
Fast Testing of Critical Properties

through Passive Testing?

Jos�e Antonio Arnedo,1 Ana Cavalli1 and Manuel N�u~nez2

1 Institut National des T�el�ecommunications GET-INT
91011 Evry Cedex, France

fJose-Antonio.Arnedo-Rodriguez,Ana.Cavallig@int-evry.fr
2 Dept. Sistemas Inform�aticos y Programaci�on

Universidad Complutense de Madrid, E-28040 Madrid. Spain.
mn@sip.ucm.es

Abstract. We present a novel methodology to perform passive testing.
The usual approach consists in recording the trace produced by the im-
plementation under test and trying to �nd a fault by comparing this
trace with the speci�cation. We propose a more active approach to pas-
sive testing where the minimum set of (critical) properties required to a
correct implementation may be explicitly indicated. In short, an invariant
expresses that each time that the implementation under test performs
a given sequence of input/output actions, then it must show a behavior
re
ected in the invariant. By using an adaptation of the classical pattern
matching algorithms on strings, we obtain that the complexity of check-
ing whether an invariant is ful�lled by the recorded trace is in O(n �m),
where n and m are the lengths of the trace and the invariant, respec-
tively. If the length of the invariant is much smaller than the length of
the trace, then we have that this complexity is almost lineal with respect
to the length of the trace. Actually, this is usually the case for most
practical examples. In addition to our methodology, we present the case
study that was the driving force for the development of our theory: The
Wireless Application Protocol (WAP). We present a test architecture for
WAP as well as the experimental results obtained from the application
of our passive testing with invariants approach.

1 Introduction

The main purpose of testing is to �nd out whether an implementation presents
the behavior that was indicated by the corresponding speci�cation. In order
to perform this task, several techniques, algorithms, and semantic frameworks
have been introduced in the literature (see e.g. [LY96,Lai02] for two overviews
on the topic). Most of the proposals for testing are based on the so-called active
testing. Intuitively, the tester sends an input to the implementation and waits
for an output. If the output belongs to the expected ones, according to the
speci�cation, then the process continues; otherwise, a fault has been detected in
the implementation. This kind of testing is called active because the tester has
total control over the inputs provided to the implementation under test. On the
contrary, passive testing (see e.g. [LNS+97,Mil98,TC99,TCI99]) does not involve

? Research supported in part by the CICYT project TIC 2000-0701-C02-01. This
research was carried out while the third author was visiting the GET-INT.

the presence of an active tester. In passive testing the implementation under test
is allowed to run independently without any interaction with a tester. However,
the trace that the implementation is executing is observed so that it can be
analyzed. By comparing the obtained trace with the speci�cation we may detect
some faults in the implementation.

Unfortunately, passive testing is less powerful than active testing. This is so
because active testing allows a closer control of the implementation under test.
For example, depending on the received output, we may choose among a set of
inputs to be applied to the implementation. In passive testing this capability
is lost. Thus, it can happen that faults that could be detected by choosing an
appropriate input are not found because the implementation does not take that
path. Nevertheless, passive testing presents some important advantages. First,
active testing is in general more costly because the testing process has to be
closely controlled. Second, there are situations where active testing is not even
feasible. For instance, passive testing is attracting a lot of study in the �eld of
network management where the testing process has to be minimized in order
to reduce the use of the network (see [MA01b,MA01a,LCH+02] for some recent
works on the topic).

Even though there is ongoing work on passive testing3 most of these pro-
posals share a common pattern. Usually, the trace is taken and the speci�ca-
tion is traversed in order to detect a fault. A drawback of this approach is
that it presents a low performance (in terms of complexity in the worst case)
if non-deterministic speci�cations are considered. A notable exception is pre-
sented in [CGP01] where the speci�cation is (partially) set apart. Actually, they
extract some test sequences from the speci�cation, called invariants, and they
check whether the trace obtained from the implementation under test is correct
with respect to them. So, once these test are extracted, the speci�cation plays
no role in the testing process. They consider three kinds of invariants. However,
the most useful for practical purposes are the so-called output invariants. Intu-
itively, an (output) invariant as i1=o1; : : : ; in�1=on�1; in=on must be interpreted
as \each time the implementation performs the sequence i1=o1; : : : ; in�1=on�1; in
the next observed output must be on".

This paper extends and improves [CGP01] in several ways. Actually, our
methodology represents a real example of theory guided by practice. In fact, we
came out with our di�erent notions of invariants when we tried to apply [CGP01]
to a real protocol. By doing so we found some shortcomings. First, their invari-
ants were not expressive enough for our purposes. For example, the complete
sequence has to be indicated. That is, properties as

Each time that a user asks for connection and the connection is granted,
if after performing some operations the user asks for disconnection then
he is disconnected.

cannot be easily represented by using their invariants, because all the possible
sequences of actions expressing the idea of some operations must be explicitly
written. So, we have added the possibility of specifying wild-card characters in
invariants. Besides, we now allow a set of outputs (instead of a single output) as
termination of the invariant. Thus, we may specify properties as

3 Nevertheless, the e�ort spent in passive testing is not yet comparable with the one
for the study of active testing techniques.

Each time that a user asks for a resource (e.g. a web page) either the
resource is obtained or an error is produced.

In addition, we found other kind of properties that could not be expressed
at all. For example,

A user cannot get disconnected if he was not previously connected.

Finally, they extracted invariants from the speci�cation. This approach presents
two drawbacks. First, interesting invariants cannot be distinguished from trailing
invariants. Second, and more important, the complexity of extracting invariants
exponentially increases with their length. That is, the complexity of extracting
the invariants of length n is in O(jTrjn), where jTrj is equal to the number of
transitions in the speci�cation. We claim that invariants should be supplied by
the speci�er/tester. In this case, the �rst step must be to check that the invariant
is in fact correct with respect to the speci�cation. We provide an algorithm that
checks this correctness in linear time, with respect to the number of transitions,
if the invariant does not contain the wild-card character �; this complexity is
quadratic if the symbol � appears in the invariant.

Once we have a set of (correct) invariants, our approach to passive testing
proceeds as follows: We observe the trace produced by the implementation under
test and we decide whether this trace respects the invariants. In order to do
so, we have implemented a simple variant of the classical algorithms for pattern
matching on strings (see e.g. [BM77,KMP77]). Our algorithm works, in the worst
case, in time O(m �n), where n and m are the length of the trace and the length
of the invariant, respectively. Let us remark that in most practical cases the
length of the invariant is several orders of magnitude smaller than the length
of the trace. Thus, we may consider that the complexity is almost lineal with
respect to the length of the trace.

In addition to the formal framework, in this paper we also report our exper-
iments on the WAP (Wireless Application Protocol). This protocol is an open
global speci�cation that empowers mobile users with wireless devices to easily
access and interact with information and services instantly. It is worth to point
out that this protocol represents a typical example were active testing cannot
be applied. In general, there is not direct access to the interfaces between the
di�erent layers. Thus, the tester cannot control how internal communications are
established. However, in our experiments we have used a software free protocol
stack, namely Kannel, and we have the possibility of installing points of observa-
tion, in short POs, between the di�erent layers. Moreover, a platform and a test
architecture capable to deal with passive testing in a mobile phone environment
(WAP, GPRS, UMTS) have been de�ned. The platform and the architecture are
used to apply our passive testing with invariants approach. We take the output
of the platform, in the form of log �les, and we apply the appropriate invari-
ants to the obtained trace. This experiment represents an original contribution
because such a study has been never performed in a systematic way.

The rest of the paper is organized as follows. In Section 2 we present our
notions of invariants. First, we introduce what we call simple invariants. These
invariants are able to express properties as \after x has happened then we must
have that y happens". Next, we introduce a new notion of invariant to express
properties as \if y happens then we must have that x had happened before".
We call these invariants obligation invariants. We give algorithms to decide the

(1; 1)

(1; 2) (1; 3)

b=z a=y

b=y

a=y

c=z b=x

b=z

a=x

b=y

a=x

M1

c=y
(2; 1)

(2; 2)

b=ya=y

a=x

M2

(3; 1)

(3; 2)

b=ya=y

a=x

a=x

M3

Fig. 1. Examples of FSMs.

correctness of our invariants with respect to a given speci�cation and we explain
how our invariants are applied to the observed trace. In Section 3 we present
the WAP and we brie
y comment on the performed experiments by using our
notion of passive testing. Finally, in Section 4 we give our conclusions and some
lines for future work.

2 Invariants and Passive Testing

In this section we introduce our invariants and the corresponding algorithms
to decide whether they are correct with respect to speci�cations. We consider
that speci�cations are represented as Finite State Machines. However, we will
comment on how our invariants can be extended to deal with data.

De�nition 1. A Finite State Machine, in the following FSM, is a tuple M =
(S; I;O; T r; sin) where S is a �nite set of states, I is the set of input actions,
O is the set of output actions, Tr is the set of transitions, and sin is the initial
state.

Each transition t 2 Tr is a tuple t = (s; s0; i; o) where s; s0 2 S are the initial
and �nal states of the transition, respectively, and i 2 I, o 2 O are the input
and output actions, respectively.

Let s; s0 2 S be states and tr = i1=o1; : : : ; in=on, for n � 1, be a sequence of

pairs such that for any 1 � j � n we have ij 2 I and oj 2 O. We write s
tr
�! s0

if either tr = � and s = s0 or there exist n transitions t1; : : : ; tn 2 Tr and states
s1; : : : ; sn�1 2 S such that t1 = (s; s1; i1; o1), tn = (sn�1; s

0; in; on), and for any
1 < j < n we have tj = (sj�1; sj ; ij ; oj). ut

First, let us note that this notion of FSM does not restrict speci�cations to
be deterministic, so that we work with a general notion of FSM. Intuitively, a
transition t = (s; s0; i; o) indicates that if the machine is in state s and receives
the input i then the machine emits the output o and the current state becomes

s0. We will sometimes write s
i=o
�! s0 to denote that we have the transition

(s; s0; i; o) 2 Tr. We can extend the notion of single transition to a sequence of

transitions. Thus, s
tr
�! s0 simply denotes that we can traverse from the state

s to the state s0 by following transitions containing the corresponding pairs i=o
appearing in tr.

We may extend the notion of transition to deal with the wild-card characters
? and �. In particular, we can consider that sequences may contain these special
symbols.

De�nition 2. Let M = (S; I;O; T r; sin) be an FSM. We write s
?=o
�! s0 (resp.

s
i=?
�! s0) if there exists i 2 I (resp. o 2 O) such that s

i=o
�! s0. Besides, we write

s
?=?
�! s0 if there exist i 2 I and o 2 O such that s

i=o
�! s0. We write s

�

�! s0 if
there exists a sequence of input/output pairs tr such that s

tr
�! s0. ut

2.1 A First Notion of Invariants

Next we present our �rst notion of invariant. We call them simple invariants,
or just invariants. Let M = (S; I;O; T r; sin) be an FSM. Intuitively, a trace
i1=o1; : : : ; in�1=on�1; in=O is a simple invariant for M if each time that the
trace i1=o1; : : : ; in�1=on�1 is observed, if we obtain the input in then we nec-
essarily get an output belonging to O, where O � O. In addition to sequences
of input/output symbols, we will allow the wildcard characters ? and �. The
meaning of ? in our framework is the standard one in the pattern matching
community (that is, to replace any symbol). However, we will slightly modify
the usual meaning of �. For example, the intuitive meaning of an invariant as
i=o; �; i0=O is that if we detect the transition i=o then the �rst occurrence of the
input symbol i0 is followed by an output belonging to the set O. In other words,
� replaces any sequence of symbols not containing the input symbol i0.

De�nition 3. Let M = (S; I;O; T r; sin) be an FSM. We say that the sequence
tr is a (simple) invariant for M if the following two conditions hold:

1. tr is de�ned according to the EBNF tr ::= i=O j �; tr ja=z; tr. In the previous
expression we consider i 2 I, a 2 I [f?g, z 2 O [f?g, and O � O.

2. tr is correct with respect to M .

We denote the set of (simple) invariants for M by InvM . ut

In Figures 2 and 3 we introduce two algorithms to decide whether an invariant
is correct with respect to a speci�cation. First, we present some examples of
invariants to show what kind of critical properties can be tested as well as how
our invariants work.

Example 1. Our notion of invariant allows us to express several interesting prop-
erties. For example, we can test that when a user requests a disconnection then
he is in fact disconnected by using the invariant

I1 = req disconnect=fdisconnectedg

The idea is that each time that the symbol req disconnect appears in the trace
then it is followed by the output symbol disconnected. For instance, this invariant
has the same distinguishing power as the invariant

I 01 = �; req disconnect=fdisconnectedg

We can specify a more complex property by taking into account that we are
interested in disconnections only if a connection was requested. In this case we
have

I2 = req connect=?; �; req disconnect=fdisconnectedg

We can re�ne the previous invariant if we only consider the cases where the
connection was granted

I3 = req connect=granted connection; �; req disconnect=fdisconnectedg

For example, a trace is correct with respect to I3 if each time that we �nd a
(sub)sequence starting with the pair req connect=granted connection then the
�rst occurrence of the input symbol req disconnect is paired with the output
symbol granted connection. Let us remark that if the trace contains the pair
req connect=granted connection but the input req disconnect does not appear
before the end of the recorded trace then we cannot conclude that the imple-
mentation fails: It may happen that we have stopped too soon observing the
behavior of the implementation.

Finally, an invariant as

I4 = req connect=fgranted connection; errorg

indicates that after requesting a connection we either are granted with it or an
error is produced. ut

We could adapt to our framework the algorithm given in [CGP01] to extract
their invariants, up to a length n, for a speci�cationM . However, as we explained
in the introduction of the paper, this process presents several drawbacks. In par-
ticular, the complexity exponentially increases with the length of invariants.
On the contrary, we advocate that invariants should be indicated by the speci-
�er/tester as the set of critical properties that the implementation must ful�ll.
Fortunately, we have found an algorithm that detects in linear time (with re-
spect to the number of transitions in the FSM) whether a sequence of symbols not
containing the character � is in fact an invariant for a speci�cation. Obviously,
before we try to �nd out whether the trace recorded from the implementation
is correct with respect to an invariant, we should assure that the invariant is in
fact correct with respect to the speci�cation. In order to facilitate the reading,
we �rst present an algorithm (see Figure 2) deciding correctness of invariants
without the � wild-card character. In Figure 3 we extend this algorithm to deal
with invariants containing the symbol �.

The algorithm given in Figure 2 works as follows. The �rst while-loop com-
putes those states s 2 S such that they can be reached from one of the states
in S by following the sequence i1=o1; : : : ; in�1=on�1. Let us remark that if one
of the symbols in the sequence is the wild-card character ? then any symbol
can be used. Besides, it may happen that after some steps we �nd that there
do not exist two states connected by the analyzed sub-sequence. In this case,
S0 becomes empty. Let us note that for each execution of the loop we perform
a number of operations proportional to the number of transitions in the corre-
sponding speci�cation. So, in the worst case we perform a number of operations
proportional to the number of transitions times the length of the sequence, that
is, n. The second while-loop analyzes the last pair of the invariant. If the auxiliar

Input: M = (S; I;O; T r; sin), I = i1=o1; : : : ; in=O, 8 1 � j � n : ij 6= � ^ oj 6= �
Ouput: true=false � invariant I correct/incorrect

j := 1; S0 := S;
while j < n and S0 6= ; do begin

T := Tr; S00 := ;;
while T 6= ; do begin

choose t 2 T ; ft = (s; s0; a; z)g;
T := T � ftg
if s 2 S0 and a = ij and z = oj then S00 := S00 [fs0g

end;
S0 := S00; j := j + 1

end;
flast pair of the invariant or empty set S0 of current statesg
if S0 = ; then return(false)

else begin

error := false; T := Tr;
while T 6= ; and not error do begin

choose t 2 T ; ft = (s; s0; a; z)g;
T := T � ftg;
if s 2 S0 and a = in and z =2 O then error := true

end;
return (not error)

end

We consider that both i =? and o =? hold.

Fig. 2. Checking correctness of Invariants (1/2).

set of states S0 is empty then the invariant is incorrect. Actually, this means
that the there does not exist a state in the speci�cation such that the sequence
of pairs forming the invariant can be performed from it. Thus, we should not
consider that this candidate represents any property of the speci�cation.4 If that
set is not empty then we check that for any transition labelled by the input in
we receive an output belonging to O. Again, the complexity of this last loop is
given by the number of transitions. Besides, we need jSj+ jTrj additional space.
Let us note that if the graph induced by the corresponding FSM is connected
then jSj � jTrj + 1 (otherwise we can discard those states and transitions not
reachable from the initial state and the result holds for the new sets of states
and transitions).

Proposition 1. Let M = (S; I;O; T r; sin) be an FSM and I = i1=o1; : : : ; in=O
be an invariant such that for any 1 � j � n we have ij 6= � ^ oj 6= �. The worst
case of the algorithm given in Figure 2 checks the correctness of the invariant I
with respect to M in time O(n � jTrj) and space O(jTrj). ut

Next, we present some examples of correct/incorrect invariants for a given
speci�cation.

4 Another possibility would be to consider the usual meaning of the logical implication.
Thus, the predicate \each time that the pre�x is performed then something happens"
would hold since the premise is false.

Input: M = (S; I;O; T r; sin), I = i1=o1; : : : ; in=O
Ouput: true=false � invariant I correct/incorrect

I 0 := I; S0 := S;
while I 0 6= b=O and S0 6= ; do begin

�rst := head(I 0); I 0 := tail(I 0);
if �rst 6= � then begin f�rst := i=og

T := Tr; S00 := ;;
while T 6= ; do begin

choose t 2 T ; ft = (s; s0; a; z)g;
T := T � ftg;
if s 2 S0 and i = a and o = z then S00 := S00 [fs0g

end;
S0 := S00

end

else begin f�rst = �g
while head(I 0) = � do I 0 := tail(I 0); fskip a sequence of *'sg
�rst := head(I 0); f�rst := i=og
S0 := fs 2 S j 9s0 2 S0 : path(s0; s; i)g

end

end;
flast pair of the invariant or empty set S0 of current statesg

See Algorithm in Figure 2 for dealing with the last pair of the invariant.

We consider that both i =? and o =? hold.

Fig. 3. Checking correctness of Invariants (2/2).

Example 2. Let us consider the FSMs presented in Figure 1. For example, the
following invariants are correct for M1:

I1 = a=fx; yg I2 = a=?; c=z; b=fxg

Let us remark that I1 is also correct for both M2 and M3. On the contrary, I2
is incorrect for them since the sequence a=?; c=z cannot be performed from any
state belonging either to M2 or M3. If we consider the invariant

I3 = b=y; a=fyg

we have that I3 is incorrect for M1. For instance, we have a transition labelled
by b=y outgoing from the state (1; 1) and reaching the same state (1; 1). Then,
we have a transition labelled by a=x from the state (1; 1). So, there exists a state
(in this case (1; 1)) such that the sequence of transitions b=y can be performed
in such a way that the reached state (i.e. (1; 1)) may perform a transition whose
input action is a but the corresponding output action does not belong to the set
fyg. Besides, this invariant is correct for M2 while it is incorrect for M3. ut

In Figure 3 we extend the previous algorithm to deal with invariants contain-
ing the wild-card character �. As in the previous case, we traverse the invariant
from left to right. We also have that the external while-loop has as termination
condition that either the remaining sequence has length one or that the current

set of states is empty. However, instead of advancing by incrementing a counter,
we consider two auxiliar functions: head(I) returns the �rst element of I and
tail(I) removes the �rst element from I . If the �rst element of the remaining
invariant is a pair i=o where i 2 I [f?g and o 2 O [f?g then the algorithm
proceeds as the algorithm presented in Figure 2. If we have that the �rst element
is � then we skip all consecutive �'s. Afterwards, we consider the �rst element
of the remaining trace. Let us remark that this element must be a pair i=o.
We compute those states s connected with one of the states s0 2 S0 by a path
that does not contain the symbol i. These paths are computed by the predicate
path(s0; s; i). Formally, path(s0; s; i) if there exists a sequence of input/output

pairs tr = a1=z1; : : : ar=zr such that s0
tr
�! s and for any 1 � j � r we have

ai 6= i. As a special case, if i is equal to ? then path(s0; s; ?) holds if s0
�

�! s.
Let us remark that the complexity in time in the worst case for computing this
new set of states is in O(jSj � jTrj). This is so because we only need to compute
a breath-�rst-search (the complexity of this operation is in O(jTrj)) for each
of the states belonging to S0 (at most jSj states). Again, if we consider that
the induced graph is connected then we have that the previous complexity is
bounded by O(jTrj2). Besides, we need jSj+ jTrj additional space. Finally, the
last element of the sequence is treated as in the algorithm given in Figure 2.

The next result indicates the complexity of the previous algorithm. We con-
sider that there are no trailing occurrences of the wild-card character � in in-
variants, that is, no consecutive occurrences of �.

Proposition 2. Let M = (S; I;O; T r; sin) be a FSM and I = i1=o1; : : : ; in=O be
an invariant without trailing occurrences of �. The worst case of the algorithm
given in Figure 3 checks the correctness of the invariant I with respect to M in
time O(k � jTrj2 + (n � k) � jTrj), where k is equal to the number of �'s in I .
Besides, the needed extra space is in O(jTrj). ut

Example 3. If we consider again the FSMs depicted in Figure 1 we have that
a=x; �; b=fy; zg is a correct invariant for all of the speci�cations. ut

Next, we have to determine whether the trace obtained from the implemen-
tation satis�es the properties indicated by the invariants that we are interested
in. Let us remark a very important di�erence with respect to previous proposals
for passive testing. That is, a homing state phase is not needed for this kind of
invariants. This is so because invariants have to be ful�lled at any point of the
implementation. Thus, it is not relevant the state where the machine was placed
when we started to observe the trace. In order to test the trace, we need to per-
form a pattern matching strategy. We have implemented a simple adaptation of
the classical algorithms for pattern matching on strings (e.g. [BM77,KMP77]).
The inclusion of wild-card characters is easy. In addition, for an invariant of
length n we have to consider all the occurrences of the �rst n � 1 elements in
the trace and then if we �nd a pair i=o such that in = i (let us remind that if
in =? then this equality holds) we have to check that o 2 O. We can say that
we have found a mismatch (that is, a fault) if this last condition does not hold.
Regarding the complexity of our pattern matching strategy, in the worst case
we obtain O(m �n). Let us remark that even though good algorithms for pattern
matching on stings perform in O(m) (after the pre-processing phase) we cannot
achieve this complexity because we must check all the occurrences of the pattern

in the trace. However, as we commented before, if we consider that the length
of the invariant is much smaller than the length of the trace, as it is usually the
case, we have that this complexity is almost lineal with respect to the length of
the trace.

We �nish this section by presenting some relations between di�erent invari-
ants and their correctness with respect to a given speci�cation. The proofs of
these results are easy (but tedious) with respect to the algorithm given in Fig-
ure 3.

Lemma 1. Let M = (S; I;O; T r; sin) be an FSM. The following properties hold:

{ The invariant �; i1=o1; : : : ; in=O is correct forM i� i1=o1; : : : ; in=O is correct
for M .

{ If i1=o1; : : : ; in=O is correct for M and O � O0 then i1=o1; : : : ; in=O
0 is

correct for M .
{ Let I = i1=o1; : : : ; ?=oj ; : : : ; in=O be a correct invariant forM . Then, for any

I 0 = i1=o1; : : : ; i=oj ; : : : ; in=O, for i 2 I, such that 9 s; s0 2 S : s
I0

�! s0 we
have that I 0 is correct for M .

{ Let i1=o1; : : : ; ij=?; : : : ; in=O be a correct invariant for M . Then, for any

I 0 = i1=o1; : : : ; ij=o; : : : ; in=O, for o 2 O, such that 9 s; s0 2 S : s
I0

�! s0 we
have that I 0 is correct for M .

{ Let I be a correct invariant for M . If we consider the invariant I 0 where any
occurrence of � in I is replaced by a sequence of symbols i1=o1; : : : ; ij=oj

such that 9 s; s0 : s
I0

�! s0 we have that I 0 is correct for M .

ut

Let us note that the condition s
I0

�! s0 appearing in the last three cases indicates
that there exists (at least) a pair of states such that they are connected by the
sequence I 0. Moreover, the reverse implication of the last four results do not
hold.

2.2 Introducing Obligation Invariants

In the previous section we have given our basic framework for invariants. Even
though simple invariants allowed us to specify most of the properties that we
desired to test for the WAP, we found some properties that we were not able
to express. Speci�cally, we were unable to indicate properties as \the (output)
action a does not appear before the sequence of actions tr has been observed".
Thus, we decided to extend the set of invariants to consider such properties.
These new invariants, that we call obligation invariants, are introduced in the
following de�nition.

De�nition 4. Let M = (S; I;O; T r; sin) be an FSM. We say that the sequence
tr is an obligation invariant for M if the following two conditions hold:

1. tr is de�ned according to the EBNF tr ::= a=O j�; tr ja=z; tr. In the previous
expression we consider a 2 I [f?g, z 2 O [f?g, and O � O.

2. tr is correct with respect to M .

We denote the set of obligation invariants for M by Obli InvM . ut

Let us remark that, in contrast with simple invariants, we do not force the
�rst symbol of the last pair to be an input action (it can also be the wild-card
character ?).

Example 4. Obligation invariants may be used to express properties where the
occurrence of an event must be necessarily preceded by a sequence of events. For
example, the intuitive meaning of an invariant as

I = request page=req ack; �; ?=fpage sentg

is that if the event page sent is observed in the trace then we must have that
a page had been requested before and that the server has acknowledged the
reception of the request. ut

The �rst step consists again in deciding whether a candidate for invariant
is indeed correct with respect to the speci�cation. Due to space limitations we
omit the code of the algorithm. The algorithm is similar to the ones presented in
the previous section. However, there is an important di�erence: In this case, we
have to traverse the invariant from right to left. Intuitively, we compute the set of
states S0 having an outgoing transition labelled by an output symbol in O. If this
set is empty then we discard the invariant. Next, we check that these transitions
have as associated input in (if in =? then this condition always hold). If this is
not the case then the invariant is incorrect; otherwise, we traverse the invariant
from right to left and check that for any possible evolution of the speci�cation
we could always have performed the previous element of the invariant.

Example 5. Let us consider the FSMs depicted in Figure 1 and the following
invariants

I1 = a=y; ?=fzg I2 = a=fxg

We have that I1 is correct for M1 since every evolution reaching a state having a
transition labelled by the output symbol z could have started with the pair a=y.
On the contrary, I1 is correct neither for M2 nor M3 since no transition contains
the output symbol z. The invariant I2 is correct for M2 and M3. However, I2
is not correct for M1. For example, the state (1; 2) has a transition labelled by
b=x. Thus, it does not hold that every occurrence of x is paired with a. ut

The complexity in time and space of the previous algorithm is again given by
the complexity orders presented in Proposition 2. In contrast with the invariants
introduced in the previous section, we now need some kind of homing. Speci�-
cally, we need to �nd out whether the observed trace has passed through a state
in the implementation corresponding to the initial state of the speci�cation. For
example, let us consider a vending machine that returns a tea only after two
coins have been introduced. If we observe that a tea has been returned but we
have not observed before that two coins were introduced we cannot deduce that
the machine is faulty. It may happen that we started to observe too late. So, we
need to know that the machine was in its initial state and we have to discard
the pre�x of the observed trace until that point. In order to perform the task
of determining which point of the trace corresponds with the initial state we
consider two possibilities. Next we brie
y sketch them. The �rst one consists in
using a simple adaptation of the UIO method [SD88,ADLU88]. If we can �nd a
UIO sequence for the initial state, and we observe that sequence in the trace then

we know that we have to discard the preceding part of the trace. The second
method is inspired by the classical homing state for passive testing. In this case,
once a state has been identi�ed we go forward trying to determine the point of
the trace corresponding to the initial state. Finally, if we are able to identify
the desired point of the trace, we have to match the trace and the invariants. In
this case, we use an adaptation of [BM77] where pattern matching is performed
from right to left. As in the previous case, we again obtain a performance in the
worst case in O(m �n) being m and n the sizes of the trace and of the invariant,
respectively

We �nish this section with a result similar to Lemma 1 but in the case of
obligation invariants.

Lemma 2. Let M = (S; I;O; T r; sin) be an FSM. The following properties hold:

{ The invariant �; i1=o1; : : : ; in=O is correct forM i� i1=o1; : : : ; in=O is correct
for M .

{ If i1=o1; : : : ; in=O is correct for M and O0 � O then i1=o1; : : : ; in=O0 is
correct for M .

{ If i1=o1; : : : ; ij=oj ; : : : ; in=O is correct for M then i1=o1; : : : ; ?=oj ; : : : ; in=O
and i1=o1; : : : ; ij=?; : : : ; in=O are both correct for M .

{ Let I be a correct invariant for M . If we consider the invariant I 0 where we
have replaced any sequence of symbols i1=o1; : : : ; ij=oj by � then we have
that I 0 is correct for M .

ut

2.3 Extending Invariants to deal with EFSMs

The extension of our framework to deal with EFSMs is far from trivial. In partic-
ular, we have the problem that the values of the variables cannot be, in general,
observed. However, it is very easy to adapt our formalism to deal with invariants
containing only constant data. Actually, this small inclusion is rather useful when
dealing with real protocols as the WAP. For instance, we may use invariants as

req connect(Peter)=?; �; req disconnect(Peter)=fdisconnected(Peter)g

req connect(Peter)=?; �; ?=fdisconnected(Peter)g

to make sure that the disconnection of the service performed by Peter is linked
to a request of connection made by Peter himself.

3 Applying Passive Testing with Invariants

In this section we report our experiments with the WAP (Wireless Application
Protocol) when using our notion of passive testing with invariants. We brie
y
present this protocol, we explain how our observation points are placed, and we
discuss on the invariants that we use as well as on the results that we obtained.

Fig. 4. A Passive Test Architecture for the WAP.

3.1 The Wireless Application Protocol

The WAP is the standard protocol conceived to provide Internet content and
advanced telephony services to wireless terminals. The Wireless Application En-
vironment, in short WAE, is the main interface to the client device. It includes
the content to be displayed (that is, a WML page). The WSP is a stateful binary
protocol used in conjunction with WTP and WDP to provide session oriented
services, or directly with WDP to provide connectionless service. It supports
sessions initiation, suspension, and resumption. A session is initiated by a WAP
client and is maintained until it is explicitly disconnected. WTP, is a con�rmed
transaction protocol, a light weighted version of TCP. There are three classes:
a non-con�rmed simple
ow of information in one direction (class 0), a simple
send-acknowledge exchange (class 1) and a class 2 for a three-way handshake.
WTP also has an optional capability to segment and reassemble data. WDP, is
a datagram oriented, network layer protocol. Its main purpose consists in mak-
ing lower layers transparent to higher ones. It makes no delivery con�rmation,
packet retransmission or error correction. WTLS is a session oriented, secure
protocol layer conceived after the Secure Session Layer (SSL) and Transaction
Layer Security (TLS) protocols. This is optional and independent of the other
parts. A schematic presentation of the protocol stacks is given in Figure 4.

We have developed an architecture capable of dealing with passive testing
in a mobile phone environment (GSM-WAP). In order to do so, we deployed a
platform that behaves as a normal WAP gateway.5 In addition, we have included
observation points, in short POs. These POs are placed in every layer of the WAP
stack to show the
ow of information in real time. So, whenever a communication
between a mobile phone and a gateway exists, we have access to the involved

5 That is, a network component that works as interface between the mobile phone side
(wireless communication) and the Internet. The gateway we took is called Kannel.
It is a free-software and it can be downloaded from http://www.kannel.org.

Fig. 5. Messages between layers and observation point.

messages and the information contained inside them. It is important to note that
a layer is able to interpret only data belonging to the layer itself. This means
that embedded data (i.e. from an upper layer) is not visible. The current state
of every layer is also shown. These POs are entirely programmed in C. In order
to have a closer control, an HTML interface with several PHP and CGI routines
has also been developed.

3.2 Experimental Results on the WAP

For the sake of simplicity, in this paper we will only consider the PO that has been
placed in the uppermost WAP layer, that is the session layer WSP. Thus, we can
observe those messages that are sent to or received from the lower layer WTP.
The relation between these two layers, with respect to the transmitted messages,
can be seen in Figure 5. The set of interesting events is given by: TR-Invoke,
TR-Result, and TR-Abort. Each of these events may have one of the following
attributes: req, ind, res, and cnf. Intuitively, a client C sends and invoke message.
This message is considered in the protocol as TR-Invoke.ind and it is received
by the gateway G. Afterwards, an acknowledge TR-Invoke.res is sent. Then,
G tries to get the page requested by the user. Once G gets the corresponding
WML page, it sends a message to the client: TR-Result.req. The client receives
this message as a TR-Result.ind event. Then, it sends an acknowledge, denoted
by the event TR-Result.res. Finally, G receives the event TR-Result.cnf denoting
that the client received the requested information.

In order to test the protocol, we tried several properties extracted from the
Wap Forum speci�cation (see http://www.wapforum.org). The whole protocol

was running autonomously and we were recording traces of 300 input/output
pairs. Next we comment on the most relevant invariants that we were specifying.
First, we will present a misleading example of our method. We considered the
invariant

I1 =TR-Invoke.ind=?; �;TR-Result.res=fTR-Result.cnfg

In other words, we tried to check that whenever the client (mobile phone side)
asks to download a WAP page, it is successfully received. Our experiments in-
dicated that the traces were correct with respect to this invariant. However, we
knew that this invariant was in fact not correct! Actually, an abort event can
appear if the operation cannot be completed. For instance, this is the case if the
web page is not available. So, we removed the requested web page and we found
that the new observed trace did not respect the invariant. In fact, the correct
invariant is

I2 =TR-Invoke.ind=?; �;TR-Result.res=fTR-Result.cnf,TR-Abort.indg

Continuar�a.... Por cierto, he aumentado el tama~no de p�agina porque
sino nos pas�abamos de las 16 (ya tenemos 18 con su estilo....). Pero
casi no se nota ;-) Adem�as, no he encontrado la cita que me dijiste
por tel�efono sobre un overview de testing.

Finally, we would like to brie
y comment on the implementation details of
our framework. We have developed a package where all the algorithms related
to this paper are implemented. Besides, suitable interfaces between the corre-
sponding modules have been implemented so that the process can be completely
automatized. The code was completely written in C (on Linux) so that the whole
test platform can be as portable as possible. As we have explained in the bulk of
the paper, we have implemented two modi�cations of classical pattern matching
algorithms to work with pattern matching functions. Speci�cally, the pattern
matching algorithm for simple invariants is an adaptation of [KMP77] where
pattern matching is performed from left to right; the algorithm for obligation
invariants is an adaptation of [BM77] where pattern matching is performed from
right to left. The algorithms for deciding whether invariants are correct with
respect to a speci�cation are completely original. The whole code for all of our
algorithms and interfaces is around 1000 lines long.

4 Conclusions and Future Work

To be provided...

References

[ADLU88] A. Aho, A. Dahbura, D. Lee, and M. Uyar. An optimization technique for
protocol conformance test generation based on UIO sequences and Rural
Chinese Postman tours. In Protocol Speci�cation, Testing and Veri�cation

VIII, pages 75{86. North Holland, 1988.

[BM77] R.S. Boyer and J.S. Moore. A fast string searching algorithm. Communica-

tions of the ACM, 20:762{772, 1977.

[CGP01] A. Cavalli, C. Gervy, and S. Prokopenko. New approaches for passive testing
using an extended �nite state machine speci�cation. In Concordia Presti-

gious Workshop on Communication Software Engineering, pages 225{250,
2001.

[KMP77] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6(1):323{350, 1977.

[Lai02] R. Lai. A survey of communication protocol testing. Journal of Systems

and Software, 62:21{46, 2002.
[LCH+02] D. Lee, D. Chen, R. Hao, R. Miller, J. Wu, and X. Yin. A formal approach

for passive testing of protocol data portions, 2002. To appear in Proceedings
of IEEE Int. Conf. on Network Protocols, ICNP'02.

[LNS+97] D. Lee, A.N. Netravali, K.K. Sabnani, B. Sugla, and A. John. Passive testing
and applications to network management. In IEEE Int. Conf. on Network

Protocols, ICNP'97, pages 113{122. IEEE Computer Society Press, 1997.
[LY96] D. Lee and M. Yannakakis. Principles and methods of testing �nite state

machines: A survey. Proceedings of the IEEE, 84(8):1090{1123, 1996.
[MA01a] R.E. Miller and K.A. Arisha. Fault coverage in networks by passive testing.

In International Conference on Internet Computing 2001, IC'2001, pages
413{419. CSREA Press, 2001.

[MA01b] R.E. Miller and K.A. Arisha. Fault identi�cation in networks by passive test-
ing. In 34th Simulation Symposium, SS'01, pages 277{284. IEEE Computer
Society Press, 2001.

[Mil98] R.E. Miller. Passive testing of networks using a CFSM speci�cation. In
IEEE Int. Performance Computing and Communications Conference, pages
111{116. IEEE Computer Society Press, 1998.

[SD88] K. Sabnani and A. Dahbura. A protocol test generation procedure. Com-

puter Networks and ISDN Systems, 15:285{297, 1988.
[TC99] M. Tabourier and A. Cavalli. Passive testing and application to the GSM-

MAP protocol. Journal of Information and Software Technology, 41:813{
821, 1999.

[TCI99] M. Tabourier, A. Cavalli, and M. Ionescu. A GSM-MAP protocol experi-
ment using passive testing. In World Congress on Formal Methods in the

Development of Computing Systems, FM'99, LNCS 1708, pages 915{934.
Springer, 1999.

