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ABSTRACT

In this paper we propose a passive conformance testing tech-
nique applied to a Mobile ad hoc network (MANET) rout-
ing protocol, OLSR, that is characterized by a dynami-
cally changing topology and lack of centralized management.
This makes it necessary to investigate new ways to test com-
plex scenarios and configurations. The work here proposes a
formal passive testing method to test the conformance and
reliability of the protocol. The method developed has been
performed on a real case study showing that the approach
can be successful applied and that it allows reducing incon-
clusive verdicts often observed using other methods.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network
Protocols—Routing protocols; D.2.5 [Software Engineer-

ing]: Testing and Debugging— Testing Tools; 1.6 [Simulation

and Modeling]: Model Validation and Analysis

General Terms
Design, Reliability, Verification

Keywords
MANET, Routing Protocols, Conformance Testing

1. INTRODUCTION

A wireless mobile ad hoc network (MANET) is a self-
organizing network that can rapidly be deployed since nei-
ther a centralized control nor a predefined infrastructure is
necessary. The network is composed of mobile nodes that
communicate with each other, participating in the estab-
lishment of reliable operations. Node movement may lead
to a volatile network topology with continuous modification
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of the node interconnections. Since the network is infras-
tructureless, the nodes must interact using their radio range
with open transmission medium and, in order to establish
end-to-end communications, some of the nodes will behave
as routers. Due to these aspects and the limited resources
of the nodes, efficient and reliable routing protocols are re-
quired leading to the crucial and challenging issue of the
quality of the communication system.

Several routing protocols have been proposed and many
works have been carried out in order to design and test them.
Most of this work relies on protocol descriptions using simu-
lators in order to have an idea of the implemented protocol
behavior. However, the test coverage is rather low and the
verdicts are only restricted to the simulated context. Nev-
ertheless, some works [2] have shown, for instance, that the
AODV implementation in NS-2 was false regarding some
properties such as the initial value for the hops number in a
RREP. All of this illustrates the importance of formal meth-
ods to test routing protocols.

In this paper, we propose, therefore, a conformance pas-
sive testing technique applied to a MANET routing protocol.
The methodology is performed on a real case study through
a real implementation of the Optimized Link State Routing
protocol (OLSR). The motivation of our work is based on
the observation that using active testing methods, the ver-
dicts of an executed test scenario were sometimes (not to
say often) inconclusive[9]. This is due to the mobility of the
nodes and the inherent constraints of wireless ad hoc net-
works, making active methods not always adapted. On the
other hand, the non-intrusiveness of passive testing makes
it possible to take into account topological changes in the
network and to test the protocol under operation in complex
changing conditions. We herein present the contribution of
a formal passive testing approach that increases the testing
coverage, illustrating the complementarity of these methods.

The paper is organized as follows. Section 2 presents re-
lated works on passive testing techniques based on formal
methods. Section 3 gives an outline of the OLSR protocol.
In section 4, the passive testing approach based on invari-
ants is presented. Section 5 presents the testbed, the exper-
iments that have been performed and the results. Finally
we conclude and present future works in Section 6.

2. RELATED WORKS

There are few works based on formal passive testing ap-



proaches and, in particular, for MANET routing protocols.
This is mainly due to the specific constraints of MANET,
e.g. the integration of testers in a mobile, wireless and in-
frastructureless environment. Nevertheless, some interest-
ing works dealing with a passive testing approach can be
mentioned. Some of them apply these techniques to wired
protocols as in [6] where two algorithms based on Event-
driven Extended Finite State Machines are proposed. They
are designed to test the protocol data part. The expected
properties are specified in a symbolic logic expression in or-
der to be able to define in detail the set of valid variable
values. The method is applied to the wired network routing
protocol, OSPF, but it is not really suitable for the MANET.

In [7], the authors propose a formal methodology to spec-
ify and analyze a MANET routing protocol. It is based on
the Relay Node Set (RNS) concept. A RNS is a set of nodes
that allow reaching all nodes in the network. According to
the studied protocol, the set is built differently: the reac-
tive protocols build the set during the route discovery while
the proactive ones build it in a regular manner. The frame-
work illustrated in this paper has as main goal the analysis
of the implementation under test using non-functional met-
rics. The approach we propose has as main goal to check
functional properties of the protocol.

Higashino et al. [11] propose a testing architecture for
DSR in order to check functional and non-functional prop-
erties. A passive technique is applied through a network
simulator MobiREAL®. The impact of the chosen mobility
models and the underlying wireless transmission layers are
measured. The use of a passive testing technique is inter-
esting but it has only been applied on a simulator.

[5] is another passive approach to formalize testing of a
MANET routing protocol by applying game theory mod-
els and concepts. A strong hypothesis commonly applied
in game theory consists in the complete knowledge by the
“players” of the “game”. It means that each node is sup-
posed to have a complete knowledge of the network topology
as well as of the nodes or links states. Furthermore, it for-
bids the non-determinism, making it impossible to model
the dynamicity of nodes. These assumptions may not hold
in a real case study.

In this paper, we contribute to the state of the art by
proposing a new methodology based on passive testing tech-
niques which describes relevant properties of OLSR and
check them both on the execution traces of the protocol
implementation and on the formal specification.

3. OLSR AND ITS FORMAL MODEL

3.1 Optimized Link State Routing protocol

OLSR is a proactive, link state routing protocol (LSR)
which uses periodic message exchanges to update topologi-
cal information in each node of a network [3]. OLSR distin-
guishes itself from classical LSR protocols by introducing a
simple optimized flooding strategy through the use of Multi
Point Relays (MPR). Each node must select MPRs among
its neighbors in order to reach all 2-hops neighbors through
its MPR set. The MPR nodes themselves maintain a list
of MPR selectors, describing the set of nodes which have
selected it as a MPR. The MPRs, then, have the responsi-
bility to forward all messages from their MPR selectors and
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not relay messages from any other node.

3.2 The OLSR formal model

In this work, a formal model of the protocol is provided

to check the correctness of the manually derived properties
from the IETF RFC [3]. It is specified using the Extended
Finite State Machine (EFSM) formalism that is commonly
used to specify and test communication protocols.
For our purpose, according to our OLSR implementation
and real testbed, only the main functionalities of the pro-
tocol are specified. This means that we consider each node
as having only one interface and with only one link to a
same node. Since OLSR is a link state routing protocol,
the behavior of every node is specified according to its state
and its connectivity with its neighbors (Idle, Asymmetric,
Symmetric and MPR). OLSR defines different types of links,
asymmetric or bidirectional and also different types of nodes,
normal nodes or multipoint relays that implies that they
have a different role in the establishment of connections.
Our EFSM only represents the interactions between two
nodes. This implies that, in our network, for each link be-
tween two nodes there is a unique EFSM. For further details
about the formal specification, you can find a complete de-
scription and its implementation in [10].

4. AN INVARIANT-BASED PASSIVE TEST-
ING APPROACH

4.1 Passive versus Active Conformance Test-
ing

Conformance testing usually relies on the comparison be-
tween the behavior of an implementation and a formal spec-
ification, that should be the same. Two main approaches
are commonly applied: passive and active testing.

Active testing is based on the execution of specific test
sequences against the implementation under test. These test
sequences are generated from the formal model. The test
may be generated automatically or semi-automatically from
formal models that represent test criteria, hypothesis, and
test goals. These sequences (with an executable format) are
performed by establishing points of control and observation
(execution interfaces) defined by the testers.

Passive testing consists in observing the exchange of mes-
sages (input and output events) of an implementation under
test during run-time. The term passive means that the tests
do not disturb the natural operation of the protocol. The
record of the observed events is called a trace. This trace
will be compared to properties (also called invariants) de-
rived from the the standard (e.g. RFC) or proposed by the
protocol experts. The passive testing techniques are applied
particularly because they are non-intrusive whereas the ac-
tive testing techniques require the set-up of important test-
ing architectures where the testers need to be able to control
the implementation at some specific points. This is some-
times not feasible, especially when there is not direct access
to the implementation under test. For MANET protocols,
with an infrastructureless environment and where the mobile
topology brings constraints that do not exist in wired net-
works, active testing techniques are not always well adapted
to check the given properties. Moreover, while active testing
may cover a wide set of automatically generated properties,
it may also provide many inconclusive verdicts [9]. For these



reasons we focus here on a passive testing approach where no
inconclusive verdicts are obtained. This is possible because
we define obligation invariants (defined in the next section),
meaning that the verification is performed for events that
have already occurred in the past and, thus, we can be sure
that they are in the traces if the capture of the events in-
cludes the initialization of the protocol at the start.

4.2 The concept of Invariant

The passive testing approach used in this work is based
on invariant analysis, where the invariants are properties the
Implementation Under Test (IUT) (in this work the OLSR
implementation) is expected to satisfy.

An invariant (or obligation invariant) is defined as follows:
Let M = (S,1,0, sin,Tr) be a FSM where S is a finite set
of states, I a set of input actions, O a set of output actions,
Sin an initial state and 7Tr a set of transitions. Each transi-
tion t € T'r is a tuple t = (s, s',4,0). Intuitively, a transition
t = (sl,s2,4,0) indicates that if the machine is in state sl
and receives the input ¢ then the machine emits output o
and moves to the state s2.

Intuitively, a trace such as i1/01, ..., in1/0n1, %n/0x is an obli-
gation invariant for M if each time iy /0y, is observed, then
the trace i1/017...7in1/on1 happens before. An invariant
that expresses a property, such as ”if y happens then we
must have that = has happened before”, is an obligation in-
variant. They may be used to express properties where the
occurrence of an event must be necessarily preceded by a
sequence of events. In addition to sequences of input and
output symbols, the wild-card characters ’?” and ’*’ are
allowed, where ’?’ represents any single symbol and rep-
resents any sequence of symbols.

Invariants can be checked both on the specification and
on the IUT, allowing to determine whether the property
is correct according to the formal model and the IUT be-
havior is as defined by the RFC. The algorithms, as well
their complexity analysis, are detailed in [1] for the speci-
fication/invariants checking and in [4] for the implementa-
tion/invariants checking.

%)

4.3 The Conformance Passive Testing approach

Conformance testing aims to test the correctness of an im-
plementation through a set of invariants (or properties) and
traces (extracted from the running implementation). The
conformance passive testing process follows these five steps:
- Step 1: Properties formulation. The relevant protocol
properties to be tested are provided by the standards or by
protocol experts. These properties express the main require-
ments related to wireless communication between nodes.

- Step 2: Properties as invariants. Properties have to be
formulated by means of obligation invariants that expresses
local properties; i.e. related to a local entity.

- Step 3: Extraction of execution traces from local observers
by means of a network sniffer installed on one of the nodes.
The captured traces are in XML format.

- Step 4: Transformation of traces in an adapted format.
The traces are transformed by the application of filtering
rules defined by a XSL sheet. These rules hold the network
information needed to perform the checking of the proper-
ties described by the invariants.

- Step 5: Verification of the invariants on the traces. The
verification of the expected properties is performed on the
traces and a verdict is emitted (Pass, Fail or Inconclusive).
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Figure 1: The wireless testbed

This step is based on the application of pattern matching
algorithms we have developed (presented in [4]).

5. EXPERIMENTATION AND RESULTS
5.1 The Real Wireless Testbed

Our testbed is composed of four laptops as illustrated in
the Figure 1. Let us note that we could increase the number
of nodes using an emulation technique embedded in one of
the nodes (see [9]). This technique is nevertheless useless
regarding our current test purposes and four nodes is the
minimal number of nodes necessary to check the properties
we are interested in.

Three laptops embed an Intel Pro Wireless 802.11 a/b/g
Wifi card (two of them with Fedora Core 8 and one with a
Suse Linux 9.3). The fourth one embeds a WPN111 Wireless
USB adapter on a Fedora Core 8. All the nodes were config-
ured in ad hoc mode and they run an OLSR implementation
version olsrd-0.5.6-rc1?. The protocol is configured to run in
the wireless interfaces of the nodes and with no link quality
measurements in order to comply with the RFC.

At the beginning, all the nodes are close to each other as
shown in the figure. Then, Node 2 moved away from the
others until it lost the communication. After, it joined the
network again.

The trace is captured using Wireshark Network Analyzer 3
in Node 0 at the beginning of all packet transmissions in
order to ensure that the start state is captured in the trace
(mainly for the obligation invariant).

The provided trace contains all the packet information ex-
tracted from the network including information from the
different protocol layers (ethernet, ip, udp and olsr). The
OLSR layer provides the information that we need (source,
destination, message type, link type and list of neighbors).
The trace is in XML format allowing the use of open source
tools (i.e. Michael Kay’s SAXON XSLT processor) that use
XSL style sheets to filter and format the information based
on the data provided by the user (address of the node that is
being examined to be able to define which packets are input
and which are output.

5.2 The Invariants

The invariants presented in this section describe the pro-
cess of connectivity by ensuring that a node n0 will respect
the procedure followed by the protocol to establish the links
with its neighbors. This procedure also ensures that a node
n0 cannot be fooled by another node nl by announcing a

*http://www.olsr.org
3http://www.wireshark.org/



non-existent connection. The process of connectivity follows
an implicit logical order in the exchange of link sensing mes-
sages. Thus, an asymmetrical link announcement can only
reply to a first empty HELLO message broadcasted from a
node announcing itself. In the same way, a symmetrical link
advertisement must follow the reception of an asymmetrical
one from a neighbor node. A node can claim to be a MPR
only if it has been selected as such by at least one 1-hop
neighbor. This implicitly implies that a symmetrical link al-
ready exists between them. It is important to notice that for
every invariant, the number of messages to be checked is al-
ways bounded. This number directly depends on the number
of neighbors for each node, which is supposed to be fixed (at
a particular moment). So the number of address embedded
within each message is limited. Moreover, the broadcast of
control packets are timed by constants. Admittedly, HELLO
messages can be emitted as long as a link change is detected,
but nodes need to wait for a timeout (2 seconds by default)
to announce the change anyway. Thus, even though the mo-
bility of nodes is normally very high, the number of messages
exchanged during the life of a link is finite. The invariants
presented have the following form (following the definitions
given in Section 4.2): 77 /outputl, *, input/output2” where
* represents any sequence of symbols, 7 represents any mes-
sage and 7 /outputl and input2/output2 represent that after
input 7, outputl is produced and that after input2, output2
is produced.

Invariant 1
? | MsgType = Hello AN NeighAddr = none A Source = n0 A
Dest = any, *, MsgType = Hello N Source = nl A Dest =
any A LinkType = Asym /7

This invariant illustrates the case where a node starts the
neighbor detection mechanism by sending HELLO messages.
In this case, the link established is asymmetrical because a
neighbor answers, announcing this link. It is expressed as an
obligation invariant, which means that if a packet is received
by node n0 announcing an asymmetrical link between nodes
n0 and n1, then it is mandatory that n0 should have already
sent an empty HELLO message to nl.

Invariant 2
MsgType = Hello N LinkType = Asym A Source = nl A
NeighAddr = n0(AsymList)/ 7, x, MsgType = Hello A LinkType
Sym A Source =nl A NeighAddr = n0(AsymList) | 7

This invariant illustrates the case where a node establishes
a symmetrical link with another node. This is the case when
it previously received an asymmetrical link from this other
node. It is expressed as an obligation invariant, which means
that if a packet is detected announcing a symmetrical link
between nodes n0 and nl, then it is mandatory that nl
should have already established an asymmetrical link with
n0.

Invariant 3
MsgType = Hello N LinkType = Sym A Source = nl A

NeighAddr = n0(AsymList) / 7, x, MsgType = Hello AN NeighAddr =

n0 A Source =nl A Dest =any A LinkType = MPR /7

This invariant illustrates the case where the current node
receives a message from a node with a symmetric link, an-
nouncing that it has been selected as MPR by this node. It
is expressed as an obligation invariant, which means that if
a packet is received by n0 from nl announcing a MPR link,
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Figure 2: The TestInv tool

then it is mandatory that n1 should have already established
a symmetrical link with n0.

Invariant 4
MsgType = Hello N NeighAddr = n0 A Source = nl A Dest =
any A LinkType = MPR /?, %, 7/ MsgType =TC A Source =
n0 A Dest = any

This invariant illustrates the following property: in order
to update their routing tables, nodes must be kept regularly
informed of changes in the topology. This is performed using
Topology Control (TC) messages. TC messages are emitted
periodically by each MPR to all nodes in the network to
declare its MPR selector set. The result is that all nodes
receive a partial topology graph made up of all reachable
nodes and the set of links between a node and its MPR
selectors. From this information, it is possible to compute
optimal routes from a node to any destination. The property
we describe here expresses that if a node has send a TC
message to all nodes, then it has been selected as a MPR
by at least one of its neighbors. This is expressed as an
obligation invariant, which means that if node n0 sends a TC
message to the all nodes then it must necessarily have been
previously selected as MPR by at least one of its neighbors
(nl in our example).

5.3 The TestInv tool

The main task of the TestInv prototype is to automate the
process of checking the correctness of invariants on real sys-
tem traces. This prototype code has been completely writ-
ten in JAVA (J2SE 1.4.0 API specification) and the graphi-
cal interfaces have been developed using the Awt and Swing
Java packages. The Regex2 Java package has been used to
express invariants as regular expressions. This package pro-
poses classes to match character sequences against patterns
described by regular expressions. A high level description of
the tool is given in Figure 5.3.

In order to start the passive testing process, we first have
to obtain real traces from a running implementation (as
mentioned in Section 4.3). The Pre-processing module pro-
cesses the collected trace. The input file or data stream is
transformed to a suitable format and is filtered in order to
obtain information concerning input and output primitives
names as well as relevant data (e.g. source address, des-
tination address, etc.). The Invariant Correctness Module
checks the correctness of the invariants on the given spec-
ification of the studied system, represented as a FSM (or
Extended FSM). Finally, the Invariant Checking module de-
termines if the captured traces satisfy the given list of in-
variants.



TestInv also enables expressing properties that concerns other
systems where properties are not only based on inputs and
outputs, but also on actions, time stamps, predicates and
references to different parts of the code.

5.4 Experimental results

The testbed described in section 5.1 has been used to cap-
ture the packets following the scenario also described. These
traces where processed by the filtering tool and the invari-
ant checking module. Previously the necessary input data
was written in input files for the TestInv tool. These files
must contain the invariants, the key words used by the pro-
tocol and the filtering information in XSL. This data and
the syntax used is difficult to specify by a normal user, but
happily only protocol experts need to do this. Even better,
the experts only need to specify this information once for
each type of protocol that wants to be observed. In this
way users only need to give certain specific information and
select the invariants they wish to analyze. An editing tool to
help experts edit XSL and invariants is being implemented
and another will help the user introduce the information
needed concerning the configuration of the IUT. Currently
this is done using a text editor.

The verdicts obtained where all PASS. To determine if
the TestInv tool effectively detected errors we introduced
false packets into the XML trace. This showed that errors
could be detected, such as a node nl that tries to fool a
node n0 by announcing a non-existent connection, a node
trying to convince another that it has already established a
symmetrical link without following the correct sequence and
a node declaring itself as a MPR node.

The results of the experimentation showed that the tech-
niques used worked correctly on traces captured and where
able to supply the verdicts on 8 Mo traces in less than one
second. A challenge that remains is to use these techniques
to continuously monitor the network to detect problems. For
this it is necessary to improve the real-time performance of
the capture and analysis of the packets. This is possible be-
cause the information needed (at least for the OLSR proto-
col) is limited. A packet sniffing tool needs to be developed
that captures only this information, formats it and injects it
into the TestInv tool, without the need to use the previously
mentioned filtering tool. Nevertheless, high-speed networks
will pose performance problems that need to be studied in
more detail for certain types of protocols. The feasibility of
real-time monitoring in the case of OLSR becomes possible
due to the fact that the dynamic reconfiguration mechanism
of this protocol relies on imposed timeouts (by default equal
to 2 seconds).

6. CONCLUSION AND FUTURE WORKS

This paper falls in the continuity of [8] and introduces a
novel way to detect flaws in MANET protocols. This was
motivated by the fact that in active testing, it is not always
possible to detect some types of behavior. In this paper,
we propose an extensible and more flexible approach where
properties can always be added depending on specific needs.
This makes it possible to improve the model by adding new
properties required by the standards or by the users.

As future work, we plan to provide mechanisms that allow
checking global properties on nodes composing an ad hoc
network. To test these properties in a distributed network,
it is necessary to define time synchronization mechanisms to

perform trace correlation. In this way invariants, expressing
global properties, can be checked on the correlated traces.
Global properties are crucial to enable the definition of net-
work interoperability and security properties. The second
aspect of the future work consists in extending our model
in order to manage different types of protocols. We argue
that the same approach can be generalized to all proactive
protocols (e.g. TBRPF, DSDV) since many routing process
aspects are similar. We also need to study how to manage
reactive protocols since the problematic is different. The
idea is also to extend this work to check security properties
as well as conformance properties, making it possible to de-
tect inconsistencies between the implementation of security
mechanisms and their specification.
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