
����
�� (resp. ���
��� � �	�
����
�� ) operation on the remote object. These calls are
both issued on the disconnected object: the switch is done before the execution of the
��������� � �	�	����
�� operation and the ���
��� � �	�
����
�� operation is executed before the switch
—i.e. the switch is performed during the next call. Like the other RPC-like calls, these op-
erations return to the client, meaning that the disconnection or re-connection is effective.
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reverse reverse throw throw
voluntary direct mode opName voluntary direct Forward Forward

(DO) (RO)
disconnect

d reconnect +
other
disconnect

true false p reconnect +
other
disconnect

c reconnect (*1) +
other
disconnect + + +

d reconnect
other + +
disconnect + + +

true p reconnect
other (*2) + +
disconnect + + +

c reconnect
other

false disconnect +
d reconnect

other
disconnect +

false p reconnect
other
disconnect +

c reconnect
other (*1) + +

Table 1: The decision table of the transparent switching in the PI: ’d’, ’p’ and ’c’ stands for
’disconnected mode’, ’partially connected mode’ and ’connected mode’, respectively; (*1):
the ���
��� � �	�
����
�� operation is called on the DO so that it tries to flush the log pessimistically
and the switch will occur during next call if the mode permits it; (*2): the PI asks the DO
either to perform an incremental state transfer or to switch silently without contacting the
remote object (RO in table).

In addition, the decision table allows the client to send any sequence of ��������� � �	�
����
��
and ���
��� � �	�
����
�� operations.

5 Disconnected Objects and the Log Manager

The two previous sections, Section 3 and Section 4, developed basic application-
independent mechanisms. On the contrary, as already stated in Section 2, the design
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of disconnected objects is highly application-dependent. This section sketches succinctly
patterns for, and open issues (left as future work) on, the design of disconnected objects
and remote server objects in the three different modes, and summarises the role of the
log manager.

5.1 Connected mode

In the connected mode,client’s requests are directly sent to the remote object. Hence, the
state of the disconnected object on the mobile terminal does not evolve. The advantage
of this mode is that there is no indirection and the state of the disconnected object can
be empty, thus saving memory. When the mobile terminal becomes partially connected,
the client-side request interceptor calls � ������� � �	�
����
�� on the disconnected object which
in turn calls � ������� � �	�
����
�� on the remote object to transfer the state if the mode permits
it. The remote object encodes its state in a CORBA ����� data container. In order to sup-
port rapid transitions from the connected mode to the disconnected mode, disconnected
objects periodically call ��������� � � �
����
�� on the remote object. We could imagine other
hoarding policies such as application-triggered or system-triggered. These state trans-
fers can of course be incremental. In addition, note that disconnected objects always try
to inform remote objects before disconnecting, hence allowing them to adapt concurrency
of accesses while some clients are disconnected and to prepare future reconciliations.

5.2 Partially connected mode

In the partially connected mode, the operations are executed both locally and remotely, in
an order depending on the parameters semantics. If the prototype of the operation con-
tains only � � parameters, the operation is executed locally first and then remotely so that
the disconnected object keeps up to date. If the prototype contains only � � � parameters
and/or a return type, the operation is executed remotely first and then locally. The con-
sequence is that the disconnected object keeps up to date with the data loaded from the
remote object before it responds to the client. Regardless the prototype of the operation,
before forwarding a request, the disconnected object calls the connectivity manager to
know if a recent disconnection has occurred, in which case, the request is logged and the
operation performed locally only. The mixing of � � , � � � � � , and � � � parameters and of a
return value is left as an open issue in our first study. Another open issue is the support of
exceptions raised by the servers and sent as responses to the clients. While partially dis-
connected, in order to be up-to-date, disconnected objects may keep periodically asking
remote objects for new state changes.

5.3 Disconnected mode

In the disconnected mode, the operations are executed only locally and possibly logged.
If the prototype of the operation contains only � � parameters, the operation is logged. If
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the prototype contains only � � � parameters and/or a return type, whether or not the oper-
ation is logged depends on it changing the state of the target object changes. The mixing
of parameters ( � � , � � � � � and � � � ) and of a return value, and the raising of exceptions
raises the same difficulties as mentioned in the partially connected mode. In addition,
the transition between the disconnected mode and the partially connected mode leads
to the replay of the operations logged by the log manager. Clearly, the execution when
disconnected may not be equivalent to an execution while connected. This is acceptable
provided that the connectivity information is visualised by an iconic image in the user’s
GUI. In case of voluntary disconnection, the ���
��� � �	�
����
�� operation is called on the dis-
connected object so that it tries to flush the log pessimistically, that is in an atomic action;
trickle re-integration “à la” Odyssey [23] is still an open issue in object-oriented systems.

5.4 Log Management

In the partially and disconnected modes, we log and propagate operations instead of
state contents like in [19]. This facilitates the reconciliation of the disconnected and re-
mote objects at reconnection time. Moreover, we consider that the remote object cannot
be accessed concurrently by other clients while the current client is disconnected. Work
is in progress to remove this assumption. In this study, the reconciliation algorithm is kept
simple since the transition between the disconnected mode and the partially connected
mode corresponds to the replay of the operations logged by the local copy. We are cur-
rently working on designing reconciliation algorithms well-suited to mobile environments
for ensuring data consistency. The Domint framework will allow us to test and evalu-
ate various approaches such as optimistic replication [11] or operation transforms [29].
Checkpointing and recovery techniques are well suited to deal with voluntary disconnec-
tions. But it is still an open issue for unexpected disconnections [3]. The intermittent errors
that may frequently occur in wireless networks require failure detection mechanisms dif-
ferent from that in traditional networks. Likewise, the checkpointing mechanism in itself
should deal with both disconnection types.

The interpretation of the logged requests (DO requests in Section 2) is application-
dependent. The code that can parse and forward the logged requests is provided at
the beginning of the execution by disconnected objects via object by values (OBV) that
we name DO request interpreters. Disconnected objects and DO request interpreters
can log and propagate either operations or state changes. The concept of OBV was
introduced in the CORBA 2.3 standard. It enables the passing of an object by value
rather than by reference. The log manager receives as an � � parameter a DO request
interpreter, that is a description of the state and the code of the object responsible for the
interpretation of future logged requests, and a new instance is automatically created in the
execution entity of the log manager. Provided that all the DO request interpreters inherit
the same abstract interface, the log manager is application-independent. In addition to
operations for the parsing and the forwarding of logged requests, the abstract interface
could include operations like log compaction “à la” Coda [13]: Log compaction in object-
oriented systems is an open issue. Finally, an important limitation of the current design is
the lack of support of return values for logged operations. A solution, similar to the QPRC

14



call-backs in Rover [10], may be based on CORBA call-backs. We have not focused on
call-backs for now because we considered the client-side applications as legacy parts.

6 Performance Results

We have conducted performance measurements on different software and hardware com-
binations: laptop PC running GNU/Linux RedHat 7.2 or Microsoft Windows2000, and
iPAQ PDA (206 Mhz, 16 MB of ROM and 32 MB of RAM) running Microsoft WindowsCE or
GNU/Linux Familiar 0.6. For wireless communications, a Compaq IEEE 802.11b WL110
card at 11Mbps was plugged in all devices and we used a Compaq IEEE 802.11b WL100
+ WL300 software base station. Each test was run 1000 times in order to obtain meaning-
ful averages with confidence intervals computed at 0.99. A garbage collection occurred
before each run on the client and server sides in order to have no interference with pre-
vious operations. All the programs were written in Java and we used IBM J9 v1.2.22.
Measurements were also performed with Classic VM Blackdown-1.3.1-RC1 on Familiar,
and the latter virtual machine proved to be less efficient for small-size requests (up to
70%) but much more efficient for medium-size and large-size requests (up to 270%).

Firstly, we present an evaluation of basic processing times independently of Domint.
We then analyze the performance results of Domint and extract the costs of its different
constituents using linear regression.

6.1 Basic measurements

We have measured basic times to process simple requests3 using TCP sockets, and
ORBacus 4.1.0 without interceptors and with interceptors doing nothing (cf. Table 2). For
these experiments, the Domint software is not involved.

As expected, it appears that local processing is in general better than remote pro-
cessing, except on WindowsCE for small-size requests of 1B and 128B. When comparing
results for WindowsCE and Familiar, there is a difference according to the request size
and to the use of an ORB or not. For local TCP requests, Familiar is significantly bet-
ter (from 80% to 90%). Using an ORB, WindowsCE gives smaller response times for
messages of 1B and 128B while Familiar is better for large-size requests, the difference
ranging from 40% to 75%. The cost of using an ORB can be evaluated by comparing TCP
and ORB (without interceptors) figures. The impact of the ORB is smaller under Familiar.

Another interesting measurement concerns the overhead of portable interceptors.
Comparing the results without interceptors (lines 3–4 and 9–10) and with interceptors
(lines 5–6 and 11–12, respectively), we observe an overhead ranging from 7% to 13% on
Familiar and ranging from 1% to 33% on Windows, the maximum overhead being obtained
for small messages. Although not negligible, the cost of interceptors appears reasonable
with respect to the message size. The overhead we obtain is smaller than in [30]; in this

2It works with no difficulties on all these software and hardware combinations.
3For more clarity, only times with ’ ��� � ’ parameters for iPAQ are shown.
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iPAQ - MS WindowsCE

Experiment 1 B 128 B 16 KB 128 KB 512 KB 1 MB
1. ����� – � 7.0 � 0.0 7.1 � 0.0 35.6 � 0.1 243.6 � 0.3 951.8 � 0.6 1904.0 � 0.5
2. ����� – � 3.7 � 0.1 4.2 � 0.1 54.1 � 3.1 446.5 � 10.0 1751.1 � 17.9 3487.5 � 23.2
3. �
	��
� – � 17.9 � 0.2 17.8 � 0.2 48.6 � 0.2 296.8 � 0.3 1241.3 � 0.4 2306.3 � 0.5
4. �
	��
� – � 12.1 � 0.1 13.8 � 2.0 65.4 � 3.4 456.2 � 6.6 1870.0 � 17.1 3707.3 � 21.6
5. �
� – � 21.6 � 0.2 21.9 � 0.2 53.3 � 0.2 300.9 � 0.3 1270.0 � 0.4 2341.6 � 0.5
6. �
� – � 16.3 � 1.9 17.4 � 1.9 68.1 � 2.9 462.8 � 7.3 1898.7 � 11.6 3707.8 � 14.9

iPAQ - GNU/Linux Familiar

Experiment 1 B 128 B 16 KB 128 KB 512 KB 1 MB
7. ����� – � 0.9 � 0.0 1.0 � 0.1 3.7 � 0.1 28.2 � 0.7 105.7 � 1.7 223.2 � 1.7
8. ����� – � 4.6 � 0.0 5.1 � 0.0 62.3 � 3.3 436.7 � 5.7 1737.5 � 5.7 3494.6 � 23.2
9. �
	��
� – � 21.5 � 0.6 20.8 � 0.5 29.6 � 0.5 83.9 � 0.2 269.4 � 0.2 531.4 � 0.2
10. �
	��
� – � 49.5 � 0.7 49.5 � 0.6 68.9 � 6.4 461.7 � 3.7 1810.1 � 5.2 3702.5 � 7.5
11. �
� – � 24.5 � 0.5 23.1 � 0.4 32.5 � 0.4 87.8 � 0.2 282.1 � 0.2 554.8 � 0.5
12. �
� – � 53.1 � 0.9 56.1 � 0.6 69.4 � 3.2 464.2 � 3.7 1818.7 � 5.4 3712.3 � 7.5

Table 2: Basic times (ms) for processing local (client and server collocated on the iPAQ)
and remote (server on a remote wired laptop) requests of different sizes (bytes) on iPAQ
running Microsoft WindowsCE (lines 1–6) or GNU/Linux Familiar (lines 7–12); ’ ����� ’,
’ ������� ’, and ’ ��� ’ stands for ’ � ��� sockets’, ’ORB without client-side interception’, ’ORB with
client-side interception doing nothing’, respectively; ’ � ’ and ’ � ’ stands for ’client and server
collocated on the iPAQ’, ’server on a remote wired host’, respectively.

paper, the authors conducted experiments using two dual-processor UltraSPARC-2 work-
stations running SunOS 5.7 and showed a performance penalty of 26% with interceptors
doing nothing.

6.2 Domint measurements

We now analyze the performance results of Domint. We do not detail all the measures
obtained as our objective is to identify the overhead of each Domint constituent. We
performed a linear regression analysis for this purpose.

According to the collaboration diagrams depicted in Figure 1, the performance figures
presented in Table 3 and depicted in Figure 3 can be partly deduced from the ones given
in Table 2 using the following equations:

��� �"!#!%$'&)(*��� �"!+!,$
-.(/��01-2$
3
$'4657�"8:9
;<��01-2$'=>;?���6�@!#! AB!#C�9
� D7EF8"9G$'&H(/��� �"!+!,$'&I;<��01-2$
3J;LKNM.�O8OP@Q"RSP:4 9 TU!#9V8OE W�X
� D7EF8"9G$
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where:

� ��01-2$
3
$'4657�"8:9
is the time for issuing small-size local request using the ORB

� ��� �"!+! AB!#C�9
is the computation time for the management of the hysteresis of the con-

nectivity management

� �O8OP@Q"RSP:4 9 TU!#9V8OE W�X
is the time for performing a small-size request between CORBA ob-

jects collocated in the same execution unit (JVM)

� ��[ �"C�C�TU!#C
is the computation time for packaging a request in a CORBA ����� and logging

it.

For both WindowsCE and Familiar, the linear regression computed shows that both the
coefficients of correlation and of determination are very good (more than 0.99) for TCP
figures. The coefficients are still very good for ORB figures for WindowsCE, but less for
Familiar (around 0.6 and 0.4 respectively). However, when using the formulae to compare
the values deduced by these formulae and the ones obtained by experimentation, the
differences are much more important for WindowsCE than for Familiar.

We now analyze the overhead due to connectivity management and logging. For
WindowsCE, the overheads for

�F� �"!#!%$'&
,
� D7E�8:9G$'&

,
��]�TV4@�:$'&

range from 70% to 2%, from 52%
to 21%, and from 77% to 5%, respectively, the worst values being for small-size requests.
For Familiar, the overheads range from 14% to 1%, from 50% to 6%, and from 20% to
6%, the worst values being also for small-size requests. This suggests that WindowsCE
is more sensitive to the addition of the threaded daemon which comprises the managers
: DOM, RM, CM, and LM of Figure 1. It also implies that the cost of logging is not
negligible. Finally, the overheads induced by Domint w.r.t. � �

can be computed with raw
(real) data. For WindowsCE, the overheads for conn–

�
, part–

�
, disc–

�
range from 71%

to � 0%, from 80% to 40%, and from 77% to 5%, respectively, the worst values being for
small-size requests. For Familiar, the overheads range from 14% to 1%, from 59% to 6%,
and between 40% and 13%, the worst values being also for small-size requests.

7 Related Work

A number of research projects deal with adapting existing applications for wireless ac-
cess. In this section we distinguish pioneering projects that are not based on standard
middleware and more recent projects relying on advanced services provided by CORBA
middleware. For a broad survey on client-server computing in mobile environments, the
reader can refer to [8].

Coda is the first research effort to deal with disconnected operations [12, 13, 25]. It
implements application-transparent adaptation in the context of a distributed file system.
Several Coda key concepts were of interest in our design such as weak connectivity and
the hoarding mechanism. As a successor to Coda, Odyssey supports application-aware
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iPAQ - MS WindowsCE

Experiment 1 B 128 B 16 KB 128 KB 512 KB 1 MB
1. conn– 	 56.5 � 2.6 56.2 � 2.6 106.6 � 4.6 497.8 � 12.9 1891.7 � 14.7 3648.9 � 26.8
2. part– 	 79.6 � 2.3 81.5 � 3.1 180.6 � 5.5 782.3 � 8.8 3241.3 � 19.5 6183.0 � 98.3
3. part– � 140.5 � 27.7 130.2 � 4.1 241.9 � 28.3 935.7 � 38.7 3538.7 � 77.3 6520.4 � 101.0
4. disc– 	 92.8 � 0.5 93.1 � 0.5 123.4 � 0.5 403.1 � 7.6 1404.2 � 7.7 2459.4 � 6.8

iPAQ - GNU/Linux Familiar

Experiment 1 B 128 B 16 KB 128 KB 512 KB 1 MB
5. conn– 	 61.8 � 4.1 64.3 � 6.0 80.12 � 20.3 521.4 � 11.0 1878.1 � 19.8 3733.1 � 33.9
6. part– 	 61.6 � 5.0 62.5 � 5.7 123.9 � 12.4 619.6 � 22.1 2332.5 � 34.3 4810.6 � 28.4
7. part– � 87.1 � 7.1 90.6 � 5.9 132.1 � 12.5 692.7 � 15.1 2176.8 � 24.2 4246.6 � 371.1
8. disc– 	 52.6 � 3.1 56.0 � 4.0 66.0 � 8.6 186.4 � 9.8 326.8 � 5.1 591.1 � 5.9

Table 3: Times (ms) for processing of remote requests of different sizes (bytes) on iPAQ
running Microsoft WindowsCE (lines 1–4) and GNU/Linux Familiar (lines 5–8) in the three
modes of connectivity: ’conn’, ’part ’, and ’disc’ stand for ’connected’, ’partially connected’,
and ’disconnected’, respectively; ’O’ and ’I’ stand for ’ � � � arguments’ and ’ � � arguments’,
respectively.

adaptation that is better suited to multimedia data such as speech and video [14]. The
system monitors the available bandwidth and notifies the application when a significant
change occurs. The application can then switch to a suitable “fidelity ” (image quality) level.
This concept of fidelity is attractive and could be re-used for stream-based CORBA ap-
plications and implemented through portable interceptors in the Domint prototype. Coda
and Odyssey are based on a file model; this rather low-level semantic only allows to deal
with coarse-grain entities. We believe that the object concept provides more flexibility in
the manipulation of applications. Coda and Odyssey are now part of Aura. This new
project started in 2000, focuses on distraction-free ubiquitous computing, stating that the
most precious resource in computing is human attention [24]. Aura manipulates higher
level abstractions such as tasks which can capture the user’s intent; this concept of task-
driven computing seems very promising in modelling adaptation policies [27]. In contrast
to the scenarios presented in [27] where the infrastructure will “allow users to move their
computational tesks easily from one environment to another ”, in our scenarios, we focus
on keeping working while disconnected.

The Rover [9, 10] project provides a framework to handle resource variations and dis-
connections between a mobile terminal and fixed servers. The two key concepts are RDO
and Queued Remote Procedure Call (QRPC). A RDO is a piece of code and data that can
be loaded (copied) from a server to the terminal and vice versa. The applications control
the location of RDOs, thus enabling adaptation to available resources (e.g. bandwidth or
processing power) and disconnected operations. Rover manages two kinds of caches: a
global cache and per-application caches of RDOs. In our framework, disconnected ob-
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Figure 3: Display of some values presented in Table 2 and 3: (a) and (b) iPAQ running
Micorsoft WindowsCE, (c) and (d) running GNU/Linux Familiar: the same abbreviations
as in Tables 2 and 3 are used.

jects, being CORBA objects, are accessible from everywhere, that is to say from all the
applications of the mobile terminal. The Rover QRPC mechanism handles the terminal-
servers communications in a transparent way —i.e. remote procedure calls or replies are
transmitted only when the network is up. This framework is very flexible and generic. How-
ever, programmers must design and code in terms of RDOs, either for new applications
or for specific proxies in order to support legacy applications. In our approach, the pro-
grammers’ task is much reduced, since the functional code of legacy CORBA applications
remains unchanged with only a few additions for supporting voluntary disconnections to
be made.

In the CORBA context, the CORBA Messaging Service [17] provides programming
language stubs that support “asynchronous” or “time-independent” invocations using ex-
tensions to the GIOP protocol that can handle the storing and the forwarding of requests
and responses. The former mechanism allows a client to issue a request without block-
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ing for the response. Later, the client receives the reponse either by a callback from the
ORB or by polling. The later mechanism permits the client to make a request, discon-
nect from the network, and then reconnect later and get the response. The specification
presents a prototypical architecture with routers: client’s and server’s routers and more
routers between them. This architecture is in a sense similar to Rover QRPC. In contrary,
we advocate that as long as users visualise the connectivity information, if they continue
working while disconnected, they implicitely want “immediate” responses —i.e., continuity
of service—, even if they depart from “normal” responses while connected. Therefore,
what is logged on the mobile terminal is what will be necessary when reconciling: not all
requests need logging and the logs may be treated (compaction. . . ).

Also in the CORBA context, ��� [20, 21] and ALICE [6, 1] focus on the management of
the hand-off due to terminal mobility during the execution of a distributed application, and
thus address the problem of dealing with short-time disconnections. � � introduces two
proxies (one on the terminal and one running in the wired network) to make involuntary
disconnections transparent to the user. ALICE uses a proxy too, for handling terminal
mobility and provides a mechanism for supporting both involuntary and voluntary dis-
connections. Our design does not imply any proxy installation in the wired network. In
addition, the level at which disconnections are handled in Domint is different: in ALICE,
when a disconnection occurs, an exception is sent by the ORB to the client, so that the
appropriate code for switching to disconnected mode has to be included in the clients;
in our approach on the other hand, disconnection events are trapped at the ORB level
through the portable interceptor mechanism, so that the appropriate code is included in
the portable interceptors, leaving the legacy application code unchanged.

8 Conclusion

In this article, we have shown how current standard middleware technology can enable
legacy applications to work unchanged on the client side (mobile devices) and with minor
modifications on the server side. Even though the implementation is CORBA specific,
the presented concepts can be applied to other middleware as well, provided that they
possess some interception and object by value mechanisms.

An appropriate service configuration can take care of showing the state of the con-
nection on a special user’s GUI and offering the application the means to disconnect
voluntarily. Involuntary disconnection being handled entirely at the middleware level, no
modification at all is made in the application code. The state transfer and the caching and
logging mechanisms can be derived from the application code without having to modify
the server or the client legacy code in any way. As it is now possible to embed a full-
service off-the-shelf ORB product compliant with the CORBA 2.4 specification on PDAs
like iPAQ, we can take advantage of the CORBA portable interceptor mechanism to im-
plement application-transparent adaptation policies.

Our framework is open and enables application-specific adaptation; for instance, the
log manager can make use of objects by value to dynamically determine which information
should be logged. In addition, we have proposed an hysteresis mechanism to deal with
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back and forth switching which may occur when the connectivity level oscillates around
the median value. We have shown the first performance results of a CORBA prototype.
Tests were run on both a laptop PC and an iPAQ PDA. The performance results show
that the overhead introduced by the Domint framework is acceptable by the end user. The
Domint framework is available as an Open Source project under a GNU GPL license at
https://picolibre.int-evry.fr/.
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