A Passive Testing Approach based on Invariants:
Application to the WAP*

Emmanuel Bayse', Ana Cavalli', Manuel Nidfiez? and Fatiha Zaidi'

! Institut National des Télécommunications GET-INT
91011 Evry Cedex, France
{Emmanuel.Bayse,Ana.Cavalli,Fatiha.Zaidi}@int-evry.fr
? Dept. Sistemas Informéaticos y Programacién
Universidad Complutense de Madrid, E-28040 Madrid. Spain.
mn@sip.ucm.es

Abstract This paper presents a new methodology to perform passive
testing based on invariants. This novel approach is supported by the
following idea: A set of invariants represent the most relevant expected
properties of the implementation under test. Intuitively, an invariant ex-
presses the fact that each time the implementation under test performs a
given sequence of actions, then it must exhibit a behavior reflected in the
invariant. For example, an invariant such as ¢1/01,...,in—1/0n-1,in /O
must be interpreted as “each time the implementation performs the se-
quence 11/01,...,in—1/0n—1,1n the next observed output belongs to the
set O”. We call these invariants simple invariants. In this work we in-
troduce a new notion of invariants to deal with more subtle properties.
For instance, we will consider invariants to express properties such as
“if y happens then we must have that = had happened before”. These
invariants are called obligation invariants. We present algorithms to de-
cide the correctness of the proposed invariants with respect to a given
specification. Once we have that an invariant is correct with respect to
a given specification, we check whether the execution traces observed
from the implementation respect the invariant. In order to perform this
phase we present two algorithms based, respectively, on left-to-right and
right-to-left pattern matching algorithms.

In addition to the theoretical framework we have developed a software
tool, called TESTINV, that helps in the automation of our passive testing
approach. In particular, the algorithms presented in this paper are fully
implemented in the tool. Finally, in order to test the usefulness of our
approach we have chosen a real-life case study: The Wireless Application
Protocol (WAP). We present a test architecture as well as the most
relevant results obtained from the application of our approach to the
WAP.

Keywords: passive testing, conformance testing, invariants, software
tools for testing, Wireless Application Protocol (WAP).

* Research supported in part by the Spanish Ministerio de Ciencia y Tec-
nologia MCyT project MASTER (T1C2003-07848-C02-01), the Junta de Castilla-
La Mancha project DISMEF (PAC-03-001) and the Marie Curie RTN TAROT
(MCRTN 505121). This research was carried out while the third author was vis-
iting the GET-INT under the financial support of the Platonis project.

1 Introduction

The activity of conformance testing is essentially focused on verifying the con-
formity of a given implementation to its specification. In most cases testing
is based on the ability of a tester that stimulates the implementation under
test and checks the correction of the answers provided by the implementa-
tion [Lai02,LY96]. However, in some situations this activity becomes difficult
and even impossible to perform. For example, this is the case if the tester is
not provided with a direct interface to interact with the implementation under
test (IUT). Another conflictive situation appears when the implementation is
built from components that are running in their environment and cannot be
shutdown or interrupted for a long period of time. In these situations, there is
a particular interest in using other types of testing techniques such as passive
testing. In passive testing the tester does not need to interact with the IUT.
On the contrary, the execution traces are observed without interfering with the
behavior of the IUT. Passive testing has very large domains of application. For
instance, it can be used as a monitoring technique to detect and report errors
(this is the use that we consider in this paper). Another area of application is
in network management to detect configuration problems, fault identification,
or resource provisioning (e.g. [MA01,WZY01]). It can be also used to study the
feasibility of new features as classes of services, network security, and congestion
control.

Even though passive testing techniques are not new (see for example the
approach shown in [AAD79)]) in the last years a very active research on passive
testing has been developed. Usually, the execution traces of the implementa-
tion are compared with the specification to detect faults in the implementa-
tion [LNST97,Mil98,TC99,TCI99]. In general, the specification has the form of
a finite state machine (FSM) and the work consisted in verifying that the executed
trace is accepted by the FSM specification. A drawback of these first approaches
is the low performance of the proposed algorithms (in terms of complexity in
the worst case) if non-deterministic specifications are considered.

A new approach was proposed in [CGP03]. There, a set of properties, called
invariants, were extracted from the specification and checked on the traces ob-
served from the implementation to test their correctness. That is, in this ap-
proach information was extracted from the specification and then used to pro-
cess the trace. However, one of the drawbacks of this work is the limitation on
the grammar used to express invariants. For instance, properties as

FEach time that a user asks for connection and the connection is granted,
if after performing some operations the user asks for disconnection then
he is disconnected.

could not be easily represented by using their invariants since all the possible
sequences of actions expressing the idea of some operations must be explicitly
written.

A new formalism to express invariants was presented in [ACNO3]. For in-
stance, the possibility of specifying wild-card characters in invariants was added.

Besides, a set of outputs was allowed (instead of a single output) as termination
of the invariant. Thus, properties such as

Each time that a user asks for a resource (e.g. a web page) either the
resource is obtained or an error is produced.

could be easily specified. However, heavy experimentation using the invariants
approach reported in [CGP03,ACNO03] has shown additional lines for improve-
ment. For example, properties such as

A user cannot get disconnected if he was not previously connected.

could not be expressed at all by using these approaches. This paper represents
an extended and revised version of [ACNO03]. In order to easily understand the
new contributions we provide a short outline of our approach. In [ACN03], it was
proposed that invariants should be supplied by the expert/tester. In this case,
the first step must be to check that the invariant is in fact correct with respect
to the specification. An algorithm to check this correctness was provided. The
complexity, in the worst case, of the algorithm was linear, with respect to the
number of transitions in the specification, if the invariant did not contain the
wild-card character x; this complexity is quadratic if the symbol % appears in the
invariant. Once a set of (correct) invariants is generated the second step consists
in checking whether the trace produced by the IUT respects the invariants.
In order to do so a simple adaptation of the classical algorithms for pattern
matching on strings (see e.g. [BM77,KMP77]) was implemented. This algorithm
works, in the worst case, in time O(m - n), where m and n are the length of the
trace and the invariant, respectively. Let us remark that in most practical cases
the length of the invariant is several orders of magnitude smaller than the length
of the trace. Thus, we may consider that the previous complexity is almost linear
with respect to the length of the trace. In the current paper we introduce a new
notion of invariant to express properties as “if y happens then we must have
that 2 had happened before”. These invariants are called obligation invariants.

A parallel between the approach presented in this paper and model checking
techniques used for the verification of distributed systems can be established (see
e.g. [CGP99]). Model checking techniques deal with checking whether the design
of a finite state system satisfies some properties. In other words, it consists of
verifying the correctness of requirements that can be expressed as invariants,
i.e. properties that remain invariantly true for all possible executions of the
system. Model checking is well adapted for the verification of properties of an
abstract model of the system implementation. However, it is not so suitable for
the verification of properties on a real system implementation.

In our approach, we perform two types of property verification: one on the
specification and another one on the implementation. For the first type of verifi-
cation we have developed algorithms whose complexity are better than classical
algorithms for model checking, since these ones are usually exponential on the
number of transitions. For the second type of verification we have developed new
algorithms that check the properties on the real implementation traces. These

algorithms are adaptations of classical algorithms for pattern matching. Let us
remark that this kind of verification is not performed at all by model check-
ing. Thus, our techniques are indeed closer to conformance testing or system
monitoring than to model checking.

In order to ease the passive testing process we have also developed a software
tool, called TESTINV, to automate all the phases of our passive testing approach.
In particular, the tool includes the algorithms to check the correctness of invari-
ants with respect to the specification and to decide whether the trace observed
from the implementation respects the invariants. Moreover, TESTINV has been
integrated into the PLATONIS platform [Pla01]. This platform consists of a set
of tools to perform both active and passive testing. In fact, PLATONIS has been
already applied to the validation of protocols and services on mobile environ-
ments.

In order to test the suitability of our framework we have extensively worked
with a real case study: The Wireless Application Protocol (WAP). This protocol
is an open global specification that empowers mobile users with wireless devices
to easily access and interact with Internet information and services instantly.
It is worth to point out that this protocol represents a typical example where
active testing cannot be applied since, in general, there is no direct access to
the interfaces between the different layers. Thus, the tester cannot control how
internal communications are established. In order to perform the corresponding
experiments we have installed the software free protocol stack Kannel. Moreover,
both a platform and a test architecture capable to deal with passive testing in
a mobile phone environment (WAP, GPRS, UMTS) have been defined. The
architecture is based on points of observation installed between the different
layers. Finally, let us remark that the experiments performed on the WAP, and
reported in this paper, represent an original contribution because such type of
study has been never performed in a systematic way.

The rest of the paper is organized as follows. In Section 2 our notions of
invariant and passive testing are presented. First, we introduce what we call
simple invariants. Next, obligation invariants are presented. We also present the
algorithms to check the correctness of these different types of invariants on the
specification and explain how invariants are checked on the observed execution
traces. In Section 3 we discuss some of the limitations of our approach. In Sec-
tion 4 we describe the capabilities of the software tool TESTINV as well as some
implementation details. In Section 5 the protocol WAP and results of the ex-
periments performed using TESTINV are presented. This section also introduces
the new test architecture used for the experiments. Finally, in Section 6 we give
our conclusions and guidelines for future work.

2 Invariants and Passive Testing

This section introduces our invariants and the corresponding algorithms to de-
cide whether they are correct with respect to specifications. We consider that
specifications are represented as Finite State Machines.

a/z

M M, Ms;
OISO

c @b aly
aly s /”/Z \a/y " aly bly aly b/y

VA, S

b/z

1y

Figure 1. Examples of FSMs.

Definition 1. A Finite State Machine, in the following FSM, is a tuple M =
(S,Z,0,Tr,si) where S is a finite set of states, Z is the set of input actions,
O is the set of output actions, 7T'r is the set of transitions, and s;, is the initial
state.

Each transition ¢t € T'r is a tuple t = (s, s',4,0) where s,s’ € S are the initial
and final states of the transition, respectively, and i € Z, o € O are the input
and output actions, respectively.

Let 5,5 € S be states and tr = i1/o01,...,in/0n, with n > 1, be a sequence
of pairs such that for any 1 < j < n we have i; € 7 and o; € 0. We write

s Iy ' if either tr = € and s = s' or there exist n transitions ¢i,...,t, € Tr
and states s1,...,8,—1 € S such that t; = (s,51,91,01), tn = (8n—1,8",%n,0n),
and for any 1 < j < n we have t; = (s;_1,$;,%j,0;). a

First, let us note that this notion of FSM does not restrict specifications to
be deterministic, so that we work with a general notion of FSM. Intuitively, a
transition ¢ = (s, s',4,0) indicates that if the machine is in state s and receives
the input ¢ then the machine emits the output o and the current state becomes

s'. We will usually write s /% & to denote the transition (s,s',i,0) € Tr.
We can extend the notion of single transition to a sequence of transitions. Thus,

s I s' denotes that we can traverse from the state s to the state s’ by following
transitions containing the corresponding pairs i/o appearing in tr. In Figure 1
we present some simple examples of Finite State Machines.

Once we have a FSM we may extend its set of transitions so that the wild-card
characters 7 and * can be taken into account. In particular, these special symbols
can appear as part of a sequence of transitions.

,

Definition 2. Let M = (S,Z,0,Tr, ;) be an FSM. We write s 1% st if there
) v

exists i € Z such that s ﬂ) s'. We write s L) s' if there exists o € O such that

?/? . . .
PRLL Besides, we write s X% & if there exist i € 7 and o € O such that

s o g We write s — s' if there exists a sequence of input/output pairs tr
such that s 25 s'. O

2.1 A First Notion of Invariants

Next we present our first notion of invariant. We call them simple invariants, or
just invariants. Let M = (S,Z,0,Tr, si) be an FSM. Intuitively, a trace such as
i1/01,--,in—1/0n_1,in/O is a simple invariant for M if each time that the trace
i1/01,-..,in—1/0n—1 is observed, if we obtain the input i,, then we necessarily get
an output belonging to O, where O C O. In addition to sequences of input and
output symbols we will allow the wildcard characters ? and *. In our framework,
the meaning of ? is the standard one in the pattern matching community (that
is, to replace any symbol). However, we will slightly modify the usual meaning
of . For example, the intuitive meaning of an invariant as i/o,*,4'/O is that
if we detect the transition i/o then the first occurrence of the input symbol 4’
is followed by an output belonging to the set O. In other words, * replaces any
sequence of symbols not containing the input symbol #'.

Definition 3. Let M = (S,Z,0,Tr, sin) be an FSM. We say that the sequence
I is a (simple) invariant for M if the following two conditions hold:

1. I is defined according to the following EBNF:
I:=i/0|*I|a/zI

In this expression we consider i € Z, a € ZU{?},z€ OU{?}, and O C O.
2. I is correct with respect to M.

O

Intuitively, the previous EBNF expresses that an invariant is a sequence of
symbols where each component, but the last one, is either a pair a/z, with a
being an input action or the wildcard character ? and z being an output action
or the wildcard character 7, or the wildcard character *. The last component
is an input action followed by a set of output actions. In Figures 2 and 3 we
introduce two algorithms to decide whether an invariant is correct with respect
to a specification. First, we present some examples of invariants to show what
kind of critical properties can be tested as well as how our invariants work.

Ezample 1. Our notion of invariant allows us to express several interesting prop-
erties. For example, we can test that each time that a user requests a disconnec-
tion then he is in fact disconnected by using the invariant

I, = req_disconnect/{disconnected}

The idea is that each occurrence of the symbol req_disconnect is followed by the
output symbol disconnected. For instance, this invariant has the same distin-
guishing power as the invariant

I} = x,req-disconnect/{disconnected}

We can specify a more complex property by taking into account that we are
interested in disconnections only if a connection was requested. In this case we
have

I, = req_connect/?, x, req_disconnect/{disconnected}

We can refine the previous invariant if we consider only the cases where the
connection was granted

Is = req_connect/granted_connection, *,req_disconnect/{disconnected}

For instance, an observed trace is correct with respect to I if each time that
we find a (sub)sequence starting with the pair req_connect/granted_connection
then the first occurrence of the input symbol req_disconnect is paired with the
output symbol disconnected. Let us remark that we could not deduce that we
have found an error if the pair req_connect/granted_connection appears in the
observed trace but the input req_disconnect is not detected afterwards in the
corresponding trace. In such a situation we cannot conclude that the implemen-
tation fails: It may happen that we have stopped too soon observing the behavior
of the implementation. Finally, an invariant as

I, = req_connect/{granted_connection, error}

indicates that after requesting a connection we either are granted with it or an
error is produced. O

We could adapt to our framework the algorithm given in [CGPO03] to ex-
tract their invariants, up to a length n, for a specification M. However, as we
explained in the introduction of the paper, this process presents several draw-
backs. In particular, the complexity exponentially increases with the length of
invariants. On the contrary, we advocate that invariants should be indicated by
the specifier/tester as the set of critical properties that the implementation must
fulfill. Fortunately, we have found an algorithm that detects in linear time (with
respect to the number of transitions in the FSM) whether a sequence of symbols
not containing the character x is in fact an invariant for a specification. Obvi-
ously, before we try to find out whether the trace observed from the behavior
of the implementation is correct with respect to an invariant, we should assure
that the invariant is in fact correct with respect to the specification. In order
to facilitate the reading, we firstly present an algorithm (see Figure 2) deciding
correctness of invariants without occurrences of the % wild-card character. In
Figure 3 we extend this algorithm to deal with invariants where the symbol *
can appear.

The algorithm given in Figure 2 works as follows. The first while-loop com-
putes those states s € S that can be reached starting from one of the states
belonging to S after performing the sequence i1/01,...,%p—1/0n—1. Let us re-
mark that if one of the symbols in the sequence is the wild-card character 7
then any symbol can be used to match it. Besides, it may happen that after
some steps we find that there do not exist two states connected by the analyzed

Input: M = (S,Z,0,T7,8in), I =i1/01,...,in /O, Y1 <j<n:ij #x A 0j # *
Output: true/false = invariant I correct/incorrect

ji=1,8:=8;
while j <n and S’ # () do begin
T:=Tr; 8" :=0;
while T # () do begin
choose t € T; {t = (5,5 ,a,2)}
T:=T-{t}
if s€ S and a =i; and 2z = 0; then §" := §" U {s'}
end;
S =8"j=5+1
end;
{last pair of the invariant or empty set S’ of current states}
if ' = 0 then return(false)
else begin
error := false; transition_found := false; T := T'r;
while T # () and not error do begin
choose t € T; {t = (s,5,a,2)}
T:=T—{t};
if s € §' and a = i, then begin
transition_found := true;
if z ¢ O then error := true
end
end;
if not transition_found then error := true;
return (not error)
end;

We consider that both 7 =7 and o =7 hold.

Figure 2. Checking correctness of Simple Invariants (1/2).

sub-sequence. In this case S’ becomes empty and we exit the while-loop. Let
us note that for each execution of the loop we perform a number of operations
proportional to the number of transitions in the corresponding specification. So,
in the worst case we perform a number of operations proportional to the number
of transitions times the length of the sequence, that is, n. The second while-loop
analyzes the last pair of the invariant. If the auxiliary set of states S’ is empty
then the invariant is incorrect. Actually, this means that there does not exist
a state in the specification such that the sequence of pairs forming the invari-
ant can be performed from it. Thus, we should not consider that this candidate
represents any property of the specification. If that set is not empty then we
check that for any transition labelled by the input i,, we receive an output be-
longing to O. Once again, if there is no possible transition we consider that the
invariant is incorrect. Let us note that the complexity of this last loop is also

given by the number of transitions. Besides, we need | S|+ |T'r| additional space.
Let us note that if the graph induced by the corresponding FSM is connected
then |S| < |Tr| + 1 (otherwise we can discard those states and transitions not
reachable from the initial state and the result holds for the new sets of states
and transitions).

Proposition 1. Let M = (S,Z,0,Tr,s;,) be an FSM and I = 41/01,...,i,/0
be an invariant such that for any 1 < j <n we have i; # x A 0; # *. The worst
case of the algorithm given in Figure 2 checks the correctness of the invariant I
with respect to M in time O(n - |T'r|) and space O(|T'r|). |

Next, we present some examples of correct/incorrect invariants for a given
specification.

Ezxample 2. Let us consider the FSMs presented in Figure 1. For example, the
following invariants are correct for Mj:

L =a/{z,y} I, =a/?,¢/z,b/{x}

Let us remark that I is also correct for both My and Ms. On the contrary, I,
is incorrect for them since the sequence a/?,¢/z cannot be performed from any
state belonging either to M, or Mj3. If we consider the invariant

I3 =b/y,a/{y}

we have that I3 is incorrect for M3. For instance, there exists a transition labelled
by b/y outgoing from the state 3.1 and reaching the state 3.2. In addition, we
have a transition labelled by a/z from the state 3.2. So, there exists a state (in
this case 3.1) such that the sequence of transitions b/y can be performed in such
a way that the reached state (i.e. 3.2) may perform a transition whose input
action is a but the corresponding output action does not belong to the set {y}.
On the contrary, it is straightforward to check that this invariant is correct for
M1 and Mz. O

In Figure 3 we extend the previous algorithm to deal with invariants contain-
ing the wild-card character *. As in the previous case, we traverse the invariant
from left to right. We also have that the external while-loop has as termination
condition that either the remaining sequence has length one or that the current
set of states is empty. However, instead of advancing by incrementing a counter
we consider two auxiliary functions: head(I) returns the first element of I and
tail(l) removes the first element from I. If the first element of the remaining
invariant is a pair i/o where i € ZU {?} and o € O U {?} then the algorithm
proceeds as the one presented in Figure 2. If we have that the first element is
x then we skip all consecutive x’s. Afterwards, we consider the first element of
the remaining trace. Obviously, this element must be a pair i/o. Given s’ € S’
we compute the states s € S connected to s’ by a path that does not contain
the symbol 4. These paths are computed by using the predicate path(s', s,).
Formally, path(s',s,i) holds if there exists a sequence of input/output pairs

Input: M = (S,Z,0,T7, 8in), [=i1/01,...,in /O
Output: true/false = invariant I correct/incorrect

' =I1,8:=8;
while I’ #5/0 and S’ # () do begin
first := head(I'); I' := tail(I’);
if first # * then begin {first = i/o}
T:=Tr; S" =0
while T # () do begin
choose t € T; {t = (s,5',a,2)}

T:=T - {t};
ifs€ S and i =a and 0 = z then " := $" U {5’}
end;
S ="
end

else begin {first = *}
while head(I') = * do I' := tail(I'); {skip seq of *’s}
first := head(I'); {first = i/o}
S :={s€S|3s' €S :path(s,s,i)}
end
end;
{last pair of the invariant or empty set S’ of current states}

See Algorithm in Figure 2 for dealing with the last pair of the invariant.

We consider that both i =7 and o =7 hold.

Figure 3. Checking correctness of Simple Invariants (2/2).

tr = a1/z1,...a,/2 such that s’ 17y & and for any 1 < j <r we have a; # 1.
As a special case, if i is equal to ? then path(s’, s,?) holds if there exists a path
from s’ to s, that is, if ' — s.

Example 3. If we consider again the FSMs depicted in Figure 1 we have that the
invariant a/xz, *,b/{y, 2z} is correct for all of the specifications. a

Let us remark that the time complexity in the worst case for computing this
new set of states belongs to O(|S| - |Tr|). This is so because we only need to
compute a breath-first-search (the complexity of this operation is in O(|T'r|))
for each of the states belonging to S’ (at most |S| states). Again, if we consider
that the induced graph is connected then we have that the previous complexity
is bounded by O(|Tr|?). Besides, we need |S| + |Tr| additional space. Finally,
the last element of the sequence is treated as in the algorithm given in Figure 2.

The next result indicates the complexity of the previous algorithm. We con-
sider that there are no trailing occurrences of the wild-card character * in in-
variants, that is, no consecutive occurrences of *.

Proposition 2. Let M = (S,Z,0,Tr,sin,) be aFSMand I =41/01,...,i,/0 be
an invariant without trailing occurrences of *. The worst case of the algorithm
given in Figure 3 checks the correctness of the invariant I with respect to M in
time O(k - |Tr|? + (n — k) - |Tr|), where k is equal to the number of *’s in I. The
required extra space is in O(|T'r|). O

Next, we have to determine whether the trace obtained from the implementa-
tion satisfies the properties indicated by the invariants that we are interested in.
Let us comment a very important difference with respect to previous proposals
for passive testing: A homing state phase (that is, to identify when the sequence
was passing by the initial state) is not needed for this kind of invariants. This
is so because invariants have to be fulfilled at any point of the implementation.
Thus, it is not relevant the state where the machine was placed when we started
to observe the trace. In order to test the trace we perform a pattern matching
strategy. We have implemented a simple adaptation of the classical algorithms
for pattern matching on strings (e.g. [BM77,KMP77]). The inclusion of wild-card
characters is easy. In addition, for an invariant of length n we have to consider
all the occurrences of the first n — 1 elements in the trace and then if we find a
pair i/o such that i, = ¢ (let us remind that if i,, =7 then this equality holds)
then we have to check that o € O. We can say that we have found a mismatch
(that is, a fault) if this last condition does not hold. Regarding the complexity
of our pattern matching strategy, in the worst case we obtain O(m - n) (n is
the length of the invariant and m is the length of the observed trace). Let us
remark that even though good algorithms for pattern matching on strings per-
form in O(m) (after the pre-processing phase) we cannot achieve this complexity
because we must check all the occurrences of the pattern in the trace. However,
as we commented before, if we consider that the length of the invariant is much
smaller than the length of the trace, as it is usually the case, we have that this
complexity is almost linear with respect to the length of the trace.

We finish this section by presenting some relations between different invari-
ants and their correctness with respect to a given specification. The proofs of
these results are easy (but tedious) with respect to the algorithm given in Fig-
ure 3.

Lemma 1. Let M = (S,Z,0,Tr, si,) be an FSM. The following properties hold:

— The invariant *,41 /o1, . ..,4,/0O is correct for M iff i1 /o1,...,i,/O is correct
for M.

—If é1/01,...,i,/0 is correct for M and O C O’ then i1/01,...,i,/0" is
correct for M.

— Let 41/01,...,7/0j,...,in/O be a correct invariant for M. Then, for any

I'=41/01,...,i/0j,...,in/O, with i € Z, such that Is,8' € S: s Ly s we
have that I' is correct for M.

— Let i1/01,...,%;/7,...,in/O be a correct invariant for M. Then, for any
I' =ii/o1,...,i5/0,...,in/O, with 0 € O, such that 35,5’ € S: s U
we have that I' is correct for M.

— Let I be a correct invariant for M. If we consider the invariant I’ where any
occurrence of * in I is replaced by a sequence of symbols i1/01,...,7;/0;

such that 3s,5' : s L &' we have that I' is correct for M.

O

Let us note that the condition s —— ' appearing in the last three cases indicates
that there exists (at least) a pair of states connected by the sequence I'. Let us
also remark that the reverse implication of the last four results do not hold.

2.2 Introducing Obligation Invariants

In the previous section we have given our basic framework for invariants. Even
though simple invariants allowed us to specify most of the properties that we
desired to test for the WAP, we found some properties that we were not able
to express with them. Specifically, we were unable to indicate properties such
as “an output action does not appear before a sequence of actions (i/o pairs)
has been observed”. Thus, we decided to extend the set of invariants to consider
such properties. These new invariants, that we call obligation invariants, are
introduced in the following definition.

Definition 4. Let M = (S,Z,0,Tr, sin) be an FSM. We say that the sequence
I is an obligation invariant for M if the following two conditions hold:

1. I is defined according to the following EBNF:
I:=a/O|*1|a/z1

In this expression we consider a € ZU {?}, 2 € OU{?}, and O C O.
2. I is correct with respect to M.

O

Let us remark that, in contrast with simple invariants, we do not force the
first symbol of the last pair of an obligation invariant to be an input action (it
can also be the wild-card character 7).

Ezxample 4. Obligation invariants may be used to express properties where the
occurrence of an event must be necessarily preceded by a sequence of events. For
example, the intuitive meaning of an invariant such as

I = request_page/req_ack, *,?/{page_sent}
is that if the event page_sent is observed in the trace then we must have that

a page had been requested before and that the server has acknowledged the
reception of the request. O

Input: M = (S,Z,0,Tr,8in), I =41/01,...,in/O, V1< j<m:ij £* A 0j # %
Output: true/false = invariant I correct/incorrect

{last pair of the invariant}
T:=T,; S :=0; error := false;
while T # () and not error do begin
choose t € T; {t = (s,5',a,2)}
T:=T—{t};
if z € O then if a = i, then S’ := ' U {s}
else error := true
end;
if $' = () then error := true;
{last pair of the invariant treated}

ji=n—1
while j > 1 and not error do begin
S” = 0‘ T = Tr' SIII = SI'
while T # () do begin
choose t € T; {t = (5,5 ,a,2)}

T:=T—{t};

if s € §" then if a = i; and z = 0; then begin
S =8 —{s};
S" = 8"U{s}

end
else error := true
end;
if ' # 0 then error := true
else begin
S =5"
ji=j—1
end
end;
return (not error);

‘We consider that both 7 =? and o =7 hold.

Figure 4. Checking correctness of Obligation Invariants (1/2).

The first step consists again in deciding whether a candidate for invariant
is indeed correct with respect to the specification. Even though the philosophy
underlying the algorithm is similar to the one for the algorithms presented in
the previous section, there is an important difference: We traverse the invariant
from right to left. The algorithm given in Figure 4 works as follows. The first
while-loop analyzes the last pair of the invariant. We compute the set of states
S' having an outgoing transition labelled by an output symbol in O. Moreover,
those transitions must necessarily have as associated input i,, (if 4, =? then this
condition always hold); otherwise the invariant is discarded. Furthermore, if the

set of computed states is empty then the invariant is incorrect. A similar decision
was taken for simple invariants, that is, we consider that if the trace defining the
invariant cannot be performed by the specification then the invariant is useless.
Once the last pair of the invariant has been treated, we traverse the rest of
the invariant from right to left. We check for all states belonging to S’ that
there exists at least one transition reaching one state of S’ and satisfying the
previous element of the invariant. Then, we remove these state from the set S’.
Meanwhile, we compute the new set of states corresponding to the originating
state of those transitions. If the new set S’ is not empty at the end of an iteration
then the invariant is not correct. Actually, an unused state in S’ indicates that
there exists a partial path that cannot be completed.

Example 5. Let us consider the FSMs depicted in Figure 1 and the following

invariants L -
L =a/?,?/{z} I, = a/{z}

We have that I; is correct for M, since every path reaching a state having a
transition labelled by the output symbol z must have been preceded by a pair
a/o, for some output action o. On the contrary, I; is correct neither for M; nor
M3. The invariant I, is correct for My and M3. However, I is not correct for
M;. For example, the state 1.2 has a transition labelled by b/x. Thus, it does
not hold that every occurrence of z is paired with a. O

In Figure 5 we present the algorithm to deal with invariants containing the
wild-card character *. As the algorithm described above, we traverse the invari-
ant from right to left. However, instead of using an index to go backward, we
use two auxiliary functions: last(I) returns the last element of I, and tail’(I)
removes the last element from I. Moreover, we use the empty(I) function which
returns true if the corresponding invariant has been completely traversed. We
treat the last pair of the invariant as explained in Figure 4. Once this last pair
is checked, so that we obtain a set of states S’, we continue the process from
right to left. Afterwards, if the previous element of the invariant is an i/o pair
then we proceed as explained in Figure 4. Otherwise, we have that the next
element to be dealt with is a wild-card character x. We compute the new set
of states S such that for any state belonging to S’, there exists a path which
satisfied the predicate path'(s,s’,0) with s € S, s’ € S’ and o being the output
of the previous element of the invariant (before the x). Let us note that if the
predicate path'(s,s',0) is satisfied then the state s’ is removed from the set S’.
Formally, path'(s,s’,0) holds if there exists a sequence of input/output pairs

tr = ay/z,...a./2, such that s 7y & and for any 1 < j <r we have z; # o.
Finally, let us remark that the complexity in time and space of the previous
algorithms is again given by the complexity orders presented in Proposition 2.
Regarding the validity (with respect to an invariant) of traces observed in
the implementation under test, the procedure is very similar to simple invariants
but we have to point out a notable difference. In contrast with the invariants
introduced in the previous section, we now need some kind of homing sequence.
Indeed, we need to find out whether the observed trace has passed through a

Input: M = (S,Z,0,Tr,sin), I =i1/01,... ,in/6
Output: true/false = invariant I correct/incorrect

{last pair of the invariant}
See Algorithm in Figure 4 for dealing with the last pair of the invariant.

I =1,
while not empty(I') and not error do begin
" = w;
end_elt :=last(I'); I' := tail' (I');
if end_elt # * then begin {end_elt = i/o}
T:=T,; 8" =5
while T # () do begin
choose t € T; {t = (s,5,a,2)}

T:=T — {t};

if s € §" then if a =i and z = 0 then begin
S =8 —{s}
S = 8" uU{s}

end
else error := true
end
end
else begin {end_elt := *}
while last(I') = * do I' := tail’ (I’); {skip a seq of *’s}
end_elt ;= last(I'); {end_elt =i/o}
S":={se€S|Vs €S :path’(s,s',0)}
end;
if §' # 0 then error := true else §' := 5"
end;
return (not error);
We consider that both ¢ =? and o =? hold.

Figure 5. Checking correctness of Obligation Invariants (2/2).

state in the implementation corresponding to the initial state of the specification.
For example, let us consider a vending machine that returns a tea only after two
coins have been introduced. If we observe that a tea is returned but we did not
observed before that two coins were inserted then we cannot deduce that the
machine is faulty. It may happen that we started to observe too late. So, we
need to know that the machine was in its initial state and we have to discard
the prefix of the observed trace until that point. In order to perform the task
of determining which point of the trace corresponds with the initial state we
consider two possibilities. Next we briefly sketch them. The first one consists in
using a simple adaptation of the UIO method [SD88,ADLUS8S]. If we can find a
UIO sequence for the initial state and we observe that sequence in the trace then
we know that we have to discard the preceding part of the trace. The second

method is inspired by the classical homing state for passive testing. In this case,
once a state has been identified we move forward trying to determine the point
of the trace corresponding to the initial state. Finally, if we are able to identify
the desired point of the trace, we have to match the trace and the invariants. In
this case, we use an adaptation of [BM77] where pattern matching is performed
from right to left. As in the previous case, we obtain again a performance in the
worst case in O(m -n), being m and n the sizes of the trace and of the invariant,
respectively

We finish this section with a result similar to Lemma 1 but in the case of
obligation invariants.

Lemma 2. Let M = (S,Z,0,Tr, sin) be an FSM. The following properties hold:

— The invariant *,i; /oy, . .., i, /O is correct for M iff iy /oy,...,i,/O is correct
for M.

— If i1/01,...,in/O is correct for M and O' C O then iy/o1,...,i,/O0" is
correct for M.

—Ifi1/o1,...,ij/0j,...,i,/O is correct for M then i1/01,...,7/0j,...,in/O
and i1/o01,...,i;/?,...,i,/O are both correct for M.

— Let I be a correct invariant for M. If we consider the invariant I' where we
have replaced any sequence of symbols i1 /o1,...,i;/0; by * then we have
that I' is correct for M.

3 Remarks on the proposed Approach

In this section we briefly review some of the limitations of our proposal and we
show how they can be (partially) overcome. We will also comment on some of
the issues regarding the definition of invariants.

First, let us remark that our approach suffers of the usual disadvantages of
passive testing with respect to active testing. Specifically, for any context allow-
ing non-determinism, any passive approach will have less distinguishing power
than an appropriate active approach. Next, it can be asked what can be ez-
pressed with our invariants? In fact, we said that we were introducing obligation
invariants as an extension and complement of simple invariants. However, we are
aware that there exist properties that cannot be expressed in our notation. For
instance, we can increase the expressive power of our invariants by considering
succession invariants [CGPO03]. This kind of invariants allows a tester to express
that there exists a loop. They can be used, for instance, to detect whether an
implementation does not authorize several attempts before a final rejection. We
plan to include this kind of invariants as soon as we adapt our log files to cope
with the new situation.

Another shortcoming of the current framework is that we do not explicitly
consider time aspects. However, there are several ways of taking into account
time aspects that are implicitly represented in the corresponding protocols. For

instance, and considering the application to WAP that we present in the forth-
coming sections, we are able to identify problems due to an expiration of a timer
because a service data unit primitive (e.g. Abort) is used to inform the lower
and upper layers.

Finally, we do not completely cope with the data part of protocols. Indeed,
the extension of our framework to deal with EFSMs is far from trivial. In partic-
ular, we have the problem that the values of the variables cannot be, in general,
observed. As we will comment in the conclusions of the paper, the work re-
ported in [LCH'02] opens a new perspective for passive testing to cope with
data values. Nevertheless, it is very easy to adapt our formalism to deal with
invariants containing only constant data. Actually, this small inclusion is rather
useful when dealing with real protocols as the WAP. For instance, we may use
an invariant as

req_connect(Peter)/?, x, req_disconnect(Peter) /{disconnected(Peter) }

to check that the disconnection of the service performed by Peter is linked to a
request of connection made by Peter himself.

Finally, it can be thought that the definition of invariants is a hard task.
However, we claim that this is not the case. Indeed, even non-experts can write
invariants for a given protocol with the help of the information provided by
the standards. For instance, many standards supply Message Sequence Charts
describing the exchanges of messages between layers. Once, the corresponding
notations are assimilated, any tester should be able to write invariants with the
same degree of effort as it would take to write a usual test.

4 Description of the TEsTINV Tool

This section is devoted to implementation and tool details. A tool, that we call
TESTINV, has been developed where all the algorithms described in this paper
are fully implemented. The main task of the tool is to automate the process
of checking the correctness of invariants on a specification and on determining
whether real traces respect a given invariant. The code has been completely writ-
ten in Java (J2SE 1.4.0 API specification). Let us remark that we have rewritten
a previous prototype developed in C, and used in [ACNO03], where only simple
invariants were considered. We have used the Regex package to express invariants
as regular expressions. Besides, Java allowed us to straightforwardly improve the
existing Graphical User Interface (GUI). In TESTINV, the new graphical inter-
faces have been developed by using the Awt and Swing packages. A high level
description of the tool is shown in Figure 6.

TESTINV has been integrated into the PLATONIS platform (see [Pla01] for
a complete description of the overall project PLATONIS). This platform offers
several capabilities and allows real experimentation for validating protocols and
services related to mobile environments (e.g. GSM/WAP, GPRS, UMTS). By
using different techniques, the aim is to check whether some protocol exchanges
in WAP over GSM are correct, as well as to decide if different entities can

b

o] TESTINV
TESTINY I- Formatted Trace ’ . Verdict Lo
Pre-processing Invariant |I- g

module Checking (True, False)
Trvariant File p module
’ TESTINV Correction
[nvariant |I- Verdiot
WDP Lager PO log Specification p Correcness (True, False)
module

Figure 6. General diagram of TESTINVtool

cooperate. In addition, it can be also used to decide whether the service is
properly delivered. Active testing techniques are used if the interaction with the
entity under test is feasible. In this case, the tester can be a PDA (Personal
digital Assistance) or a programmable mobile phone. However, active testing
is not always applicable, especially when testing layers do not have a direct
access. So, in order to overcome this drawback we have included in PLATONIS
the possibility of using the passive testing approach presented in this paper.
Thus, TESTINV is currently a component of the PLATONIS platform, being a
complementary tool that is used when active testing is not possible. In this
project we have implemented different test architectures that allow to combine
active and passive testing. The verdict emitted by TESTINV is sent to the active
tester that receives all the verdicts and emits a global one. There is a script that
permits to launch the required tools according to the test architecture.

In order to start the passive testing process, a preliminary phase is necessary.
First, we have to obtain real traces from a running implementation. In order to
obtain such traces, we use the observation points that have been implemented as
shown in Figure 7. Then, the preprocessing module treats the log file containing
the observed trace. This file has to be transformed into a suitable form. The
tool takes as input the log file obtained from the real execution of the platform.
This file is filtered and parsed in order to obtain a suitable trace, that is, a trace
keeping the information concerning input and output primitive names as well
as relevant data (e.g. source address, destination address, the accessed url, etc).
The model of the output file can be customized. Thus, for each primitive name
we assign the type in terms of input or output. Finally, in order to perform the
verification of invariants on the specification we need to generate the underlying
FSM. To obtain a FSM we use the ObjectGEODE tool [Ver97], that allows us

&

Y R
GSM
Q.77
Wireless devices Modem RAS (Remote Access Server)
& P

WAE Layer PO.log - Wil

WSP Layer PO.log > U

WTP Layer PO.log - WTP
WTLS

WDP_Layer POlog -

[— WDP

Observation Points

Gateway WAP

Figure 7. A Passive Testing Architecture for the WAP.

to translate an SDL [ITU92] specification into a FSM (i.e. a deployed FSM). In
other words, this FSM represents an accessibility graph of the SDL description.
This graph is engendered by using the exhaustive simulation capability of the
ObjectGEODE tool. Moreover, this graph is constrained by fixing the values of
the parameters according to the messages received from the system environment.
These constraints are defined by configuring the environment by means of a
specific startup file. Furthermore, the constraint on the parameters allows to
obtain a calculable graph, and thus to avoid the state space explosion (more
details on this method can be found in [CLRZ99]). In the framework of the
PLATONIS project, three WAP layers have been described by using SDL. Thus,
we were able to produce the FSM on which our experiments have been exercised
(see Section 5).

Once this preprocessing phase has been completed, different modules of the
tool take control of the (passive) testing process. The tool TESTINV consists of
two main modules. The first module is used to check the correctness of invariants
on a given specification. In this part of the tool, the algorithms presented in the
previous section (both for simple and obligation invariants) are implemented.
The second module allows us to check the correctness of invariants on the traces
observed from the implementation. As we have already mentioned, this module

& TESTINY - Invariant Verification

webaysehlavatintestpassiffiles\nvariant . txt
nt\testpassiffiles™WWIP_trace_formatted.txt
aysevavarintitestpassifvilestlog_verdict. txt

Reading and control of the formatted trace file
done

Frocessing of invariant...

Invariant"TR-Invoke.indi? * TR-Abortind/{ S-MethodAbort.ind, S-Disconn
Time trace: 3900ms

Invariant "TR-Invoke.ind!? = TR-Invoke.res{TR-Abortind, S-Methodinvoke.
Time trace: 380ms

Figure 8. TESTINV- Invariant Checking Module

requires a preprocessing to deal with real protocol traces as well as to produce
suitable traces. In other words, the generated traces are usually not directly
usable. As explained in the bulk of the paper, two modifications of classical
pattern matching algorithms have been implemented. Specifically, the pattern
matching algorithm for simple invariants is an adaptation of [KMP77] where
pattern matching is performed from left to right; the algorithm for obligation
invariants is an adaptation of [BM77] where pattern matching is performed from
right to left. As an example of the provided graphical interfaces, in Figure 8 we
present the one corresponding to this module.

We will conclude this section with some remarks concerning the experiments
that we have performed on real protocols. Even though our tool has been de-
signed to primarily deal with FSMs, we provide it with enough flexibility so that
other models can be also considered. For instance, some implementations may
be based in the FSM formalism but do not follow a strict alternation of inputs
and outputs. In this case, the trace will be processed so that dummy symbols
are added to the trace. For example, if an implementation produces a trace

-++4,01, 09,03, - then the trace ---i/o1,d;/02,d;/0s3,- - -, where d; represents a
dummy input symbol, will be checked against the invariant.

5 Case Study: Testing of WAP properties

This section presents a report on the experiments performed on the WAP (Wire-
less Application Protocol). It also presents an outline of the protocol, an expla-
nation of how observation points are placed, and the invariants that we were
checking.

5.1 The Wireless Application Protocol

The WAP is the result of the efforts of the WAP Forum to promote industry-wide
specifications for developing applications and services that operate over wireless
communication networks. WAP specifies an application framework and network
protocols for wireless devices such as mobile telephones, pagers, and PDA. One
of the main objectives is to bring Internet content and advanced data services
to digital cellular phones and other wireless terminals. An overview of the WAP
architecture is given in Figure 7. On top of all, the application layer with the
Wireless Application Environment (WAE) offers a framework for the integration
of different WWW and mobile telephony applications. It includes the content
to be displayed (that is a WML page). The Wireless Session Protocol (WSP)
has been designed to work on top of either the datagram service (WDP) or the
transaction service (WTP). A session oriented service is provided by WSP over
WTP and WSP. A connectionless service is provided over WDP directly. WSP
supports sessions initiation, suspension, and resumption.

Regarding services, the WTP is a confirmed transaction protocol, that is,
a light weight version of the TCP. There are three classes: a non-confirmed
simple flow of information in one direction (class 0), a simple send-acknowledge
exchange (class 1) and a class 2 for a three-way handshake. Moreover, the WTP
also has an optional capability to segment and reassemble data. On the other
hand, the main purpose of the WDP is to make lower layers transparent to
higher ones. It makes no delivery confirmation, packet retransmission or error
correction. WTLS is a session oriented, secure protocol layer conceived after the
Secure Session Layer (SSL) and Transaction Layer Security (TLS) protocols.
This is optional and independent of the other parts.

As explained in Section 4, we have developed, as part of the PLATONIS plat-
form, a test architecture to deal with passive testing in a mobile phone envi-
ronment (GSM/WAP). This test architecture includes a normal WAP gateway,!
and a modem that behaves as a remote access point allowing any wireless client
devices to access WAP pages using our WAP gateway. In addition, we placed
some points of observation (PO) inside the WAP Kannel gateway to have a

! That is, a network component that works as interface between the mobile phone side
(wireless communication) and the Internet. The gateway we took is called Kannel.
It is a free-software and it can be downloaded from http://www.kannel.org.

Mobile Phone Gateway WAP

WAE WSP WTP WTP WSP WAE

————————— L - — — — — — — |Connecifon establishment| —— —— ——F+—————————
S5-Connectreq ol
L

TR-Invokereq |
»

- TR-Invoke.ind N

S-Connectind
TR-Invoke.cnf)y TR-InvoKReres
) T 4—S-Connectres |
TR-Result.ind PRI TR-Result.req

¢ S-Connect.cnf
TR-Result.res N

[e TR-Result.cnf N

S-Suspendreq

¥

__ > S-Suspend.ind »

S-Suspend.ind
4

S5-Resume.req

........ > S-Resumeind

h. 4

S-R res

S-Resume.req -+
o

————————— - — — — — — — — Session ermination |—— ———— 1T ————————
S-Disconnect.req |

B R TR-Invoke.ind |
L

v

Observation Point

- S-Disconnect.ind S-Disconnect.ind

h 4

Figure 9. Messages between layers and WSP observation points.

real-time view of the information flow. So, whenever a communication between
a wireless terminal and a gateway happens, we have access to the involved mes-
sages and the information contained inside them. It is important to note that a
layer is able to interpret only data belonging to the layer itself. This means that
embedded data (that is, data from an upper layer) is not visible. The current
state of every layer is also shown. In order to have a closer control, an HTML
interface with several PHP and CGI routines has also been developed.

5.2 WAP experiments

The experiments presented in this section strongly enhance the initial study
performed in [ACNO3] on testing the WAP. In particular, in this paper we deal
with more complex log files as we have to cope with several POs. The experiments
have been carried out in a connection oriented mode, through the WTP layer.
For the results that we are going to relate in this section, only the POs placed in
the WSP and WTP layers are relevant. Thus, we consider those messages that
are sent either to or received from either the WTP layer or the WSP layer.
The relation between layers, with respect to the transmitted messages, can
be seen in Figure 9 for WSP POs and in Figure 10 for WTP POs. The events for

the WSP layer correspond to message exchanges between its WAE upper layer
and its WTP lower layer. The set of interesting events that can be observed
with WSP POs concerning the exchanges between WAE and WSP is given by
the following primitives:

— S-Connect is used for a new session.

— S-Disconnect allows to abort all current methods or push transactions used
to transfer data.

— S-Suspend is used to request a session to be suspended, so that no activity
can occur on it until it is either resumed or disconnected.

— S-Resume allows a client to resume a suspended session. Session suspension
will automatically abort all data transmission. This feature is useful in situ-
ations where a client notifies that it will be soon unavailable. For example,
this is the case if the bearer network is not available due to roaming to
another network or if the user switches off the device.

Each of these events may have one of the following attributes: regq, ind, res, and
cnf. In the case of exchanges between the WSP and WTP layers, the set of
interesting messages is:

— TR-Invoke initiates a new transaction.
— TR-Result is used to send back a result of a previously initiated transaction.
— TR-Abort is used to abort an existing transaction.

The attributes of these events are again the same as mentioned above. The idea
is that the WTP layer POs allow to observe the messages between WSP and
WTP. Moreover, the messages exchanged between a client (a wireless terminal)
and a gateway through the network are PDUs (Protocol Data Unit). For the
sake of simplicity, in this section we abstract these exchanges. Intuitively, the
TR primitives can be used as follows. A client C sends an invoke message. This
message is considered in the protocol as TR-Invoke.ind and it is received by the
gateway G. Afterwards, an acknowledgment TR-Invoke.res is sent. Then, G tries
to get the page requested by the user. Once G gets the corresponding WML
page, it sends a message to the client: TR-Result.req. The client receives this
message as a TR-Result.ind event. Then, it sends an acknowledgment, denoted
by the event TR-Result.res. Finally, G receives the event TR-Result.cnf denoting
that the client received the requested information. This exchange of messages is
graphically represented in Figure 10.

In order to test the protocol, we consider invariants (both simple and obliga-
tion) that correspond to properties extracted from the Wap Forum specification
(see http://www.wapforum.org). These properties cover the main features of
the communication protocol, that is, the connection, data transfer, and discon-
nection phases. The whole protocol was running autonomously and we were
observing traces of 500 input/output pairs. Next we comment on the most rele-
vant invariants that we studied. First, we describe an invariant for a connection
establishment through a WTP class 2 transactions. This class, as said before,

Mobile Phone Gateway WAP

WAE WSP WTP WTP WSP WAE
________________ — Datetrangper ——4 —————— 4 ———— ——
S-MethodInvokereq > TR-Invokereq

0 . . TR-Invoke.ind
e VOKEIE p ¢ MethodInvokeind |
»
TR-Invoke.cnf ‘___,m____,,,________,,,___«M
o 5-MethodInvoke.cnf[™
X S-MethodResulire
TR-Result.req
TR-Resultind | | -
4 S-MethodResult.ind Il
hl
S-MethodResnltres
¥ TR-Resultres |
Y ki_“""’“’-—-—7.k__,_k* TR-Result.cnf
S5-MethodResult.cnf

Observation Point Observation Point

Figure 10. Messages between layers and WTP observation points.

provides the classical reliable request/response transaction common in many
client/server scenarios. The invariant to check the connection is as follows:

I =S — Connect.req/TR — Invoke.req, *,TR — Result.ind/O

where O = {S — Connect.cnf, S — Disconnect.ind}. Next, we present an invari-
ant to check a connection proper release. Let us remark that a disconnection can
happen also after the occurrence of a TR — Result.ind primitive during a con-
necting session. Thus, once a connection has been established, we need to have
a successful disconnection. This property is expressed by the following simple
invariant:

I, =?/8 — Connect.cnf,*, TR — Invoke.ind/{S — Disconnect.ind}

Another important property of the WAP protocol concerns the resume of a
connection. When a server resumes a connection, we must have that a suspension
of a connection has been asked. In order to check this characteristic, the following
obligation invariant can be used:

Is = S — Suspend.req/?,*,7/{S — Resume.ind}

The previous invariants are checked using WSP POs. Next, we present invariants
related to the WTP POs. First, we give an interesting example which can lead
to wrong conclusions if one is not careful.

Invariant I1 IQ I3 I4 I5 Ie I7 Ig
Verdict True|True|True|False| True| True| True| True
Duration (seconds)|1.02 {0.99 |1 1.01 (1.01 {1.01 |1.13 |1.40

Figure 11. Checking of invariants on the specification

Iy =TR-Invoke.req/?, %, TR-Result.res/ {TR-Result.cnf}

This invariant is useful to check that whenever the client (wireless terminal side)
asks to download a WAP page, it is successfully received. More precisely, this
is the way used by the WTP class 2 to acknowledge messages. Our experiments
indicated that the traces were correct with respect to this invariant. However,
we knew that this invariant was in fact not correct! Actually, an abort event can
appear if the operation cannot be completed. For instance, this is the case if the
requested web page is not available. So, we removed some of the requested web
pages and we found that the new observed trace did not respect the invariant.
In fact, the correct invariant is

Is =TR-Invoke.req/?, x, TR-Result.res/ {TR-Result.cnf, TR-Abort.ind}

If we work within WTP class 0, no acknowledges are sent after a message is
received. In this case, in order to check that the gateway sends the data to the
cell phone we have to consider the event TR-Result.req. Thus, in WTP class 0
we have the invariant

Is =TR-Invoke.req/?, *, TR-Result.req/ {TR-Result.ind, TR-Abort.ind}

Let us note that this invariant also holds in WTP class 2.

The POs log files include a field called handle. The transaction handle is
an index returned to the higher layer, that enables the higher layer to identify
the transaction and to associate the data received with an active transaction.
Actually, any user of the protocol is uniquely identified. So, we may use our
invariants to check some privacy aspects of the protocol. For example,

I; =7/ TR-Invoke.ind(userl), *, TR-Result.res(userl)/O

where O = {TR-Result.cnf(userl), TR-Abort.ind}. In the following, we use an
obligation invariant to check that if a given user has received a confirmation it
must happen that he was asking before for the corresponding page:

Is = TR-Invoke.req(user1)/?,x,?/{TR-Result.cnf(user1)}

Figures 11 and 12 report the results obtained for each of the invariants pre-
viously presented. All the experiments have been performed on Windows 2000
(Intel ITI Processor, 933MHz). Let us simply remark that in Figure 12, the time
associated with the fourth invariant is (much) smaller because the process is
stopped once a fault is detected.

Invariant I1 IQ I3 I4 I5 Ie I7 Ig
Verdict True|True|True|False| True| True| True| True
Duration (seconds)|3.12 |2.78 |4.52 |1.2 |5.27 |5.07 |4.32 |6.53

Figure 12. Checking of invariants on traces

6 Conclusions and Future Work

In this paper we have introduced a new methodology for passive testing. This
methodology includes the definition of a novel concept of invariant as well as a
corresponding test architecture to deal with them. Two types of invariants have
been defined: simple and obligation invariants. They can express a wide range of
properties. Algorithms checking the correctness of these invariants with respect
to a given specification have been presented. We have introduced a software tool,
called TESTINV, that implements all the algorithms presented in this paper and
helps in the automation of our passive testing with invariants approach. This tool
has been integrated in the PLATONIS platform. In order to show the application
of the proposed methodology on real protocols, a real case study, the Wireless
Application Protocol, has been extensively studied.

We plan to continue our work on passive testing with invariants to the de-
tection of errors in critical systems where active testing is not feasible. Another
field of application that we are exploring is network security. We consider that
our techniques are well adapted to detect anomalies, attacks and intrusions, but
this point has to be further investigated. Finally, we would like to extend our
invariants with capabilities so that not only the control part of protocols but also
the data part can be taken into account. In this line, [LCH 02] represents a step
forward in the passive testing methodology because data is formally considered.
Following this direction, we have started a work to define algorithms for passive
testing that takes into account the data part and improve the fault detection
power.

Acknowledgments

We would like to thank José Antonio Arnedo for his involvement in the previous
work on passive testing during his training period at GET-INT. We would also
like to thank the anonymous reviewers for the careful reading and the useful
suggestions that have helped to improve the quality of the paper.

References

[AAD79] J.M. Ayache, P. Azema, and M. Diaz. Observer: A concept for on-line
detection of control errors in concurrent systems. In 9th Symposium on
Fault-Tolerant Computing, 1979.

[ACNO3]

J.A. Arnedo, A. Cavalli, and M. Nufiez. Fast testing of critical properties
through passive testing. In TestCom 2003, LNCS 2644, pages 295-310.
Springer, 2003.

[ADLUS88] A. Aho, A. Dahbura, D. Lee, and M. Uyar. An optimization technique for

[BM77]
[CGPYY]

[CGPO3]

[CLRZ99]

[ITU92]
[KMP77]
[Lai02]

[LCH*102]

[LNS*97]

[LY96]

[MAO1]

[Mil98]

[Pla01]
[SD8S]

[TC99)]

[TCI99]

protocol conformance test generation based on UIO sequences and Rural
Chinese Postman tours. In Protocol Specification, Testing and Verification
VIII, pages 75-86. North Holland, 1988.

R.S. Boyer and J.S. Moore. A fast string searching algorithm. Communica-
tions of the ACM, 20:762-772, 1977.

E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

A. Cavalli, C. Gervy, and S. Prokopenko. New approaches for passive testing
using an extended finite state machine specification. Journal of Information
and Software Technology, 45:837-852, 2003.

A. Cavalli, D. Lee, C. Rinderknecht, and F. Zaidi. Hit-or-Jump: An al-
gorithm for embedded testing with applications to IN services. In Formal
Description Techniques for Distributed Systems and Communication Proto-
cols (XII), and Protocol Specification, Testing, and Verification (XIX), pages
41-56. Kluwer Academic Publishers, 1999.

ITU. Recommendation Z.100: CCITT Specification and Description Lan-
guage (SDL), 1992.

D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6(1):323-350, 1977.

R. Lai. A survey of communication protocol testing. Journal of Systems
and Software, 62:21-46, 2002.

D. Lee, D. Chen, R. Hao, R. Miller, J. Wu, and X. Yin. A formal approach
for passive testing of protocol data portions. In 10th IEEE Int. Conf. on
Network Protocols, ICNP’02, pages 122-131. IEEE Computer Society Press,
2002.

D. Lee, A.N. Netravali, K.K. Sabnani, B. Sugla, and A. John. Passive
testing and applications to network management. In 5th IEEE Int. Conf.
on Network Protocols, ICNP’97, pages 113-122. IEEE Computer Society
Press, 1997.

D. Lee and M. Yannakakis. Principles and methods of testing finite state
machines: A survey. Proceedings of the IEEE, 84(8):1090-1123, 1996.

R.E. Miller and K.A. Arisha. Fault identification in networks by passive test-
ing. In 84/th Simulation Symposium, SS’01, pages 277-284. IEEE Computer
Society Press, 2001.

R.E. Miller. Passive testing of networks using a CFSM specification. In
IEEFE Int. Performance Computing and Communications Conference, pages
111-116. IEEE Computer Society Press, 1998.

Platonis Consortium. The platonis project. In Applications and Services in
Wireless Networks, ASN’01, pages 251-262. Hermes, 2001.

K. Sabnani and A. Dahbura. A protocol test generation procedure. Com-
puter Networks and ISDN Systems, 15:285-297, 1988.

M. Tabourier and A. Cavalli. Passive testing and application to the GSM-
MAP protocol. Journal of Information and Software Technology, 41:813—
821, 1999.

M. Tabourier, A. Cavalli, and M. Ionescu. A GSM-MAP protocol experi-
ment using passive testing. In World Congress on Formal Methods in the

Development of Computing Systems, FM’99, LNCS 1708, pages 915-934.
Springer, 1999.

[Ver97] Verilog. ObjectGEODE Simulator, Reference Manual, 1997.

[WZYO01] J. Wu, Y. Zhao, and X. Yin. From active to passive: Progress in testing of in-
ternet routing protocols. In FORTE 2001, pages 101-116. Kluwer Academic
Publishers, 2001.

