
Interoperability testing of presence service on IMS
platform

Mazen EL MAARABANI, Asma ADALA, Iksoon HWANG, Ana CAVALLI
Software-Networks Department, TELECOM & Management SudParis

9, rue Charles Fourier, 91011, Evry Cedex, France
Email: {mazen.el maarabani, Iksoon.Hwang, Ana.Cavalli}@it-sudparis.eu

Abstract—In this paper, we perform experiments on interoper-
ability testing of presence service on IMS platform. Open source
implementations such as an IMS platform, a presence server, an
XCAP server, and IMS clients are deployed to establish testbed
for interoperability testing of presence service. Test cases for
SIMPLE presence protocol developed by OMA are applied to our
testbed and test results are analyzed in detail. In our experiments,
we covered the basic functionalities of the presence service and
the interaction between a client and an XCAP server for intra-
domain case. And then we explained the testbeds for inter-domain
cases and discussed briefly the differences with intra-domain case.
As a result, we found that a number of functionalities could not
be tested because they are not supported by IMS clients. Also we
found a number of problems in presence server and IMS clients,
which results in a number of fail verdicts for some test cases.

I. INTRODUCTION

Interoperability is the ability of two or more networks,
systems, devices, applications or components to exchange
information between them and use this information [1]. The
purpose of interoperability testing is to give higher confidence
on interworking between at least two communicating systems
as required by the standards. Although each implementation
passes conformance testing, which is to verify that imple-
mentations conforms to specifications, we cannot guarantee
that two implementations can interwork without any problem
because they may have different implementation options, some
part of specifications can be interpreted in a different way, they
may be based on different versions of specifications, etc.

Interoperability testing on IMS testbeds consists of two
parts: testing of interconnectivity between components and
testing of service interoperability. In this paper, we perform
experiments on interoperability testing of IMS services, in
particular the presence service [2]. The choice of presence
service has been motivated by different reasons: the presence
service can be the basis of new multimedia services and com-
munications; it allows inferring the context, availability and
willingness of a user to accept or participate to a particular type
of communication or activity. The presence service may also
enable the creation of services in which abstract entities are
providing information to mobile terminals. Abstract services
can be cinema ticket information, the score of a football match,
motorway traffic status, etc.

Due to the importance of the presence service, a number
of industrial researches have been done for interoperability of
the presence service. OMA (Open Mobile Alliance) released

the test cases [3][4][5] and the test reports [6] for the interop-
erability of presence service with terminal equipments from
different vendors. Nokia, Motorola, and Ericsson launched
the Wireless Village initiative, which was consolidated into
the OMA later, to define a set of universal specifications for
mobile Instant Messaging and Presence Services (IMPS) and
presence services for wireless networks [7].

In this paper, we deployed open source implementa-
tions such as Open source IMS platform from Fraunhofer
FOKUS (Fraunhofer Institute for Open Communication Sys-
tems) [8], open source presence server based on OpenSER [9],
open source XCAP (XML Configuration Access Protocol)
server [10], and open source IMS clients [11][12] in order
to establish testbed for interoperability testing of presence
service. Test cases for SIMPLE (SIP Instant Messaging and
Presence Leveraging Extensions) presence protocol [13] de-
veloped by OMA were applied to our testbed and test results
were analyzed. Due to the non-supported functionalities by
clients such as handling of presence composition rules, sub-
scription/notification filtering, and partial presence information
publishing, it was not possible to test all test cases defined by
OMA. Also we had fail verdicts for some test cases because
of a number of problems in presence servers and IMS clients.

In our experiments, it is assumed that all communicating
components are in the same home network, which we will
call intra-domain case. For the case when some components
are located in different networks, e.g. presentity is in visited
network, which will be called inter-domain case, we explain
how to establish testbeds for such cases and discuss briefly
the differences with intra-domain case. In summary, the main
contributions of this paper are as follows:

• A complete testbed for presence service is established
using open source implementations.

• Interoperability testing is carried out based on test cases
developed by OMA and then results are analyzed in
detail.

• Testbeds for the inter-domain cases are proposed for
future work and the differences with intra-domain case
are discussed briefly.

The paper is organized as follows. In section II, we explain
interoperability testing process defined by ETSI and related
works on interoperability test case generation. Section III
briefly introduces the presence service. Test architecture and

deployment of testbed is illustrated in section IV. In section
V, we explain the test cases that we applied and discuss the
test results. Finally, section VI concludes the paper.

II. INTEROPERABILITY TESTING

A. Interoperability testing process

In this section, we explain interoperability testing process
defined by ETSI [1]. In the concept of interoperability testing
from ETSI, it is assumed that we have Equipment Under Test
(EUT) and Qualified Equipment (QE) where EUT and QE
should come from different suppliers. Interoperability tests are
then performed with normal user control and observations,
i.e. there is no specialized interfaces for testing purposes and
testing is based on functionalities that a user experiences.
One of the important issues is to develop interoperability test
cases. As a first step, it is necessary to identify interoperable
functions and abstract test architectures. Once interoperable
functions and abstract test architectures are identified, we can
develop test purposes and define test cases. The steps for
developing interoperability test cases are shown as follows:

1) Specify abstract architecture: This step defines abstract
test architecture where EUT, QE(s), communication paths
between EUT and QE(s), and, if necessary, the expected
protocols to be used for communication paths should be clearly
identified;

2) Prepare draft interoperable features statements: This
step identifies whether each function in the standard is manda-
tory, optional or conditional by other functions;

3) Specify test suite structure: This step divides the test
suite into test groups based on some logical criteria and defines
test coverage within each test group;

4) Write test purposes: In this step, a full description of
the objective of each test case is specified in its test purpose;

5) Write test cases: For each test purpose, detailed test
steps that must be followed in order to achieve the test purpose
are described. Test cases can be written in either natural
languages (e.g. English) or test specification languages (e.g.
TTCN-3 (Testing and Test Control Notation version 3)) or
programming languages (e.g. C++) or scripting languages (e.g.
Perl). If test cases are written natural language, they should
be specified in a clear and unambiguous way.

Once we have interoperability test cases, we can perform
testing process including test planning, test configuration,
execution of tests, and producing test reports.

B. Interoperability test case generation

In this section, we explain related works on test case
generation for interoperability testing. OMA is the leading
industry forum for developing market driven, interoperable
mobile service enablers. OMA has developed a number of
mobile service specifications including test specifications in
order to support the creation of interoperable end-to-end mo-
bile services. Based on their test specifications, testing events,
called OMA TestFests, are held regularly for interoperability
testing of services such as VoIP, push to talk, presence and
instant messages [14].

presence server

XCAP server

Watcher

PresentitySubsecribe

Notify
Publish

GET/PUT Policy

Get Policy

Fig. 1. Architecture for presence service

In order to generate interoperability test cases automatically
and to minimize the test size, a number of works have been
done [15][16][17]. Hao and et al. [15] proposed an algorithm
to generate a minimum number of test cases using reachability
graph and next transition graphs where the system behaviors
are modeled by Extended Finite State Machines (EFSMs). In
many cases, however, we may have state-explosion problem
when test cases are generated from communicating systems
where each system is modeled by an EFSM. There have
been a number works to solve the state-explosion problem
during interoperability test case generation [16]. Desmoulin
and Viho [17] proposed a method that generates interoper-
ability test cases avoiding state-explosion problem by using
test purposes. In [17], however, it is necessary to describe
test purposes in Input Output Labeled Transitions Systems
(IOLTS) which may limit the applicability of the proposed
method.

III. PRESENCE SERVICE

Presence service provides the ability for the home network
to manage presence information of a user device as well
as information of services. Users of presence service such
as watchers and presentities can be located either in their
home networks or in visited networks. In 3GPP, a presence
service is defined as the capability to support management
of presence information between watchers and presentities,
in order to enable application and services to make use of
presence information. The presence information is defined
as a set of attributes characterizing current properties of
presentities including status and other optional attributes such
as communication address [2]. Figure 1 shows a simplified
architecture for presence service.

As shown in figure 1, we have four entities; a presence
server, an XCAP server, presentities and watchers. A pres-
ence server communicates with two clients, presentities and
watchers using presence protocol. There are a number presence
protocols such as SIMPLE and XMPP (Extensible Messaging
and Presence Protocol) [18] defined by IETF, and Wireless
village which is established by Ericsson, Motorola, and Nokia.
Since we consider the presence service on IMS platform,

Fig. 2. Generic test architecture

SIMPLE is used as a presence protocol.
Presentities provide presence information to a presence

server using Publish message. Watchers subscribe to a pres-
ence server for presence information of presentities and then
receive presence information using Notify messages. There are
two kinds of watchers, fetchers and subscribers. A fetcher
simply requests the current presence information of presentity
from the presence server. A subscriber requests notification
from the presence server whenever new presence information
is available. A special kind of fetcher, called poller, fetches
information on a regular basis. An XCAP server is a generic
server that provides the ability to query, modify or delete data
stored in an XML format. An XCAP server communicates
with presentities using XCAP [19] and with a presence server
using XML-RPC [20] where both are HTTP-based protocols.
In presence service, presence lists are manipulated by watchers
and authorization policies by presentities, which are stored in
an XCAP server in XML format.

IV. TEST ARCHITECTURE AND DEPLOYMENT OF TESTBED

A. Interoperability test architecture

In our experiments, a presence server, an XCAP server,
and clients such as presentities and watchers are considered
for interoperability testing. Therefore, test cases related to
Resource List Server (RLS) are not considered in this paper. In
the test cases developed by OMA [3][4][5], it is assumed that
PCO’s (Points of Control and Observation) are on UEs (User
Equipments)’ applications. In order to facilitate the analysis
of test results, e.g. to identify the location of the problem, we
added a PO (Point of Observation) for each interface using
Wireshark [21]. Figure 2 shows a generic test architecture used
in this paper.

Recall that watchers and presentities can be located either
in their home networks or in visited networks. Since the test
architecture shown in figure 2 is an abstract one, the locations
of users do not make any change in the test architecture.
For the same reason, test cases developed by OMA are
independent of users location.

B. Deployment of the IMS platforms

We deployed the open source IMS platform developed by
Fraunhofer FOKUS, called OpenIMS [8]. The components

provided by OpenIMS include CSCFs (Call Session Control
Functions), HSS (Home Subscriber Server), MG (Media Gate-
way), MRF (Media Resource Function), Application Servers,
and SIP2IMS gateway. CSCFs (P-CSCF, I-CSCF, and S-
CSCF) of the OpenIMS are built upon the SIP Express Router
(SER) [22] where SER is a high-performance open SIP server
licensed under the open-source GNU license. Each x-CSCF
component can be configured to have its own IP address and
port number. In our experiments, we installed CSCFs and
HSS in a PC and the same IP address was assigned for each
component with different port numbers.

Since watchers and presentities can be located in visited
networks, it is necessary to build at least two network domains.
For the case of two network domains, which will be called
inter-domain case, we can install each one in a different PC
with its own domain name and CSCFs are configured so
that it can handle requests either from clients or from other
networks1.

C. Deployment of the servers and clients

We found two open source presence servers: one based on
SER and the other on OpenSER. Since the most recent stable
version of SER (version 0.9.6) does not support XML-RPC
management interface which is necessary for communication
with XCAP servers, the experiments were carried out using the
presence server based on OpenSER. We configured OpenSER
to be a presence server and then created service profiles for the
users in HSS including subscription information for presence
service and the address of the presence server. We installed
OpenXCAP [10] developed by AG projects.

In our experiments, we used two IMS clients from different
vendors, which is also mentioned as a mandatory requirement
by OMA [3]. We found two open source IMS clients, UCT
clients [11] and IMS Communicator [12], that support pres-
ence service using SIMPLE presence protocol.

V. EXPERIMENTAL RESULTS

The test cases provided by OMA can be categorized
into three parts: Presence SIMPLE, Presence XDM (XML
Document Management), and RLS XDM. Presence SIMPLE
defines interworking scenarios among presence server, XCAP
server, watchers, and presentities. Presence XDM and RLS
XDM define functionalities related to handling databases of
servers such as XCAP server and RLS. In this paper, we
performed experiments using test cases of Presence SIMPLE
and Presence XDM. Due to non-supported functionalities by
clients such as handling of presence composition rules, sub-
scription/notification filtering, and partial presence information
publishing, we tested 15 test cases out of 26 for Presence
SIMPLE. For the case of Presence XDM, we tested 3 test
cases, each one for creation, removal, and modification of
authorization rules.

1We tried to build two IMS platforms from different vendors but unfortu-
nately, we could not find any other open source so we installed OpenIMS for
both PCs

Presentity@domain1.net

I-CSCF

S-CSCF

P-CSCF SIMPLE

Presence
server

XCAP
server

PO PO

SIMPLE

Domain1

XCAP

Watcher@domain1.net

PO

PCO PCO

Fig. 3. Intra-domain case

As mentioned in section IV, watchers and presentities can
be either in their home networks or in visited networks. In this
paper, we tested the case where watchers and presentities have
the same home network and both are in the home network,
which will be called intra-domain case. 18 test cases were
applied and the results were analyzed. For other cases, e.g.
presentities are in visited networks, which we will call inter-
domain cases, we did not perform interoperability testing since
we are using the same implementations of IMS platform,
presence server, and XCAP server with the same optional
attributes of presence information. Therefore, for inter-domain
cases, in this paper, we explain possible testbeds and discuss
briefly the differences with intra-domain case.

A. Intra-domain case

In this case, two clients are considered to be in the same
domain; e.g. domain1 in figure 3. As mentioned above, we
divided our tests cases into two parts; the testing of presence
SIMPLE (presence features) and the testing of presence XDM
(functionalities related to handling databases of XCAP server).

1) Presence SIMPLE:

Test 1) Publication of Presence information: Verify that pres-
ence information published by a UE will be received by
another UE, which subscribes for that information.
Test 2) Publication of Presence information, publish modifica-
tion: Verify that presence information modified by a UE will
be displayed accordingly in another UE, which subscribes for
that information.
Test 3) Publication of Presence information, subscription re-
moval: A UE, acting as a Watcher terminates its subscriptions,
and another UE, the presence source, updates the presence
information.
Test 4) Publication of Presence information, subscription
refresh: Verify that Presence Server keeps sending presence
information to a UE, acting as a watcher, after subscription
refresh.
Test 5) Notification of Presence information from multiple Pre-
sentities: Verify that a Presence Server can store and manage

presence information coming from multiple UEs, acting as
Presence Sources and related to several Users, and correctly
notify one UE, acting as a Watcher the presence information.
Test 6) Distribution Policy (presence content rules I): Verify
that a User is able to define policies so that different presence
information can be sent to different Users, acting as Watchers.
Test 7) Distribution Policy (presence content rules II): Verify
that a User is able to define policies so that the same presence
information elements but with different values can be sent to
different Users, acting as Watchers.
Test 8) Publication of Presence information, subscription Poll
Request: Verify that a UE successfully publishes and retrieves
presence information by polling.
Test 9) Default policy: Verify that a User is able to define
policies so that defined presence information can be sent to
unspecified Users (not known in the Presence Rules docu-
ment), acting as Watchers.
Test 10) Authorization management for groups: Verify that a
presence server can handle the presence rules document for
groups of Watchers stored in the XCAP server.
Test 11) Combining permissions on an ongoing subscription:
Verify that a Presence Server can handle changes for the
Presence Rules document for Watchers (individual Watchers
or groups) stored in the XCAP server.
Test 12) Publication of Presence information, watcher is
blocked: Verify that User1 successfully publishes presence
information. User2 will not be able to subscribe to the presence
information when blocked by User1.
Test 13) Publication of Presence information, watcher is
politely blocked: User2 will be able to subscribe and receive
notifications, but presence information will not be revealed,
since the user is politely blocked.
Test 14) Reactive authorization for a specific group: Verify that
a presentity can authorize a group of watchers to subscribe
to his/her presence information when the request from that
watcher arrives (Reactive authorization).
Test 15) Combination of presence elements from different
presence sources: Verify that a Presence Server supports the
combination of different presence information elements of a
particular user coming from different UEs, acting as presence
sources.

2) Presence XDM:

Test 16) Presence XDMS document creation, retrieval and
validation: Verify that the user can create and retrieve an XML
document from the XCAP server.
Test 17) Presence XDMS document and element modification,
retrieval and validation: Verify that the UE can modify and
retrieve XML elements and documents from the XCAP server.
Test 18) Presence XDMS element deletion, retrieval and
validation: Verify that the UE can delete XML elements from
the XCAP server.

B. Test Results

As shown in Table I, we applied 18 test cases and repeated
10 times for each. Among 180 test applications we obtained

TABLE I
TEST RESULTS

of test cases # of sessions # of passes # of fails

18 10 148 32

32 fail verdicts. We analyzed the test results in detail and three
problems were found in presence server and clients as follows:

1) Handling of a Subscribe message in presence server
when the Expires header has the value zero: When the pres-
ence module of OpenSER receives a Subscribe message from a
watcher where the Expires header has the value zero (Test 3), it
should i) remove the watcher from active watcher table and ii)
send a notification of the presence information of the presentity
to the watcher. In case of OpenSER, a notification is sent after
the reception of the Subscribe message, but it does not remove
the watcher from active watcher table. Therefore, the watcher
continues to receive notifications from the presence server and
it respond with an Error message (subscription does not exist).

2) Handling of combined presence information in a client:
When several user equipments of the same client send pres-
ence information to a presence server (Test 15), the pres-
ence server combines the received presence information in
an XML document. In such a case, watchers can receive
presence information of multiple equipments. Although the
presence module of OpenSER sends a notification message
with combined presence information, neither UCT IMS client
nor IMS Communicator can handle this information. Both
clients display the presence information of the user equipment
that was published the last.

3) Publishing of information when an equipment is powered
off: When an equipment is powered off (Test 1), it should
send a Publish message to a presence server containing the
parameter “status=close”2. In case of IMS Communicator,
sometimes (two cases out of ten in our experiments), it does
not send the Publish message to a presence server so the
equipment is supposed to be online by watchers.

C. Inter-domain case

In this section, we explain testbeds for inter-domain cases
and discuss briefly the differences with intra-domain case. Ac-
cording to test cases, we can have various kinds of interactions
between network components. For simplicity, the following
two cases are considered:

Case I: It is assumed that a watcher and a presentity have
different home networks and they are in their home networks
as shown in figure 4. In this case, it is important to test the
interaction between a presence server and a watcher since
the watcher should be able to subscribe and get notifications
from the presence server in different domain, e.g. domain1 in
figure 4. For the test cases where all the interactions are made
within domain1 such as interaction between a presentity and
the XCAP server, there is no difference with the intra-domain
case.

2Although this is not specifically described in the test case, we think that
it is reasonable to send the Publish message when a UE is powered off.

Presentity@domain1.net

I-CSCF

S-CSCF

Presence
server

XCAP
server

PO PO

SIMPLE

Domain1

XCAP

Watcher@domain2.net

P-CSCFP-CSCF
x-CSCF

Domain2

SIMPLE

PO

PCO PCO

Fig. 4. Inter-domain Case I: two UEs in their home networks

Presentity@domain1.net

I-CSCF

S-CSCF

Presence
server

XCAP
server

PO PO

Domain1

XCAP

Watcher@domain1.net

P-CSCFP-CSCF

P-CSCFP-CSCF

Domain2

SIMPLE

SIMPLE

PO

PCO

PCO

Fig. 5. Inter-domain Case II: presentity in visited network

Case II: It is assumed that a watcher and a presentity have
the same home network and the presentity is in visited network
as shown in figure 5. In this case, it is important to test the
interaction between a presence server and a presentity since
the presentity should be able to publish presence information
to the presence server in different domain, e.g. domain1 in
figure 5.

VI. CONCLUSION

In this paper, we performed experiments on interoperability
testing of presence service on IMS platform. Open source
implementations such as an IMS platform, a presence server,
an XCAP server, and IMS clients were deployed to establish
testbed for interoperability testing of presence service. Test
cases for SIMPLE presence protocol developed by OMA
were applied to our testbed and test results were analyzed
in detail. Due to the non-supported functionalities by clients
such as handling of presence composition rules, subscrip-
tion/notification filtering, and partial presence information
publishing, it was not possible to test all test cases defined by
OMA. We obtained fail verdicts for some test cases because
of problems in presence servers and IMS clients.

In our experiments, we covered the basic functionalities of
the presence service and the interaction between a client and
an XCAP server for intra-domain case. And then we explained
the testbeds for inter-domain cases and briefly discussed the

differences with intra-domain case. The next step can be
performing the interoperability testing of presence service in
inter-domain cases. Also we are working on generation of test
cases for interoperability testing of services which can provide
scalability.

REFERENCES

[1] Methods for Testing and Specification (MTS); Internet Protocol Testing
(IPT); Generic approach to interoperability testing, ETSI Std. EG 202
237, 2007.

[2] Presence Service; Architecture and functional description, 3GPP Std.
TS 23.141, 2007.

[3] Enabler Test Specification for Presence SIMPLE Interoperability, Ver-
sion 1.1, Open Mobile Alliance (OMA) Std., 2008.

[4] Enabler Test Specification for Presence XDM Interoperability, Version
1.1, Open Mobile Alliance (OMA) Std., 2008.

[5] Enabler Test Specification for Presence RLS XDM Interoperability,
Version 1.1, Open Mobile Alliance (OMA) Std., 2008.

[6] “Enabler test report presence SIMPLE,” OMA Test Fest, 2006.
[7] Wireless Village. [Online]. Available:

http://www.openmobilealliance.org/tech/affiliates/wv/wvindex.html
[8] Fraunhofer FOKUS. Open IMS Playground. [Online]. Available:

http://www.fokus.fraunhofer.de/en/fokus testbeds/open ims playground/
[9] OpenSIPS Project. [Online]. Available: http://www.opensips.org/

[10] OpenXCAP. [Online]. Available: http://openxcap.org/
[11] UCT Client. [Online]. Available: http://uctimsclient.berlios.de/
[12] IMS Communicator. [Online]. Available:

http://imscommunicator.berlios.de/
[13] J. Rosenberg, “SIMPLE made simple: An overview of the

IETF specifications for instant messaging and presence using the
session initiation protocol,” Internet draft, 2008. [Online]. Available:
http://www.ietf.org/internet-drafts/draft-ietf-simple-simple-04.txt

[14] OMA TestFest. [Online]. Available:
http://www.openmobilealliance.org/TestFests/overview.aspx

[15] R. Hao, D. Lee, R. K. Sinha, and N. Griffeth, “Integrated system
interoperability testing with applications to voip,” IEEE/ACM Trans.
Netw., vol. 12, no. 5, pp. 823–836, 2004.

[16] H.-M. Noh, J.-H. Lee, C.-J. Yoo, and O.-B. Chang, “Behavior modeling
technique based on efsm for interoperability testing,” in Proceedings
of the International Conference on Computational Science and Its
Applications (ICCSA 2005), 2005, pp. 878–885.

[17] A. Desmoulin and C. Viho, “Interoperability test generation: formal def-
initions and algorithm,” in Huitieme Colloque Africain sur la Recheche
en Informatique (CARI’06), Cotonou, Benin, Nov. 2006.

[18] P. Saint-Andre, “Extensible messaging and presence protocol (XMPP):
Instant messaging and presence,” RFC 3921, 2004.

[19] J. Rosenberg, “The extensible markup language (XML) configuration
access protocol (XCAP),” RFC 4825, 2007.

[20] D. Winer, “XML-RPC specification.” [Online]. Available:
http://www.xmlrpc.com/spec

[21] Wireshark. [Online]. Available: http://www.wireshark.org/
[22] SIP Express Router. [Online]. Available: http://www.iptel.org/ser/

