
Transforming BPEL into Intermediate Format Language
For Web Services Composition Testing ∗

Mounir Lallali 1, Fatiha Zaidi 2,3, Ana Cavalli 1

1 TELECOM SudParis - CNRS SAMOVAR
9 rue Charles Fourrier, F-91011 Evry, France

Email: {Mounir.Lallali, Ana.Cavalli}@it-sudparis.eu
2 Univ Paris-Sud, LRI, UMR 8623, Orsay F-91405;

3 CNRS, Orsay, F-91405
Email: Fatiha.Zaidi@lri.fr

Abstract

BPEL is a standard language for Web services compo-
sition. To test a composite Web service, the design of a
formal model is very useful, because it facilitates the appli-
cation and the automatization of test generation methods.
In this paper, we propose a transformation procedure of the
BPEL specification into an Intermediate Format (IF) model
that is based on timed automata. This IF format is well
adapted to model BPEL (timed) constructs and to handle
faults, events, termination, message correlation and activi-
ties synchronization. The proposed transformation was im-
plemented in the BPEL2IF tool, which is also presented in
this paper.

1. Introduction

Web services provide standard means of interoperating
between different software applications, running on a vari-
ety of platforms and/or frameworks [14]. Business Process
Execution Language for Web Service (WS-BPEL) [10] is
emerging as the standard composition language for specify-
ing business process behavior based on Web services.

A BPEL business process implements a new composite
Web service by specifying its interactions with existing Web
services (called partners). It provides constructs to describe
complex business processes that can interact synchronously
or asynchronously with their partners. A basic process in
BPEL is defined as one root element consisting of one or
more child elements describing partners, a set of variables,
correlation sets, fault and compensation handlers and activ-
ities. These latter define the interaction logic of a process

∗This Research is supported in part by the French National Agency of
Research within the WebMov Project http://webmov.lri.fr

and its partners. The BPEL activities that can be performed
by a business process instance are categorized into basic
(e.g., receive, exit) and structured activities (e.g., sequence,
flow).

In our work, we focus on unit testing of Web services
composition. The BPEL description of Web services com-
position is considered as the specification of what the sys-
tem is expected to do. To facilitate the application and au-
tomatization of test generation algorithms, a formal model
of BPEL is required. Inspired in our previous transforma-
tion of BPEL into Timed Extended Finite State Machine for
Web Services (WS-TEFSM) [6] we propose a BPEL trans-
formation into an Intermediate Format (IF) language. This
language is based on communicating timed automata ex-
tended with variables and is associated to an efficient open-
source simulator [13]. Using a TestGen-IF tool [2], which
is based on this simulator, we can explore by an exhaustive
simulation the state space of the model and generate test
cases. In this paper, we present the IF timed automaton and
we detail how to transform the BPEL process and its con-
structs into IF model. We define also how to handle faults,
events, activities synchronization, termination and message
correlation.

This paper is organized as follows. In Section 2, we dis-
cuss related work. Section 3 introduces the IF model which
is used to model BPEL composition. The transformation
of BPEL into IF model is detailed in Section 4. Section
5 describes the tool BPEL2IF that implements the BPEL
transformation procedure. Finally, Section 6 concludes this
paper.

2. Related-work

In the last years, several formal models of BPEL de-
scription and Web services composition have been proposed

(e.g., process algebras, Petri nets and automata) [8, 12]. In
our work, we do not consider process algebras nor Petri
nets formalisms because we wanted to use our experience
on formal methods (as in [3]) and tools in the area of test-
ing. In addition, the IF timed automaton is powerful enough
to specify the temporal behaviors of web services and are
suitable to automate testing.

In [4], a BPEL process is transformed into PROMELA
(the input language of SPIN) and used by the model checker
SPIN to generate a test suite for BPEL specifications. The
authors of [15] proposed a BPEL transformation into an-
notated deterministic finite state automaton for service dis-
covery. All these works do not cover either compensation,
fault, event nor termination handling.

In [16], the BPEL semantics were modeled by Web Ser-
vice Automata (WSA) as an intermediate formal model
and then the SPIN model checker and the NuSMV model
checker were used to generate test cases. This WSA for-
malism does not allow to cover either message correlation
handling nor capturing the timing aspects of some BPEL
constructs (e.g., wait, onAlarm).

In [9], they propose another formalism that deals with
data variables, the extended finite state automata, but no
timing constraints are considered. In [5], a formalism taking
into account timing constraints is proposed, the WSTTS.
Nevertheless, this formalism uses only clocks but no data
variables. Our work improves the state of art, because the
obtained IF formal model includes all relevant aspects of
BPEL constructs: time constraints, message correlation,
fault and event handling, termination, fault propagation and
activities synchronization.

3. IF Overview

A communicating system described using IF lan-
guage [1] is composed of active processes instances running
in parallel and interacting asynchronously through shared
variables and signals via signalroutes or by direct address-
ing. A process instance can be created and destroyed dy-
namically during the system execution. It has local data
and a private FIFO buffer. Each IF process is described as
a timed automaton extended with discrete data variables,
communication primitives and urgency attributes on transi-
tions, i.e., IF-TA.

Definition 1 (IF Timed Automaton) The IF Timed Au-
tomaton is a tuple TA = (Q,Act,X ,T,q0) where: Q is a fi-
nite set of states, q0 is the initial state, Act is a finite set
of actions, X is a set of typed variables (including data
variables and clocks) and T ⊆ Q×G(X)× 2Act ×U ×Q
is a set of transitions such that G(X) is a set of boolean
guard conditions on data variables and clocks, and U =
{eager, lazy, delayable} is the urgency set.

Each transition t = q
g a−−→
u

q′ ∈ T is annotated with a set of
guards g, a set of actions a ∈ Act and an urgency attribute
u ∈U . The actions in Act represent observable (i.e., signal
input and output) or internal actions (e.g., assignment ac-
tion, dynamic process creation and destruction). The clocks
values are real numbers. They can be set and reset. Time
progresses in states and transitions take zero time to be exe-
cuted. The transition urgency [7] is used to control the time
progress:

(i) lazy transition: is never urgent and never blocks time
progress;

(ii) delayable transition: allows waiting as long as time
progress does not disable it;

(iii) eager transition: is urgent as soon as it is enabled, and
blocks time progress.

In the IF-TA semantics [7], we can distinguish discrete
and timed transition. The timed transition indicates that the
IF timed automaton does not execute any action (does not
change state), but increments the current value of the clocks.
A timed transition does not block any transition.

The discrete transition q
g a−−→
u

q′ ∈ T indicates that if the
guard g is true, then the automaton follows the transition by
executing the action a, changing the current values of the
data variables by executing all the assignments, changing
the current values of the clocks by executing all the time
setting/resetting, updating the buffers content of the system
by consuming the first signals required by input actions and
by appending all signals required by output actions and, fi-
nally, moving in the next state q′.

To obtain an IF system, IF timed automata can be com-
posed by using an associative and commutative parallel op-
erator [7].

4. Transforming BPEL into IF

In this BPEL transformation procedure, we consider
data, predicates, messages and partner links handling, basic
and structured activities, fault propagation, termination and
synchronization of activities, scopes, message correlations,
event and fault handling, BPEL process element, WSDL in-
terface of BPEL process clients and partners. The compen-
sation handler transformation is not considered in this work.
Each BPEL activity is described as an IF process. In partic-
ular, a non-basic activity is transformed into an IF process
which can dynamically create its sub-activities processes.
Note that each IF process can be the parent of other IF pro-
cesses or a child of another one. The BPEL process is de-
scribed by an IF system which its IF processes are executed
in parallel and interact asynchronously through signals (IF
messages used to communicate between IF processes) via
signalroutes (communication buffers) [13].

2

In this section, we present the transformation of the main
constructs and functionalities of BPEL which are summa-
rized in Table 1. Note that in this section, we use the Pur-
chasing example given in [10].

BPEL IF Language
Message Type Complex data type
Condition Boolean variables & logical constraints
Partner Link Type Enumeration = {name,porttype,operation}
Correlation Set Complex type = {name,status,properties}
Message Signal(PL type,message type)
Partner Link Signalroutes
Fault handling Propagation & handling of fault message
Termination Handling Propagation and handling of terminate message

& use of exit variable
Correlation Handling Modification of the messaging construct

processes by adding guard on correlation status
& updating of properties values

Basic Activity IF process
Structured Activity IF process with sub-processes
Activities Synchronization LinksManager process

& exchanges with source and target activities
Fault Handlers IF process with catch & catchAll sub-processes
Event Handlers IF process with onMessage & onAlarm

sub-processes
Scope & Process Element IF process with event handlers

& fault handlers sub-processes
Client & Partners IF environment

Table 1. BPEL Transformation into IF

4.1. Data, Message and Partner Links

A BPEL variable can be declared as a WSDL message
type, XML schema element or XML schema type [10].
These types (defined in the WSDL interfaces) are trans-
formed in simple or complex IF types by using the IF type
constructors (e.g., enumeration and range). In the IF sim-
ulator, all the possible input parameters are given during
simulation. As we cannot control those values, in general it
is common to face the state explosion problem. In order to
reduce the problem size, we limit the values of some input
parameters. Note that choosing those parameters should be
done carefully by an expert who has better knowledge on
Web services.

Because the BPEL partner links are bidirectional, each
WSDL partner link type is transformed in one or more IF
enumeration types which contains the partner link name,
and its associated portType and operation. For example,
the Buyer partner link type is described by two IF types: to-
Buyer = enum Buyer.BuyerPT.PurchaseResponse and fromBuyer
= enum Buyer.PurchasingPT.PurchaseRequest.

Each WSDL message type is described as an IF signal.
For instance, the message <message name="POMessage">
<part name="PO" type="PurchaseOrder" /> </message> is
described as signal POMessage(fromBuyer,POMessageType)
where POMessageType is a complex type with PO as mem-
ber, and f romBuyer is a partner link type. Each BPEL part-
ner link can be associated to one or more IF signalroutes.
However, the BPEL partner links are bidirectional when

IF signalroutes are unidirectional. For this reason, we as-
sociate for each partner link PL at least two signalroutes:
f romPL and toPL. The first one is used to transport the
input messages while the second one is used to transport
the output messages. Let POMessage and POResponse be
two messages. For instance, the partner link Buyer used
in receive and invoke activities (of the Purchasing service)
is associated to the two following f romBuyer and toBuyer
signalroutes where env is the IF environment [13] and in-
termediateEnv is an intermediate environment process (see
Section 4.10):

signalroute fromBuyer() signalroute toBuyer()
from IntermediateEnv to ReceiveProc from invokeProc to env
with POMessage; with POResponse;

4.2. Fault Propagation and Termination

An IF process describing a BPEL activity forwards a
fault message to its parent process when it receives a fault
message from its sub-process (describing its sub-activity).
The fault message is propagated until the fault handler of
one of the enclosed scope handles this fault. We model this
propagation by allowing each IF process (describing an en-
closing activity) to receive a fault message in each state and
to send it to its parent.

In BPEL, the termination is activated by an exit activity
(first case) or when a fault is thrown by an invoke activity
or a throw activity (second case). We use terminate and
done messages to handle the termination according to the
following cases:

1. When an exit activity is reached, the exit process as-
signs true to the exit variable of the IF process describ-
ing the BPEL process element. This latter initiates the
termination of its children by propagating the termi-
nate message. Before terminating an IF process, all
of its children must be terminated. For this end, the
parent process propagates the terminate message to its
children and waits to their termination, i.e., receiving
done message from all its children. If a terminated IF
process has no children or all its children have termi-
nated (normally or abnormally), it stops immediately
its execution and sends a done message to its parent.

2. Each IF process finishes its control flow when it re-
ceives a fault message and sends this message to its
parent. If one of the enclosing scopes can handle this
fault, the fault propagation is stopped.

The terminate and done messages must have a higher
priority than a fault message which has a higher priority
than a normal incoming message (generated from BPEL).
The empty, throw and rethrow activities may be allowed to
complete, and the started exit activity must not be termi-
nated [10]. We detail the termination of each activity below
when we describe the IF process of each activity.

3

4.3. Synchronization of Activities

Flow activity provides concurrency and synchronization
dependencies between its sub-activities [10]. This synchro-
nization is expressed by a link construct. Each BPEL ac-
tivity has optional nested standard elements source and tar-
get [10] that define a link which connects two activities and
can change the sequential order of activities. An activity
may declare itself to be the target (respectively the source)
of one or more links by including one or more target (re-
spectively source) elements. An activity can be the source
of multiple links, thus allowing multiple branches to be ex-
ecuted in parallel. Each link can have an associated transi-
tion condition attribute. The source sets the link guard to the
logic value of transition condition or to true if this attribute
is not specified. The target activity may have a join condi-
tion attribute specified. It is executed only if its attribute is
evaluated to true. If the join condition is not specified, it is
interpreted as an or logical operator between the incoming
links.

In order to not complicate the task of the source, tar-
get and flow activities, we used a specific IF process, called
linksManager, to handle the links and the synchronization
of the flow sub-activities. This linksManager uses source
(respectively target) messages to communicate with source
(respectively target) activities. Each target or source activ-
ity declares itself to linksManager. For each link, when
a source activity finishes, it evaluates the guard and sends
a source message to linksManager with the guard value.
LinksManager sends a target message with this guard value
to the target activity which must wait until the source activ-
ities finish. When a target activity receives a target message
of all incoming links, it evaluates its guard (i.e., join condi-
tion or logical formula on incoming links). When this guard
is not satisfied, a target activity propagates the join failure
fault to its parent.

4.4. Basic Activities

Basic activities [10] describe elemental steps of the
BPEL process behavior. Basic activities are: invoke, re-
ceive, reply, assign, wait, empty, exit, throw and rethrow.
Each basic activity is described by a simple IF process
that executes one step and sometimes handles its forced
termination. For instance, the IF process of the invoke,
receive or reply activity uses the IF communicating ac-
tions (i.e., input and/or output). We note that all the in-
put actions of this messaging process are not urgent and
never block time progress. They have a lazy urgency
(see Section 3). The IF process for the receive activity
<receive partnerLink="Buyer" portType="PurchasingPT" opera-
tion="PurchaseRequest" variable="PO" /> is illustrated in Fig-
ure 1.

in i t

B u y e r ? P u r c h a s e R e q u e s t (P O) / ! d o n e ()

l a z y

? t e r m i n a t e () / ! d o n e ()

e a g e r

Figure 1. The Receive Process

4.5. Structured Activities

Structured activities describe the order in which its sub-
activities are executed [10]. Sequence, if, while, repeat until
and serial for each activities provide a sequential control.
Flow activity provides concurrency and synchronization be-
tween activities. Pick activity provides a choice controlled
by events. We have defined the transformation of all the
structured activities as indicated in Table 1.

4.5.1. Sequence

A sequence activity is described as an IF process that per-
forms sequentially its sub-activities [10]. This sequence
process creates, in the appearing order, a sub-activity pro-
cess and waits for its termination (a reception of done mes-
sage) before creating the next sub-activity process. The
sequence process terminates normally when the last sub-
activity process terminates. It is interrupted when it receives
a terminate or a fault message. In this case, it terminates its
behavior and applies a forced termination to its active sub-
activity process.

4.5.2. If

The if activity consists of an ordered list of conditional
branches [10]. If no branch is taken, an optional else branch
is taken, if present. The if activity is described as an IF
process that selects, in the appearing order, one of the if
branches. The if process creates a selected branch sub-
activity process and waits for its termination, correspond-
ing to the branch process termination. When the if activity
process is interrupted by receiving a terminate or fault mes-
sage, it terminates immediately when no branch is selected,
or the forced termination is applied to the IF process of the
selected branch sub-activity.

4.5.3. While and Repeat Until

The while and repeat until activities provide repeated exe-
cution of its sub-activities [10]. They are described as an IF
process. The while process creates a sub-activity process as
long as the while condition evaluates to true in each itera-
tion. The repeat until process creates a sub-activity process

4

until the repeat condition becomes true. The while and re-
peat until processes wait for the sub-activity termination be-
fore each iteration. They terminate when their condition is
evaluated to false. When they are interrupted, by receiving
a terminate or fault message, their iteration is interrupted
and the forced termination is applied to their sub-activity
process.

4.5.4. Flow

Flow activity allows to specify one or more activities to
be performed concurrently [10]. The links defined in the
flow activity permit to enforce precedence between sub-
activities, i.e., synchronization. The flow activity is de-
scribed as an IF process that creates simultaneously the IF
processes of all the enclosed sub-activities. The synchro-
nization of the flow sub-activities is handled by the links-
Manager process described in section 4.3. The flow process
completes when all sub-activities are completed. It is inter-
rupted when it receives a terminate or a fault message. In
this case, it terminates its behavior and applies forced ter-
mination to its active sub-activities processes.

4.5.5. Pick

The pick activity waits for one event occurrence, then ex-
ecutes the associated activity [10]. It is described as an IF
process that waits the occurrence of one event, creates the IF
process of the associated activity of each event and waits for
its termination. The event of the pick activity has two forms:
OnMessage considered as an IF input action and onAlarm
considered as an IF waiting action. The pick process termi-
nation is similar to the if process termination. All the input
actions (modeling the onMessage elements) of the pick pro-
cess are not urgent and do not block time progress. These
input actions have a lazy urgency. In the contrary, the time-
out action (modeling the onAlarm) is always urgent and it
has a eager urgency.

4.6. Scope

A scope provides the context that influences the execu-
tion of its enclosed activities [10]. The scope context in-
cludes variables, partner links, correlation sets, event han-
dlers, fault handlers, a compensation handler and a termi-
nation handler. Each scope has a primary activity which
defines the normal behavior of the scope. It is described
as an IF process which creates two sub-processes, respec-
tively, one of its primary activity and another of its event
handlers. The scope process can have defined variables con-
sidered as private variables. When the scope process is in-
terrupted, by receiving a terminate or fault message, it ap-
plies a forced termination to the IF processes of its primary

activity and event handlers by propagating a terminate mes-
sage, and waits for their termination. Finally, in the case
of fault message reception, the scope process creates the IF
process of its fault handlers to handle the fault and waits for
its termination. If the scope fault handler do not handle the
occurred fault, the scope process propagates (to its parent)
the fault message. The transformation of correlation sets,
fault and event handlers are presented in the next sections.

4.7. Message Correlation

A correlation set is a set of properties shared by all mes-
sages in the correlated group [10]. Correlation can be de-
clared in a BPEL process or a scope. Correlation set names
are used in the BPEL messaging constructs (e.g, invoke, re-
ceive and onMessage). We limit each messaging activity to
one correlation set (except the synchronous invoke which
is limited to two correlation sets). We handle the message
correlation as follows:

• The IF process of a BPEL process or scope is extended
with a complex type declaration of the correlation set
construct: {name; status; properties}. The Status vari-
able indicates if the correlation set is being initiated;

• The IF process of each messaging activity that carries
the correlation set cs_name is extended by two variable
declarations: initiate and cs_name;

• When the initiate variable is set to yes, the IF process
of the messaging activity initiates the correlation set
(by setting the status variable to true) and defines the
correlation set properties according to the correlation
values of the exchanged message;

• If a correlation set cs_name is already initialized, i.e.,
status variable is set to no, then the correlation values
of the IF process of each messaging activity that car-
ries the correlation set cs_name must be identical to
the values of the properties of this correlation set;

• A fault (i.e., correlation violation) message is prop-
agated (by the IF process of the messaging activity)
when a correlation set is already initiated (respectively
has not been initiated) and the initiate attribute is set
to yes (respectively to no). This fault message is also
propagated if the values of the correlation are different
from the values of the correlation set in the message;

• The propertyAlias elements (that permit to retrieve
correlation values from a message [10]) are trans-
formed into IF procedures which have a property name
and a WSDL message type as parameters, and return a
WDSL message part.

5

Figure 2 illustrates the IF process for the following re-
ceive activity with correlation: <receive partnerLink="Buyer"
portType="PurchasingPT" operation= "PurchaseRequest" vari-
able="PO"> <correlations> <correlation set ="PurchaseOrder"
initiate="yes"/> </correlations> </receive>.

This activity initiates the correlation set PurchaseOrder.
In Figure 2, the transition 1 checks if the correlation is al-
ready initiated (status = false). In this case, the receive pro-
cess sets the status variable to true, defines the properties
of the PurchaseOrder correlation and sends to the parent
process a done message. Else (status = true), the receive
process propagates (by the transition 2) the correlation vio-
lation fault. If the receive process receives a terminate mes-
sage, the transition 3 and the transition 4 terminate imme-
diately this process and send a done message to its parent.

in i t

[s t a t u s (P u r c h a s e O r d e r) = = f a l s e]
B u y e r ? P u r c h a s e R e q u e s t (P O) /
s t a t u s (P u r c h a s e O r d e r : = t r u e)

p r o p e r t i e s (P u r c h a s e O r d e r) : = p r o p e r t i e s (P O) ; ! d o n e ()

l a z y

? t e r m i n a t e () / ! d o n e ()

e a g e r

[s t a t u s (P u r c h a s e O r d e r) = = t r u e]
_ / f au l t (Co r re l a t i onV io l a t i on)

e a g e r
e a g e r

? te rm ina te () /
! d o n e ()

s

1

2

4

3

Figure 2. The Receive Process with Correla-
tion Handling

4.8. Fault and Event Handlers

The fault handler of a scope or a BPEL process is a set of
catch clauses defining how the scope should respond to dif-
ferent types of faults [10]. The fault handlers are described
as an IF process which combines an if activity applied to
various sequences of catch or a catchAll activities (condi-
tional branches) and the creation of its IF sub-activities pro-
cesses. Each catch branch is considered as a comparison
between the propagated fault and its handled fault. The
catchAll branch is used to catch all the faults that are not
handled by the defined catch branch.

The BPEL process element and each scope can be as-
sociated with a set of event handlers that are invoked con-
currently when the corresponding event occurs [10]. There
are two event types: input message (onEvent element) and
alarm (onAlarm element). Event handlers are described, in
the same way as a pick activity, as an IF process where each
onEvent is considered as an IF input action and onAlarm
considered as an IF waiting action. The event handlers pro-

cess termination is similar to the if process termination.

4.9. BPEL Process Element

A BPEL process always starts with the process element,
i.e., the root of the BPEL document. It is composed of the
following optional children: partner links, variables, corre-
lation sets, fault handlers, compensation handlers and event
handlers. Note that compensation handlers are not consid-
ered in this work.

The process element contains one main activity decla-
ration representing the process workflow definition. This
BPEL process element is described as an IF process
(schematized in Figure 3) which creates two sub-processes,
respectively, of its primary activity and its event handlers.
The transformation of its optional children is detailed in the
previous sections.

When the IF process of the BPEL process element re-
ceives a fault (the case of the transition 3′) or when its exit
variable is assigned to true by the exit process (the case of
the transition 3′′), it applies a forced termination to the IF
processes of its primary activity and event handlers by prop-
agating a terminate message and waits for their termination.
Afterwards, in the case of fault message reception (the case
of the transition 4), the IF process of the BPEL process el-
ement creates the IF process of its fault handlers to handle
the fault and waits for its termination.

B P E L
P r o c e s s

?fau l t (f) /
! t e r m i n a t e ()

S u b - A c t i v i t y o r
E v e n t H a n d l e r s

_ / ! d o n e ()

[ex i t == t r ue]
_ / ! t e rm ina te ()

Fau l t
H a n d l e r s

_ / ! d o n e ()

1’’

1 ’

2 ’

4

5

_?fau l t (f) / ! fau l t (f)

I F
E n v i r o n m e n t

_ / ! m e s s a g e

? m e s s a g e / _

_ / ! fau l t (f)

3’’

3 ’

2’’

Figure 3. The BPEL Process Machine

4.10. BPEL Client and Partners

The client and the partners of a BPEL process are consid-
ered as the environment of the IF system. In IF, the commu-
nication between two IF processes and the communication
between an IF process and the environment are handled in a
different way. Each IF process has its own FIFO queue and
the messages from other processes are stored in this queue.
As the communication is asynchronous it may take time to
consume the messages in the FIFO queue. The messages

6

from the environment are, however, consumed as soon as
the environment sends a message, i.e., the communication
between the IF environment and IF process is synchronous.

In the proposed transformation, the IF process of BPEL
messaging constructs can receive the messages (e.g., done
signal) from the environment as well as from other pro-
cesses. In this case the order of consumption of the mes-
sages cannot be guaranteed to be the same order of their
reception. The messages in the queue, which is already re-
ceived from other IF processes, may need to wait for the
processing of newly incoming messages from the environ-
ment.

In order to solve this problem, we introduce an interme-
diate environment process, called IntermediateEnv. Every
message from the environment is sent to this Intermedia-
teEnv process and then it passes each message to the appro-
priate destination. As each signal is defined to have only one
destination in the proposed model, the Intermediate process
can distribute the incoming messages from the environment
to the proper destinations. By introducing this intermediate
process, we can guarantee the order of consumption of mes-
sages as all the messages coming from the environment are
passed to the FIFO queue of the IF process.

5. BPEL2IF Tool

We have developed BPEL2IF which is used to transform
BPEL (BPELWS 1.1 and WS-BPEL 2.0) into IF. It imple-
ments our BPEL transformation procedure defined in sec-
tion 4. The BPEL document is processed as a tree where
each node corresponds to a BPEL construct. A depth-first
walk of the BPEL tree is performed and associated XSL
transformation rules are applied to each node in order to
produce an IF specification document.

This tool was used to transform the Loan Web service
given in [11] which contains receive, invoke and pick ac-
tivities. The obtained IF specification was obtained by the
transformation of the BPEL specification of the Loan ser-
vice and the WSDL description of its partner (i.e., the Credit
Rating service). This IF specification contains the declara-
tion of five signals describing the BPEL messages, three in-
ternal signals (i.e., done, fault and terminate), and four sig-
nalroutes associated to the BPEL partner links. The User
and the Credit Rating services are described by the IF envi-
ronment, i.e., env.

6. Conclusion

This paper proposes a transformation procedure of BPEL
specification into Intermediate Format (IF) model. This
later can model the BPEL constructs and can handle
faults, events, activities synchronization, message correla-
tion, fault propagation and termination of the BPEL process

and its sub-activities. The proposed procedure has been
implemented in the BPEL2IF tool. We actually use this
transformation procedure to test the BPEL specification of
Web services composition and to generate test cases from
IF specifications.

Our future work is to handle compensation and to inves-
tigate the extension of the proposed transformation proce-
dure to the choreography of Web services.

References

[1] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF
toolset. In SFM-04, volume 3185 of LNCS, pages 237–267.
Springer-Verlag, june 2004.

[2] A. Cavalli, E. Montes De Oca, W. Mallouli, and M. Lallali.
Two Complementary Tools for the Formal Testing of Dis-
tributed Systems with Time Constraints. In Proceedings of
DS-RT’08, Vancouver, Canada, October 2008.

[3] M. Dumas and R. Heckel, editors. Web Services and Formal
Methods, WS-FM’07 Workshop, Brisbane, Australia, Sep.,
2007. Proceedings, volume 4937 of LNCS. Springer, 2008.

[4] J. G. Fanjul, J. Tuya, and C. de la Riva. Generating Test
Cases Specifications for Compositions of Web Services us-
ing SPIN. In Proceedings of WS-MaTe’06 Workshop, pages
83–94, 2006.

[5] R. Kazhamiakin, P. Pandya, and M. Pistore. Timed mod-
elling and analysis in web service compositions. ares, Vol-
ume 0:840–846, 2006.

[6] M. Lallali, F. Zaidi, and A. Cavalli. Timed Modeling of
Web Services Composition for Automatic Testing. In Pro-
ceedings of SITIS’07, Shangai, China, December 2007.

[7] M. Bozga and J.-C. Fernandez and L. Ghirvu and S. Graf
and J.P. Krimm and L. Mounier and J. Sifakis. IF: An In-
termediate Representation for SDL and its applications. In
SDL Forum, pages 423–440, 1999.

[8] Maurice, A. Bucciaroneand, and S. Gnesi. A Survey on Ser-
vice Composition Approaches: From Industrial Standards to
Formal Methods. Technical Report 2006-TR-15, Consiglio
Nazionale delle Ricerche, 2006.

[9] S. NAKAJIMA. Lightweight formal analysis of web service
flows. Progress in Informatics, Volume 2:57–76, 2005.

[10] OASIS Standard. WSBPEL Ver. 2.0, April 2007. http://
docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[11] ORACLE. Service Oriented Architecture. http://www.
oracle.com/technologies/soa/index.html.

[12] F. van Breugel1 and M. Koshkina. Models and Verification
of BPEL. http://www.cse.yorku.ca/~franck/research/drafts/
tutorial.pdf.

[13] Verimag/IMAG. IF Toolset. www-if.imag.fr/.
[14] W3C. http://www.w3.org/.
[15] A. Wombacher, P. Fankhauser, and E. Neuhold. Transform-

ing BPEL into Annotated Deterministic Finite State Au-
tomata for Service Discovery. In Proceedings of ICWS’04,
page 316, 2004.

[16] Y. Zheng, J. Zhou, and P. Krause. An Automatic Test Case
Generation Framework for Web Services. Journal of Soft-
ware, 2(3):64–77, September 2007.

7

