From UML models to automatic generated
tests for the dotLRN e-learning platform

Ana Cavalli ! Stéphane Maag 2 Sofia Papagiannaki 3
Georgios Verigakis *
GET / Institut National des Télécommunications

9 rue Charles Fourier
F-91011 Evry Cedex, France

Abstract

This paper presents a method for testing an e-learning, web based system. System
specifications are provided using the UML modelling language and specifically the
Sequence, Activity and Class diagrams of UML. These specifications are exported
in XMI format which is parsed in order to produce the test cases. The system
under consideration in this paper is dotLRN, an open source enterprise-class suite
of web applications and portal framework for supporting course management, online
communities and collaboration.

Key words: UML, dotLRN, XMI, Component Testing, Validation

1 Introduction

During the last few years more and more organizations and companies exploit
the services they provide by making them available through their web sites. In
this context, educational organizations can adopt an e-learning application to
manage and support remote distance courses. Among the advantages of such
a course over a conventional one is its capability to overcome the geographical
barriers and, as a consequence, to address to a larger audience. Furthermore,
it is very important to make the cost of such a system is minimal. The
organization only needs to deploy a powerful web server with the goal that
the users may access these services using a minimum computing equipment
connected to the internet.

Email: Ana.Cavalli@int-evry.fr

Email: Stephane.Maag@int-evry.fr
Email: Sofia.Papagiannaki@int-evry.fr
Email: Georgios.Verigakis@int-evry.fr

W N e

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

A VLALLL,, AVEASAM,, & AL ALV IVAIAL, VAV I

Since software systems get more and more sophisticated and complicated,
software testing is very important not only to uncover bugs but also to ensure
that the system conforms with the specifications and really does what is sup-
posed to do. The fact that big systems are decomposed in smaller sub-systems
developed by different teams brings new challenges to testing, since it has to
verify that these sub-systems are integrated together smoothly.

Furthermore, testing an e-learning system is essential because by its nature,
such an application is exposed in many threats: a web server has to respond to
request from each node in the network. Therefore, testing should guarantee
that a user cannot gain permissions over the system he is not supposed to
have. For instance it would be undesirable if a student got the permission to
change his grades. In addition to this, modern web applications are becoming
increasingly complex and mission critical. This situation becomes even worse
because of the lack of standardization in the web clients (browsers). Testing
has to assert the system usability. For instance a user is unable to complete
a process because the content of the web page does not appear correctly or
due to a slow network connection he may be unable to login because of not
realistic timeout value. Our approach takes into account how these functional
aspects have been implemented, checking that they conform the specification.

This paper is part of the work being developed in the framework of the
E-LANE project, an European and Latin American collaboration for the cre-
ation of an advanced integrated system for e-learning in which GET/INT is a
partner®. We propose a testing method for dotLRN, that is composed by a
suite of web applications and a portal framework of an e-learning system, and
is used as the base platform for the development of E-LANE.

Our methodology is mainly influenced by [1,2], which describes how UML
diagrams developed in the Analysis phase are analyzed in an automated way
in order to produce test cases. Indeed, while [2] focuses on integrating testing
conducted in an incremental way, [1] describes how to use class invariants and
a detailed formal description in UML diagrams. Both of them are used to
derive test requirements and the test suites. In this paper, the purpose and
the challenge is that instead of an object-oriented software we have to use
UML to model and then to validate a web application tool. The methodology
presented in these two previous papers are related to big and complex real-
world systems and are not applicable to web-based applications. Indeed, here
we need to check the graphical user interfaces but also the content of the
generated pages. Our contribution is to provide an answer to these difficulties.
There is an extension of UML for Web Applications but that is more focused
on the Design View. Therefore, in order to produce diagrams which convey
the information we need to feed our tests, we got inspired from [5] and [4].
Another contribution of this paper is to present the techniques and the tools
which are used to component and conformance testing.

5 http://www.e-lane.org

http://www.e-lane.org

A VLALLL,, AVEASAM,, & AL ALV IVAIAL, VAV I

The article is organized as the following. Section 2 describes the dotLRN
platform, section 3 presents how to model dotLRN for testing, in section 4
we describe the tools to automate the test generation out of the models and
finally section 5 concludes the article.

2 The dotLRN e-learning platform

dotLRN ¢ is a web based e-learning platform and portal framework, designed
to support course management, online communities and collaboration. It is
open source and built over the OpenACS 7, a toolkit for building scalable,
community-oriented web applications.

In dotLRN there are three main portal types: user, class and community
portals. The user portal is the private space that each user owns, while the
class and community portals contain all the pages related to a specific class
or community. Each of these three portal types is divided into four sections:
the main space, the calendar, the files and the control panel. The pages in
dotLRN are composed of portlets. Portlets are small portals that have some
specific functionalities, like the forums, the news or the calendar.

A user portal is created automatically whenever a new user is registered
in dotLRN, but the class and community portals are created by the site-
wide administrator according to the needs of the users. When a new class or
community portal is created, the site-wide administrator assigns one ore more
users as administrators of this portal. For example, for computer science class
portal, the administrators can be the professor and his teaching assistants,
while for a photography group community portal, the administrator will be
one or more students. The responsibilities of a portal administrator are to
add content, customize the layout and decide the policy of the portal.

When a class or community has an open policy, any user can join, while
when the policy is closed only the administrator can add users. A third policy
exists, the wait policy, where any user can ask to join and then the adminis-
trator will decide to accept or deny this user.

3 UML models for testing

In order to derive our test cases, we need to grasp and describe the function-
ality of the system in a formal way. Therefore, we choose to model the system
using UML which has become a standard. At the beginning, we discover the
use cases of the system under consideration and document them in a Require-
ments Document which contains the scope of the system, the main actors, the
use case diagram and textual description of each use case [3]. The output of
this step is not directly used as an input to our test suite but it is important in

6 http://www.dotlrn.org
" http://openacs.org

http://www.dotlrn.org
http://openacs.org/

A VLALLL,, AVEASAM,, & AL ALV IVAIAL, VAV I

order to design the UML diagrams which actually constitute our input data.
The UML diagrams we use in our approach are:

Activity Diagram for each actor: displays dependencies among the use cases.

* Sequence Diagram for each use case: describes the main and the alternative
scenarios of the use case.

Class Diagram: introduces the main classes of the system.

Navigation Map: a Class Diagram which provides information about the
dynamic content of the web pages.

Tist lnpls mentatign)
uiing Mhan scnpty

Figure 1. Outline of our methodology

The next step is to export these diagrams in an XMI format. This activity
is supported by all the modern CASE tools like ArgoUML and Rational Rose.
Afterwards we parse the XMI and we produce a program which connects to the
web server and makes requests according to the given scenario in the Sequence
Diagram. Finally, the web page of the response is examined to verify if it
conforms with the specification. Figure 1 presents briefly the different steps
of our study.

3.1 Modelling Use Case Dependencies

The use cases of a system are not independent. Apart from the include and
extend relationships among them, there are also sequential dependencies. In
order one use case to be executed, another should have taken place before. For
instance, in dotLRN the user should login before being able to do anything
else. Since the automation of the testing procedure is also of concern, we have
to describe somehow these dependencies. We achieve this by introducing an
activity diagram where the vertices represent use cases and edges are sequential
dependencies between the use cases.

A VLALLL,, AVEASAM,, & AL ALV IVAIAL, VAV I

An edge in such a diagram denotes that the use case in the tail has to be
executed before the use case in the head. fork and join are used when some
use cases should be executed independently in order another one to take place.
For instance, in dotLRN “Add subject” and “Add term” are two independent
use cases which should be synchronized so as the “Add class” can be tested.

Furthermore, in this diagram we have included also the parameters of the
use cases. The reason is that sometimes it is easier to realize the dependencies
between the parameters of the use cases. For instance, in the above example,
in order to add a new class, the administrator should provide information
about the term(Term.name) and the subject of the class(Subject.name). As a

consequence, there is a dependency between the “Add class” use case and the
“Add Term” and “Add Subject” use cases.

Add term(Add department(
Department.name

)

‘erm.name

)

Figure 2. Activity diagram dependencies for “Assign user to class” use case

Finally, in the diagram the use cases are organized in group according to
the object are associated with. These objects are instances of the classes in
the Class diagram. Figure 2 shows the respective activity diagram for the
Administrator. According to this latter, “Add department” should precede
“Add subject”. Also, “Add term” and “Add subject” should occur before “Add
class”, and “Add user” and “Add class” should take place before the execution
of “Assign user to class”. Finally, "Manage User" depends on "Add User" since
first the user should be added to the system and then the administrator can
edit his profile and modify his permissions.

In the testing phase, before simulating the scenarios in the Sequence di-
agrams these activity diagrams should be scanned to obtain the sequence by
which the use cases will be tested.

A VLALLL,, AVEASAM,, & AL ALV IVAIAL, VAV I

3.2 Sequence Diagram

In UML, a Sequence diagram realizes the interaction of objects via the in-
terchange of messages in time. Similarly, as in activity diagrams the objects
are instances of a class described in the Class diagram. Usually the sequence
diagrams describe a single scenario.

userLUser dotl R Web Site
i i
! Lo mavigated /) i
) 1
. -
: 1.2 :dizplayLog In)
Al
< .
2:zubm itdLog In, Logi nForm, [userl.email, userl passwond]) |
rl|
: 2.4 erron” Unknown em ail™)
J_.é _________________ L |

2.1 displav(My_Space[user=suserl] |

Figure 3. Sequence diagram for “Login” use case

We enumerate the messages as described in [2] so we can illustrate a number
of alternative scenarios in the same diagram. According to this convention,
capital letters denote alternatives (error messages). By adopting this tactic
we can derive easily the different Message_ Sequences [1] related to the same
use case. Figure 3 shows the respective sequence diagram for the “Login” use
case.

Our Sequence diagrams are also parameterized since input parameters can
influence the execution and constitute separate Choices [1]. Such a parame-
ter can be the email of a User. Whether this email belongs to a registered
user (exists in the database) or belongs to a new user (does not exist in the
database) determines what is going to happen later. In the former case the
dotLRN page is displayed otherwise a warning appears in the Log In page.
During the testing procedure, if there are such branches and parameters then
the produced program has to fork to test all the different possibilities.

Table 1 summarizes the actions we use in the Sequence diagram organized
as HTTP requests of the user and possible HT'TP responses returned to the
user by the server, since the success or the failure of our tests depends upon
these requests and the respective responses. Since the system under testing
is a web application there are three possibilities for the user: either navigates
to a URL or requests a web page through another one (clicks on a link to the

6

A VLALLL,, AVEASAM,, & AL ALV IVAIAL, VAV I

HTTP request HTTP possible responses

navigate(url:String): display(page:WebPage):

User makes an HTTP request for a url | Web server returns the requested web page
link(target:String): display()ege:WebPage:

User clicks in a HTTP link Web server returns the target web page

submit(page:WebPage, form:Form, | display(page:WebPage):

data:List): in case of legitimate input the web server
User submits an HT'TP form responses with a new web page
error(msg:String):

a warning message

in case of wrong input the web server

responses with the previous page displaying

Table 1
Actions of the Sequence Diagram

wanted page) or submits information by filling an HTML form. The system
answers either directly by returning the requested page (display) or by giving
an error message.

3.8 Nawvigation Map

The Navigation Map of a web application introduced in [5] is useful because
it provides information about the dynamic content of each web page which is
part of the system as well as the links between the different web pages. This
information is essential during the parsing of the HTML pages (section 4.3).

The Navigation Map is a Class diagram where each web page is a class
and a link between two pages is an association between the two respective
classes. This extention of UML for web applications introduces a number of
stereotypes, tagged values and constraints.

The Table 2 summarizes the mapping we use between web entities and
metamodels in a class diagram.

4 Automating the test generation

To automate the test generation, our goal is first to parse the UML diagrams
obtained from the previous steps. Therefore, based on these diagrams, we
generate the necessary requests to the dotLRN server and then check if the
server’s replies are as expected by the previous models. Since dotLRN is a

7

AV IALL,, AVEALAMY

<+ AL AAJLIALNIYAL

Ly ¥V MHAVAAALSR IR

Web Entity | UML Metamodel

Tagged Values

web page «web page» class

TitleTag: the title of the page
RelativeURL: the relative URL of the
page

BodyTag: the set of attributes for the
<body> tag

page scripts

«web page» class operations

page variables

«web page» class attributes

link «linky association

form «formy» class

Method: GET or POST

form types «formy» class attributes

stereotyped by «form inputy»

portal page | «portal page» class

TitleTag: the title of the page
RelativeURL: the relative URL of the
page

BodyTag: the set of attributes for the
<body> tag

portal element | «portal element» class

BelongTo: the «portal page» it belongs

Table 2

Mapping Web Applications to UML Class diagrams. Stereotypes are presented

inside « ».

web application, the requests are HI'TP requests that simulate a user navi-
gating the site through a web browser. The possible actions are to fill and
submit a form, to click on a link or to navigate to a given URL. Similarly the
server’s replies are HT'TP Responses that can either contain an HTML page,
a redirection to another URL or an error message. Assuming the first case,
the HTML page of the response has to be parsed to see if its contents are the

expected ones.

Based on these requirements, we had to choose the components that were

required to build our test suite.

A VLALLL,, AVEASAM,, & AL ALV IVAIAL, VAV I

4.1 The programming language

Since we are dealing with UML, it would be more efficient to choose an object-
oriented language. We also wanted this language to provide easy string han-
dling and a high level of abstraction for network communications. The pro-
gramming language that we found as the most suitable was Python[6]. Python
is a modern object-oriented language which combines remarkable power with
very clear syntax. Its built-in modules provide numerous functions that facil-
itate string handling and networking.

4.2 Parsing and executing the UML

To parse the UML diagrams we could either use the API of a UML tool,
or export the diagrams in an XMI format that would allow to parse them
using an XML parser. XMI is a standard created by the Object Management
Group (OMG) to represent UML diagrams in XML. Exporting to XMI was
the solution we preferred since it does not tie us to a specific tool.

Although we could use any XML parser to parse the XMI, due to the high
complexity of the standard we decided to use a specialized XMI parser. The
one we used was the parser included in the System Modeling Workbench tool
8 . It is free, open-source and also is written in Python, making it easier to
integrate with our code. Being open-source it also enabled us to fix some
incompatibility issues that appeared when used with XMI produced by the
Poseidon tool.

4.8 Parsing the HTML pages

Since HTML mixes presentation and content data, the HTML output of
dotLRN does not allow us to extract the information we want without first
looking the implementation details. To avoid this we need to change the page
templates of dotLRN in order to provide the data in a more formal way. We
achieve this by adding id attributes to the tags we want to query. For exam-
ple, to the td tag that contains the user’s name in the user pages will have an
attribute id=“username”. That way we can query any page independently of
the implementation of the layout of the page.

4.4 Erample itmplementation

In this section we give the skeleton of a possible solution. In the code that
follows we have left out some code (mainly some functions) in order to reduce
the size and increase the clarity.

from urllib import urlopen
from smw.io import XMIStreamer
from smw.metamodel import UML14

8 http://www.abo.fi/~iporres/html/smw.html

9

http://www.abo.fi/~iporres/html/smw.html

© 0 N O o s

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

A VLALLL,, AVEASAM,, & AL ALV IVAIAL, VAV I

class TestSuite:
returnedPage = None

def validatelLink(self, link):
operation = self.getOperation(link)

if operation.name == '"navigate':
url = self.getOperationParameters(operation)
fd = urlopen(serverbase + url)
self.returnedPage = fd.read()
fd.close()

elif operation.name == "display":
params = self.getOperationParameters(operation)
pageTemplate = generatePageTemplate(params)

parser = dotHTMLParser(pageTemplate)
parser.feed(returnedPage)

def execute(self, source):
xmi = XMIStreamer (UML14)
fd = open(source, "r")
model = xmi.loadFromStream(fd)
fd.close()

sequenceDiagram = self.getSequenceDiagram(model)
for link in self.getLinks(sequenceDiagram):
self.validateLink (1ink)

Function ezecute (line 24) is the main function of the class and it reads
the XMI code from the file defined in the variable source that is given as a
parameter. It then isolates the Sequence Diagram (for this example we assume
that only one exists) and then validate one by one all its messages (links). All
the getX functions (like getSequenceDiagram and getLinks) are trivial to write
and they consist of navigating through the structures generated by SMW to
get a specific data. They are assumed to be defined inside the class.

The validation of each link depends on the operation. If the operation is
navigate (lines 11-15) then we have to extract the destination URL from the
parameters and then get the requested page. We assume that destination is a
relative URL, so we use the serverbase variable (line 13) to make it absolute.
The page is then kept in the returnedPage variable to be used by the following
commands.

In the case of a display operation (lines 17-22), we create a template of the
page based on the operations parameters and then use our HI'ML parser to
compare the returnedPage with the template. The skeleton of the parser is as
follows.

from HTMLParser import HTMLParser

10

© 00 N O o s W

10
11
12

A VLALLL,, AVEASAM,, & AL ALV IVAIAL, VAV I

class dotHTMLParser (HTMLParser) :
pageTemplate = None

def __init__(self, pageTemplate):
self.pageTemplate = pageTemplate

def handle_starttag(self, tag, attrs):
for attr in attrs:
if "id" in attr:
validateElement (tag, attr)

The dotHTMLParser class inherits the HI'MLParser class and overides
the handle starttag function to search for elements that have an id attribute.
Every such element will be validated according to the pageTemplate that was
given during the instatiation (the details of the validation are not shown).

Similarly to the two example operations we can write the code to handle
the rest of the supported operations.

5 Conclusion

We have presented in this paper a new approach to test the functionality of an
e-learning, web based system, the dotLRN platform. This platform presents
the advantage to be an open source toolkit for building scalable, community-
oriented web applications.

The method and the software tool we propose has been applied to dotLRN
platform but they are generic enough and can be applied to other e-learning
and web based systems.

The test method is based on the test of objectives, which are selected
taking into account the experts and designers advice. These tests are based
on user cases and cover all relevant aspects of the system behaviour. Even
if we cannot guarantee a total error coverage, it can be guaranteed for the
selected tests.

The software tool presented perform the parsing of the UML specification,
the generation and translation of the tests to the XMI form and their exe-
cution on the dotLRN platform. In a first step, we started with the test of
communication interfaces and user requirements. Next steps will be the test
of authentication mechanisms and application contents (for instance, to check
the content of the required web page).

Experimentation results are very promising. The automation of the testing
procedure reduces the time and costs to produce e-learning reliable software
tools. In addition, the test of users requirements contributes to the design of
tools with easy and convivial interfaces.

11

A VLALLL,, AVEASAM,, & AL ALV IVAIAL, VAV I

References

[1] Basanieri, F., A. Bertolino and E. Marchetti, The Cow_ suit Approach to Planning
and Deriving Test Suites in UML Projects, Proc. Fifth International Conference
on the Unified Modeling Language - the Language and its applications UML
2002, LNCS 2460, Dresden, Germany (2002), pp. 383-397.

[2] Briand, L. C. and Y. Labiche, A UML-Based Approach to System Testing,
Software and Systems Modeling 1 (2002), pp. 10-42.

[3] Cockburn, A., “Writing Effective Use Cases,” Addison-Wesley, 2000, 1st edition.

[4] Conallen, J., Modelling Web
Application Architectures with UML, Communications of the ACM 42 (1999),
pp- 63-70.

[5] Conallen, J., “Building Web Applications With UML,” Addison-Wesley, 2002,
2nd edition.

[6] Jones, C. and F. Drake, “Python & XML,” O'Reilly & Associates, 2001, 1st
edition.

12

	Introduction
	The dotLRN e-learning platform
	UML models for testing
	Modelling Use Case Dependencies
	Sequence Diagram
	Navigation Map

	Automating the test generation
	The programming language
	Parsing and executing the UML
	Parsing the HTML pages
	Example implementation

	Conclusion
	References

