Automated Test Scenarios Generation for an E-barter
System

Ana Cavalli and Stephane Maag
GET/Institut National des Télécommunications
CNRS-Samovar Laboratory 9, rue Charles Fourier
F-91011 Evry Cedex, France
{Ana.Cavalli,Stephane.Maag } Qint-evry.fr

ABSTRACT

This paper presents a formal specification of an e-barter
system and a set of scenarios to test the conformance of a
given implementation to some targeted system functionali-
ties. The functionalities of the e-barter system are inspired
from those presented in [7] that are based on intelligent
agents using utility functions to represent customer pref-
erences but also integrating transaction and shipping costs.
The system specification is performed using the SDL lan-
guage. It includes two markets representing two cities, both
cities containing several agents representing the customers
preferences. Agents are different instances of the same pro-
cess, allowing the dynamic inclusion of new agents and of
new resources. The scenarios are generated from the speci-
fication and from some test purposes using a tool developed
at INT [1]. The test purposes express specific system prop-
erties and are used to guide the test generation procedure
that is completely automated. In this paper, we also present
the experimentation results of the application of our tool to
the e-barter system.

Categoriesand Subject Descriptors

D.2.8 [Software Engineering]: Verification; J.8 [Computer

Applications]: Internet Applications

Keywords

e-commerce, formal methods, testing tools, specification tech-
niques.

1. INTRODUCTION

An e-barter system consist of a set of agents performing
exchanges of products [6]. The objective of these systems is
to obtain the satisfaction of the customers by providing them
with the expected goods. To exchange goods by money is
not the main goal, this is a difference with usual e-commerce
systems. However, a customer may wish to exchange a good

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

SAC'04, March 14-17,2004,Nicosia,Cyprus

Copyright 2004ACM 1-58113-812-1/03/04.$5.00.

by some units of the good money.

In some electronic e-barter systems exchanges are per-
formed by intelligent agents which autonomously perform
electronic transactions using information about customers
preferences provided by utility functions. These functions
define the customers preferences with respect to goods to
be exchanged and provide them with a negotiation capacity
when interacting with other agents.

For these systems, conformance testing becomes a crucial
phase of their development. Functional and security failures
caused by poor testing may have a catastrophic effect on e-
commerce and e-barter system reliability. In the last years,
different conformance testing methods have been developed
for distributed communicating systems. Some of them can
be usefully adapted to the validation of e-commerce and
e-barter systems. This is the case for goal-oriented testing
techniques that consist of selecting a specific property of the
system that is likely to be false or the behaviour of a specific
component of the global system that is likely to be faulty,
and to generate test scenarios for only those parts. In gen-
eral, this selection is made by human experts that identify
the part of system’s behaviour or the expected properties
that might be subject of testing and formulate test purposes
or goals based on this identification.

In this paper, we propose a formal specification and the
application of a test generation method to produce a set of
test scenarios for some selected functionalities of an e-barter
system.

The proposed system is inspired from a previous work [7].
In this system, transaction and shipping costs are taken into
account, doing the system be close to real ones. Another
characteristic is that the exchanges are made beyond local
markets, from local ones to states until to achieve a global
exchange market. First, agents are grouped in local markets,
that correspond to the localities of the customers. Once this
market is saturated, that no more exchanges can be per-
formed, a new agent is created that represents the interests
of all local agents. These new agents are grouped into state
markets. This procedure is repeated until a global market
is created.

The e-barter system described in this paper is a case study
that includes two markets. These two markets represent two
cities that include five agents representing the customers
preferences. Agents are different instances of the same pro-
cess, allowing the dynamic inclusion of new agents and of
new resources.

For the specification of the e-barter system we use the
SDL language [4]. This language is well adapted to the de-

scription of the system: it allows to specify agents behaviour
as processes that exchange messages and to provide a hierar-
chical description of the system using different architecture
levels, starting from local markets and going up to global
ones. The SDL specification has also the advantage to fa-
cilitate the addition, removing, and changes of the system
functionality.

In order to generate test scenarios, we use a method and a
tool developed at INT. The method is based on test purposes
and the tool allows to generate tests based on these test
purposes. In this paper, we apply this tool to generate test
scenarios for some functionalities (for instance insertion of a
new agent in the e-barter system), expressed as properties
or purposes to be tested. These test scenarios will be used to
check that different implementations of the e-barter system
satisfy the required functionality.

Apart from the work already mentioned before, there is
little work in this area. In [8] a formal verification and val-
idation approach based on SDL for e-commerce systems is
presented. Even if this work is interesting and shows the
feasibility of a test environment based on a formal method-
ology, it presents the following drawback mentioned by the
authors: “the SDL model they created has many states and
transitions. The state space is very large and requires large
amounts of memory to run the state-space search”. The
advantage of the method we present in this paper is that
it does not need to generate the complete state space. On
the contrary, it is based on the generation of partial graphs,
thus avoiding the state space explosion.

The paper is organized as follows. Section 2 introduces the
main notions of the formal semantics for the e-barter system
and language used for the specification. Section 3 presents
the SDL specification of the proposed e-barter system. In
Section 4, the results of the test scenario generation proce-
dure are presented. Finally, Section 5 gives the conclusion
and the perspectives of this work.

2. BASICS

This section introduces the basic concepts used in the pa-
per. The work presented in this paper is based on a formal
semantics for an e-barter system. This formal semantics is
presented in detail by M. Nufiez et al. in [7]. We describe
the main notions of this last paper in order to provide the
concepts and the semantics used in this paper. Secondly, the
language SDL is presented. This language has been used to
specify the e-barter system.

2.1 Formal definitions

The customers participating in an e-barter system are rep-
resented by (electronic) agents'. These agents provide two
characteristics: a basket of resources (indicating the items
that they own, defined as T € R}T°) and a utility func-
tion. This function (u : R7>% — R) permits the agents
to represent their exchanges and the customers preferences
among different baskets of resources. Whenever an agent
has reached a (possibly multilateral) deal, it is notified to
the customer. If the other customers have also reached a
deal, that is they give their approval, then the deal is per-
formed, transaction fees will be added and shipping costs

'In terms of [10], our agents present as information attitude
belief (vs. Knowledge), while as pro-attitudes we may con-
sider commitment and choice (vs. Intention and obligation)

will be computed according to the resources obtained after
exchange and the distance between the involved customers.
Agents exchange resources inside their local market. A mar-
ket M (different than markets M,,..., M}) is represented
by unsat((M,, ..., My), sh,pr) and (S, u, T, sh, pr) for some
unsaturated and saturated markets respectively. We respec-
tively denote by S, sh and pr, the set of agents into the mar-
ket (S=[] means that the market is itself an agent), the ship-
ping cost of every possible transaction, and the profit gained
by the market due to the transaction costs. The saturation
means that no more exchanges may be performed between
the agents or sub-markets. At this point, the agents of the
saturated market are combined in order to create a new util-
ity function, while the baskets of resources are added. The
creation of a new utility function is done by the applica-
tion of a function called CreateUtility. This latter combines
the utility functions and the resources of the corresponding
agents to allow the barter with higher order markets. This
function is computed in such a way that it is possible to ne-
gotiate for maximizing the overall profit of the represented
agents. In turn, we need to redistribute the resources to the
original agents appearing in the leaves of the tree. This is
performed by a recursive function called Deliver. We do not
detail in this paper the rules used to compute these oper-
ations, we let the reader have a look at [7] for a detailed
description.

2.2 The SDL language

The Specification and Description Language SDL stan-
dardized by ITU-T [4] is widely used to specify commu-
nicating systems and protocols without ambiguities. This
language has evolved according to user needs. It provides
new concepts needed by designers to specify systems more
and more complexes. SDL is based on the semantic model
of Extended Finite State Machine (EFSM) [5]. Its goal is
to specify the behavior of a system from the representation
of its functional aspects. The description of the functional
aspects is provided at different abstraction levels. The most
abstract is the one describing the system and the environ-
ment (the customers), while the lowest is the specification
of abstract machines composed by signals, channels, tasks,
etc. Two kinds of properties may describe these functional
aspects: the architectural and behavioral properties. The
first one denotes the architecture of the system, that is the
connection and organisation of the elements (blocks, pro-
cesses, etc.). The second one describes the behaviors of the
entities after an interaction with the environment (for ex-
ample, a reaction of electronic agents from a request of a
customer). These reactions are described by tasks, transi-
tions between states, and are based on the EFSMs.

A verification on local variable values imposes a condi-
tion (predicate) on moving to the next state. The actions
associated with a transition include: the execution of tasks
(assignment or informal text), procedure calls, dynamic cre-
ation of processes in order to include new agents into a sys-
tem for instance (SDL contains the concepts of “type” and
“instance of type”), arming and disarming timers, etc. SDL
supports objects that allow to define generic types that could
be validated and used in different contexts. It also supports
ASN.1 [2], a standard defined for data transfer. Specifically,
data are defined as abstract data type.

3. THE E-BARTER SPECIFICATION

In this section we describe the e-barter specification mod-
eled using SDL in such a way it is very easy to add, remove
and observe some functionalities. All our specification fol-
lows the formal definition of the e-barter system mentioned
in the previous section. Each rule and operation is scrupu-
lously respected.

In our system we specify two markets M; and M> contain-

ing five agents representing five sub-markets A; = ([], u, T, sh;, 0),

i€ {1a2:3}: B; = ([],Uj,ﬂ&‘_j, Shj,O), J€ {415} To give a
concrete idea, the markets represent two cities 1 and 2 in
which there are 3 and 2 customers (agents) respectively. Let
us notice that the customers are dynamically managed and
by this way we may include new agents and also new re-
sources. Indeed, the agents are some instances of the same
process. In our SDL specification, each market M; and M»
is represented by a block that allows to transmit and receive
some messages or signals. Into each block, the behaviors of
the markets are modeled by some processes. The specifica-
tion of our e-barter system is shown by the figure 1. The
channel preferences allows to transmit the signal callprefer-
encesAl in order to include a new agent Al into the system.
This last signal carries the utility function and the current
resources of the agent Al to the market M; and these in-
formation are forwarded to the Matrices_Generator_process.
This last process has the responsibility to generate some
valid exchange matrices (see definition ??). For each barter
within M7, M> and between them, we have limited the num-
ber of the exchange matrices to five for our case study, but
this number may easily and dynamically be decreased or in-
creased. Once the matrices are generated, the exchanges be-
tween the agents may begin. A signal is sent to the markets
which, in return, ask for the matrices. Then they reach a sat-
urated state and the corresponding agents are combined in
order to create a new agent called SuperAgent. The combi-
nation of the agents of a same market is carried out in the M;
and M> modules. However, the exchanges between these two
SuperAgents, Super Agentl and Super Agent2 are still per-
formed by the process contained in the Matrices_Generator
block.

Finally the global market is defined as M = ms(unsat((M,
M>), sh,pr)). We consider that our system contains four
different resources which are bike, book, dvd and vhs. The
number of resources in the specification may be modified.
Of course, as usual, we have inserted the resource money to
take into account the shipping cost and the profit gained by
the markets. Further, the shipping cost takes into account
the distance separating the customers.

Several processes are specified in order to formalize the
rules needed to process the behavior of the markets. As we
discussed before, one of them is used for the generation of
the valid exchange matrices. We also need the processes Sat-
urated, Create_Utility, SuperAgent_process and Deliver used
to check whether the markets are saturated or not, to cre-
ate the new utility functions to generate the SuperAgents,
and in order to deliver the resources to the original agents
respectively. The e-barter specification is made of approxi-
matively 5000 lines of SDL. In order to give a general idea of
the complexity of the SDL system specification, we present
by the Figure 2 some significant metrics of the global system.

In order to simulate the system, we use a configuration
file which initializes some variables such as the number of
agents and the databases (utility functions, baskets of re-
sources). We verify that the specification is free from dead-

Lines 4987
Blocks 13
Processes 17
Procedures 3
States 24
Signals 32
Macro definitions 2
Timers 0

Figure 2: Metrics of the e-barter specification.

locks and livelocks within the simulated state space. Indeed,
the presence of such deadlocks or livelocks reveals that the
e-commerce system does not behave as expected. In order
to generate the test scenarios, we have used a test scenario
generation method described in the following section.

4. TEST OF A E-BARTER SYSTEM

This section gives an outline of the test generation proce-
dure used for test scenarios generation. It also presents the
experimentation results of the application of the test gen-
eration procedure to the e-barter system described in the
previous section.

4.1 Testscenariosgeneration

Our main objective is to generate a set of scenarios to test
some expected properties of the system. These properties
are expressed as test purposes. In order to produce the
scenarios we apply a test tool we have developed at INT. The
generation procedure is completely automated and follows
the following main steps:

Step 1. To obtain a precise and concise formal specifica-
tion of the system to be tested. This specification takes into
account the systems functionalities as well as the data spe-
cific to the test (test architecture, test interface, etc.). We
use the SDL specification of the e-barter system described
in the previous section.

Step 2. To select the appropriate tests. This selection
can be performed according to different criteria. This corre-
ponds to the definition of the test purposes: a test purpose
can be a specific property of the system or the behaviour of
a specific component of the system (for instance a market
component or an original agent).

Step 3. To generate the test scenarios. The test pur-
poses are used as a guide by an algorithm for component
testing that we have developed. As a result, our algorithm
calculate a test scenario that applied to the implementa-
tion under test, verifies the test purpose. A scenario is a
sequence of interactions (between the system and the en-
vironment) that includes the interactions that represents a
test purpose. This algorithm has been implemented in our
tool called TESTGEN-SDL [1].

Step 4. To format the tests. That is, to produce test
scenarios in some accepted formalism. In our case, test sce-
narios are produced in Message Sequence Charts (MSC), a
formalism widely used in industry to describe processes mes-
sages exchanges [3] and in Tree and Tabular Conformance
Notation (TTCN), the ITU-TS standard language used for
test specification [9].

4.2 Experimentation Results

This section presents the experimental results on the gen-

system EBARTER
preferences

[callpreferencesAl]

Block M1

Block Mérices
Block Agents ‘m

AGENT:Agent (LN

Block Saturation

Saturated
Create_Utili

Deliver

SuperAgent_procegs*

Block M2

Block Matrices_Generator

(Matrices_Generator_proéess

Process Type

AGENT

Figure 1: Overview of the e-barter system specification.

eration of test scenarios for the e-barter system. The test
scenarios checks that the test purposes are satisfied by the
implementation. These last are selected taking into account
the main functionalities that the tester wishes to test on the
implementation. They can cover all the interactions of the
system with its environment or all the interactions of a mod-
ule with the other modules. However, the cost for testing
all interactions is very high. The ideal situation is that a
system expert provides to the tester the test purposes (i.e.
the system functionalities he wants to check). For this case
study, we have selected three test objectives, but they can
be more if this is decided by the tester. They are focused
on the behaviour of the Matrices_Generator module, in par-
ticular we want to check that the insertion of new agents in
markets M1 and M2 does not affect the other components.

The Matrices_Generator module contains several processes
and therefore many functions are executed in this module.
In order to generate test scenarios, we need to formulate the
expected properties to be tested under the form of test ob-
jectives. This is what we illustrate in the following. For the
sake of simplicity, we propose three test purposes:

e Test purpose 1: To test that the utility function of a
new agent is taken into account by the valid exchange
matrices;

e Test purpose 2: To test that the module receives the
signal defining the saturation of a new agent that has
just been included to the system;

e Test purpose 8 To test that the new agent receives
an expected basket of resources according to its utility
function (preferences).

These three test purposes may reveal some crucial errors
into an implementation of an e-barter system. Indeed, they
allow to detect some errors during the exchanges of resources
and also when a new customer is included to the system.
After application of the test generation procedure, a test
scenario is produced for each one of the test purposes. The
results obtained are illustrated in the Figure 3.

Test purpose || Test scenario length || Duration
i1 19 4.3s
2 5 13.7s
#3 29 65.8s

Figure 3: Results obtained.

Once all the tests purposes have been exercised, we may
merge in a single test scenario. The obtained scenario is of
length 53 transitions and the execution times are relatively
short (on a Sun Sparc Ultra 5). Let us note that the gener-
ated test scenario include the behavior of other components
(such as Create_Utility or SuperAgent_process). We illustrate
in the Figure 4 a part of the obtained test scenario produced
as a MSC (see Step 4 in section 4.1).

We obtain in this scenario the test of our two first test
purposes.The scenario is therefore generated until the test
purpose 3 is reached.Further, with these results, this test
scenario may be applied on a real implementation of an e-
barter system in order to find erroneous behaviors of the
implemented system.

5. CONCLUSION

We have presented in this paper the specification and the

transfert preferences(1) ‘ Al(l) ‘ ‘ A2(1) ‘ ‘ A3(1) ‘ saturated(l) superagenta(l)
matricesa(l) createutilitvil)
userpreferencesal (.(3,15,6,13)(3.2,11.4.) Teet puposc]
newresourcesal (.(3,18:6.13).)
2
cohsultations matrices(.(xal,ual).)
Test purpose 2
newresourcesal (.xal. i
saturated(.(xal uak)
identifier(.1.)
newresonrcesa2 (11 e e)
newresonrcesa3(11) -
atility((nalyl,

Figure 4: An MSC from test scenario generation.

application of a method and tool for test scenario genera-
tion for an e-barter system. The proposed approach presents
several advantages. First, the design of a formal specifica-
tion from which tests are generated contributes to eliminate
design errors and ambiguities. Secondly, the use of test pur-
poses for test generation can be very useful to meet customer
requirements. Also, automated test generation is less costly
that tests written manually, reducing the time to market.
And finally, the test scenarios we have generated can be re-
used for non functional testing such as system capacity and
response time testing. And the proposed methodology can
be applied to large-scale system and be easily applied to
e-commerce systems.

Acknowledgments

We would like to thank professor Manuel Niuiiez, from the
University Complutense of Madrid, for the useful discussions
about the characteristics of an e-barter system that helped
us for the SDL specification proposed in this paper.

6. REFERENCES

[1] A. Cavalli, D. Lee, C. Rinderknecht, and F. Zaidi.
Hit-or-jump: An algorithm for embedded testing with
applications to IN services. In Jianping Wu,

Samuel T. Chanson, and Qiang Gao, editors, Formal
Methods for Protocol Engineering and Distributed
Systems, FORTE XII / PSTV XIX’99, volume 156 of
IFIP Conference Proceedings, pages 41-56. Kluwer,
1999. Beijing, China.

[2] O. Dubuisson. ASN.1. Springer, 1999.

[3] ITU-T. Recommandation Z.120, Annexe B: Algebraic
semantics of Message Sequence Charts, April 1995.
Geneva.

[4] ITU-T. Recommandation Z.100: CCITT Specification
and Description Language (SDL). Technical report,
ITU-T, 1999.

[5] D. Lee and M. Yannakakis. Principles and Methods of
Testing Finite State Machines - a Survey. In The
Proceedings of IEEE, volume 84, pages 1090-1123,
August 1996.

[6] N. Lépez, M. Ninez, I. Rodriguez, and F. Rubio. A
formal framework for e-barter based on
microeconomics theory and process algebras. In
Springer, editor, Innovative Internet Computer
Systems, LNCS 2346, pages 217-228, 2002.

[7] N. Lépez, M. Ninez, I. Rodriguez, and F. Rubio. A
multi-agent system for e-barter including transaction
and shipping costs. In 18th Symposium on Applied
Computing (SAC 2003): Special Track on e-commerce
Technologies, pages 587-594, 2003. Melbourne,
Florida.

[8] R.L. Probert, Y.Chen, M. Cappa, P.Sims, and
B.Gahaziadeh. Formal verification and validation for
e-commerce: theory and best practices. Information
and Software Technology, pages 763-777, July 2003.

[9] ETSI. TTCN-3. TTCN-8 — Core Language.

[10] M. Woolridge and N.R. Jennings. Intelligent agents:
Theory and practice. The Knowledge Engineering
Review, 10(2):115-152, 1995.

