
1

Abstract--This paper presents the application of a formal
testing methodology to protocols and services for wireless
telephony networks. In particular, this methodology is focused
on the test of components and has been adapted to perform
interoperability testing. It covers all steps of the testing
procedure: specification, test generation, and test execution on a
given architecture. It permits to detect different kinds of
implementation faults, as for instance output and transmission
faults.

Telecommunication systems and mobility are the main focus
of the application presented in this paper. In particular, two
case studies illustrates the application of the methodology to a
wireless telephone network: conformance testing of WAP
(Wireless Application Protocol) protocol, and conformance
testing of a service based on the subscriber location.

Index Terms--component testing, conformance testing,
formal methods, interoperability testing, location based
services, mobile services, WAP.

I. INTRODUCTION

ew trends in network technology lead to the design of
new protocols and services. In most cases these

networks, include heterogeneous elements that need to
communicate among themselves. These elements need to be
tested and experimented to guarantee their conformance to
standards and their interoperability. Conformance testing of
these new products becomes a strategic activity in the
telecom industry, both for the operators and for equipment
vendors, as well as tool providers. Companies have to
develop an important activity in order to guarantee the
correctness of the behaviors of their software implementing
these protocols and services. Due to this validation effort
and experimentation on real platforms, trustable services will
be produced and the time to market will be reduced.

Until now research on automatic test generation for
conformance testing was based on the exhaustive simulation
of specifications, i.e. the exploration of the whole state-space
(or reachability graph) [5,7]. The first drawback of this
approach is that, when testing real-world service or protocol
components, the number of states is huge. The second one is
that redundant parts may be explored uselessly. To avoid
these problems, we have designed and implemented a new
algorithm, Hit-or-jump, which is focused on components
testing. It is based on the generation of partial reachability
graphs, thus avoiding the combinatorial explosion of the

†Laboratoire CNRS SAMOVAR, Groupe des Ecoles des
Télécommunications/Institut National des Telecommunications, 9 rue
Charles Fourier, F-91011 Evry Cedex France, (email :
{Ana.Cavalli,Amel.Mederreg}@int-evry.fr).

‡ Université Paris-sud 11, Laboratoire de Recherche en informatique
UMR CNRS 8623, Bât 490 Université Paris-Sud

91405 Orsay Cedex France, (email: fatiha.zaidi@lri.fr).

number of states to be explored. It also avoid to perform
redundant testing. An outline of this algorithm is provided in
section 3.

Another drawback of these methods [12, 11,15] is that
they only consider the control part of the implementation
under test. In our case, we deal with both control and data
parts. The generated tests include parameter values in
messages and consider variables in graph generation.

Moreover, our methodology covers all the steps of testing
: formal system specification, test generation and test
execution. This is not the case of the previous works that are
focused on specific aspects of testing.

The proposed methodology is original in that it combines
automated test generation methods with test execution on
given architectures. The test generation methods and
architecture facilitate the detection of output and
transmission faults[16].

This paper presents the application of this testing
methodology for conformance testing to two case studies: the
conformance testing of WAP protocols layers and the
conformance testing of a service based on the subscriber
location.

The work presented in this paper is part of a project
Platonis that is carried out by a consortium composed of
academic and industrial partners[8].

The paper is organized as follows. Section 2 introduces
the proposed testing methodology. Section 3 presents the
first case study: the application of the test methodology on
the WAP protocol stack and the experimental results.
Section 4 presents the second case study: the specification
and test of a location-based service and the experimental
results. Finally, section 5 gives the conclusion and
perspectives of this work.

II. TESTING METHODOLOGY

Our main objective is to define a methodology and
architecture for the validation and experimentation of
services and protocols. Our aim is to cover and to automate
all the steps of the test production from the specification to
its execution.

Moreover, our methodology deals with two kinds of tests :
interoperability and conformance testing.
Interoperability testing is supposed to validate that

different implementations interwork correctly (i.e. they
provide the expected global service while complying with the
standards). Interoperability testing allows for instance, to
check the interoperability between an application running on
a terminal and an application on a server. Conformance
testing on the other hand, checks for the compliance of the
implementation under test (e.g. the conformance of a given

Application of a Formal Testing Methodology to
Wireless Telephony Networks

Ana Cavalli†, Amel Mederreg†, Fatiha Zaidi‡

N

2

WAP layer) with respect to its standards [3].
Our testing methodology is based on two main elements:

the test generation method and the test architecture. The
generated tests concern protocols and services as well.

The steps of the testing methodology are as follows:
1. To design a precise and concise specification. We

use the SDL [10] language (which has been defined
by the IUT-T) as a Formal Description Technique
(FDT). The specification must take into account the
test architecture and the interaction points with the
environment. SDL allows to describe the architecture
and the behavior of the system. The semantic model
is based on Extended Finite State Machines [13].
Data are defined as abstract data types. SDL 96
supports objects which allow to define generic types
that could be validated and used in different contexts.
It also supports ASN.1 [14], a standard defined for
data transfer.

2. Once we have the specification, we can start the test
generation process. First, we need to characterize the
tests to be performed (i.e. to define test purposes
according to predefined criteria in terms of fault
coverage). In order to generate tests, we used a test
generation algorithm that we developed in our group.
This algorithm is described in the following section.
This algorithm has been conceived to perform
component testing in context (i.e. testing a
component which is embedded in a complex system).
However, we have adapted it to perform also
interoperability testing.

3. The generated tests are executed in a given test
architecture. We actually perform execution by using
several test architectures which are described in
section 2.C.

A. Test generation algorithm
This section outlines the method used for test generation.

A more complete presentation can be found in [6].
The aim of the method is to test a protocol, a service, a

protocol layer or service components in their context.
Testing components in the system is relevant because usually
there is no a direct access to the component. The tested
elements are defined as Extended Finite-State Machines
(EFSMs) [13]. We use this type of machines because they
allow to describe both the control and data part of the
system. And also, because they are the underlying semantic
model of the SDL language that is used as a formal
description technique in our methodology.

B. Outline of the algorithm
The algorithm allows to cover all the interactions of the

component (protocol layer or service component) in its
context. Our algorithm works as follows. First, we consider
a partial graph from the EFSM. This partial graph is obtained
by simulation. Then we try to find a path that leads to our
test purpose. If such purpose is found (which we call a Hit),
we keep it for the final test sequence and continue the search
process from there. Otherwise, we move randomly to the
frontier of the partial graph (which we call a Jump), and
resume the process from there. This procedure avoids
building of a complete system accessibility graph. The

number of steps of the search process is an execution
parameter. This parameter can be determined by the user as a
depth limit or a maximum number of states. As pointed out
in [12], random walk may get «trapped» in a certain part of
the component under test. Our algorithm allows us to “jump
out of the trap” and pursue the exploration further. Also,
since it builds a partial accessibility graph, it avoids the well-
known state explosion problem. As a result, our algorithm
produces a test sequence for the test purpose.

A more formal description can be found in [6]. In [4] we
showed how the algorithm has been adapted to perform
interoperability testing. Indeed, to perform interoperability
testing, we use as test purpose the interactions between
distant entities (e.g. between a client and a server). This
algorithm has been implemented in our tool called
TESTGEN-SDL [7].

C. Test architecture
The proposed methodology is based on test architectures

that integrate Points of Observation (or POs) and Points of
Control and Observation (or PCOs). These architectures are
illustrated by the WAP system. They can also be extended to
other systems such as GPRS (General Packet Radio Service)
and UMTS (Universal Mobile Telecommunication System).

WAP protocols are asymmetrical. In general, mobile
terminals are clients that initiate a service. A WAP gateway,
which is a server, receives messages from the client and
performs proper operations such as making an HTTP request
and sending it to the WAP application server. The proposed
test architectures use several distributed access points with a
WAP gateway. The behavior of each entity is observed
through a PO and controlled through a PCO. Five levels of
conformance and interoperability tests will be performed:

 The first level uses a PCO to control and observe the
terminal exchanges, and two PO in the heart of the network.
These two are placed between components (Figure 1 (a)), to
detect transmission errors and to perform traffic analysis.
This architecture can also be used for network performance
evaluation.

In the second level we observe and analyze log files. A
PCO is on the terminal side, and a PCO and a PO are located
in the gateway (Figure 1 (b)). The gateway becomes an
active tester (i.e. we have a remote test architecture). Notice
that any mobile phone can be tested under this architecture.

In the WAP architecture, a number of services are
possible such as web-based content services. To test these
services, the following test architecture can be used
(Figure 1 (c)). In this architecture, we have one PCO in a
mobile terminal and one PO in the web server. The tests that
are executed on this architecture are those generated from the
SDL description of the service. Moreover, we are able to
check the behavior of the server and by this way we can test
the interoperability between the terminal and the HTTP
server.

The fourth level considers the network as a black box that
is observed and controlled through the PCO of the terminal
(Figure 1 (d)). This test architecture will be adapted to test
the WAP protocols on the server side. This test is more
difficult to perform. Since we only have one PCO and no
PO, testing in context technique is needed to test WAP

3

protocols layers.

Fig. 1. Test architectures for interoperability testing

To test the conformance of the WAP stack, we use the
test architecture proposed in Figure 2. According to the
WAP specification, it is possible to access each WAP layer
directly through service access points (SAPs). This facilitates
the observation of the provided services of each layer [3].
However, this depends on the availability of application
programming interfaces (APIs) of each layer. In our case,
such APIs are available, as we used an open source gateway.

Fig. 2. Test architecture for layer conformance testing.
In this paper, we give an example of using the test

architecture for testing protocols in the client side and for
testing WAP services. For the WAP services we are
interested in testing location-based services.

III. REAL EXPERIMENTS ON A WAP PROTOCOL STACK

This section describes how we implemented the test
architecture for testing the interoperability between the
server and the client and also the protocols implemented on
the client side (i.e. the mobile phone). As a WAP gateway,
we used the open source Kannel [1]. We have also installed
the Apache HTTP server and three mobile phone simulators.
To use a real mobile phone, we installed a remote access

service (RAS) that allows access to our own Kannel WAP
gateway in order to perform real experiments on real existing
mobile networks.

Currently, three test architectures are available (Figure 1
(b), (c) and (d)). Figure 3 shows the locations of POs and
PCO in the WAP gateway that realizes the test architecture
given in Figure 1.(b). POs were introduced between the WSP
(Wireless Session Protocol), WTP (Wireless Transport
Protocol) and WDP (Wireless Datagram Protocol) layers.
These POs are used when we cannot program PCO on the
gateway, it allows to test the behavior of the gateway that we
want to test.

Fig. 3. Implementation of PCO and PO in Kannel WAP gateway

Figure 4 shows PO for the WSP layer. This layer was
designed to establish and release a session between a client
and a server, to exchange content between the two
applications and to suspend and resume a session. It has two
types of sessions: connection oriented (which works over the
WTP) and connectionless (which works over WDP). Using
the PO, we observe that the connection between the client
(Nokia browser) and the server (with IP address
157.159.100.113) has been established using the connected
mode (9201). The WSP message used to open the WAP page
(welcome.wml) is TR-Invoke.ind. The information that we
can retrieve from this PO is descriptive enough to check the
behavior of the layer. Indeed, we have the primitives' names,
the transferred data, the reached states and so on.

Application layer
(WAE)

Session layer (WSP)

Transaction layer (WTP)

Security layer (WTLS)

Transport layer (WDP)

Testing
Component

Service
Access
Point

4

Fig. 4. WSP PO in Kannel WAP gateway

From a SDL description of the WAP layers, we use the
algorithm presented above to generate automatically the
tests. These tests are directly executed through the PCO on
the real platform (see Figure 3). Table I shows the significant
test scenarios produced and executed on the test platform.
Let us notice that almost all produced scenarios have a pass
verdict. It means that the WSP layer is correctly
implemented on the client side. It means also that the client
and the gateway interoperate correctly. Nevertheless, the last
scenario in Table I has no associated verdict. The raison of
this is that we cannot exercise this scenario on the platform
because it is not implemented in the gateway. We confirmed
this by analyzing the content of the PO log file. We can also
conclude the non-implementation of the scenario in the
gateway by using the PCO in the interface of the client.
Indeed if the client after disconnection asks to open a page, it
will have a message saying that the client is disconnected and
it has to be connected before asking to open a page.

TABLE I
WSP LAYER TEST SCENARIOS

Test Purposes Test
Sequence
Length

Verdict

Successful Session Establishment 30 Pass
Completed Transaction 94 Pass
Session Suspension and Resume 84 Pass
Aborted Transaction 144 Pass
Refused Session Establishment 83 Pass
Active Session Termination 53

To perform the tests, we program a scrip to interact with
the gateway . In other words, the script corresponds to the
test scenario that we want to check on the client side. The
figure 5 shows a part of a script that has been produced for
the WSP layer. A verdict is established according to the
client answer. Moreover, we can use the PO to have a more
accurate verdict when an error occurs.

Fig. 5. WSP PCO in Kannel WAP gateway

IV. SERVICE EXPERIMENTS LOCATION BASED SERVICES

The WAP is a service that allows the users to access to
the existing applications in the web (emails news..) every
time and every where using the mobile phones, it is
interesting to test both the correctness of the WAP protocols
layers and also the application running on the top of it. This
later is important because of the constraints imposed by the
mobiles and the networks. Among the applications proposed

by the WAP, the Location-Based Services (LBS) are the
most specific application on the mobile telephony
telecommunication. The LBS are services that use the
knowledge of the location of a device user. The knowledge
of the user's location at any time adds value to the type of
services that can be offered in the mobile telecommunication
area. In this section we present the result of test experiments
on the LBS.

From the SDL formal specification of the services, a set
of scenarios is automatically generated using the method
presented in Section Erreur! Source du renvoi
introuvable.. These scenarios allow us to do conformance
testing and to detect errors related to unexpected or
erroneous messages. Once the tests are generated, we can
apply them to the WML service implementation to test the
service functional behavior based on the architecture
presented in Figure 1. (c).

In the following, we present location-based service
specification and results of our experimentation.

A. Location based services description
A LBS service can be illustrated using the following

scenario. A user requests a location-based service from an
application server. When the application server receives the
request, it sends the user information to the Mobile
Positioning Center (MPC) to find out the current position of
the user. The MPC uses one of the existing positioning
technologies such as GPS, A-GPS, E-OTD, CGI-TA and
TOA to get the current user position information [2]. After
obtaining the answer from MPC, the application server gives
the result from the requested service to the user.

This kind of service, however, may pose problems with
respect to the subscriber’s privacy. For example, when a
mobile user uses searching service through his mobile phone
and is looking for a restaurant, we can give the advertisement
of a restaurant near the user. The subscriber may not want to
let others know her/his location. To solve this problem we
used a temporary identification of the user instead of the SIM
(Subscriber Identification Module) number of the mobile
phone. With the SIM number, which is a mobile permanent
identifier, and a user authorization a service provider can
localize a user at each moment. The temporary identification
of the user given by the operator on user’s demand is
destroyed after each service provider use. A link between
the temporary identification of the user and the SIM number
is stored in a database which is updated. This solution
allows the subscriber to be located only when she/he wants to
be localized.

With the user position information a lot of applications
can be developed. We actually have considered the following
services (which we have specified in SDL):

• Nearness service: provides addresses that the user could
be interested in, such as nearest Chinese restaurant or theater;

• Itinerary service: provides itinerary from the user’s
current position to a chosen destination by feet, by bus, by
car, etc.;

• Assistance service: provides information in case of
emergency. For example it can give the phone number of the
nearest hospital;

• Traffic service: provides recent traffic information such

5

as map of traffic situation;
• Search service: provides keyword searching on the

databases for the above four services.

B. SDL Description of Location based services
The specification of the location-based services was done

using SDL-96 in a way that it could be easily changed to add
or remove some functionality. The specification of the LBS
includes user, mobile terminal, application server, WAP
gateway and MPC. The system is composed of four blocks
(Figure 6):

• Terminal block contains the Mobile process, which
describes one or more terminals and user behavior. Each
user has a profile that allows to determine which service
she/he has subscribed to.

•Network block is composed of two sub-blocks : The LCS
block which describes MPC behavior, and the Operator
block which gives the temporary identification to the mobile
and the corresponding SIM to the LCS. This identification is
used to determine the position of the mobile;

• Gateway block describes the WAP gateway behavior.
•Location_Services block describes the application server

behavior. The Location_Services block is composed of eight
processes: Menu process; five service processes for
Nearness, Itinerary, Assistance, Traffic and Search services;
Location process, which converts the localization
information from spatial coordinates to postal address, and
Manager process which is the only static process of this
block. It creates the other dynamic processes.

Location process, Operator process, Menu process,
Nearness, Itinerary and Traffic service process have their
own database. For simplicity, the functionality of MPC is
specified by a database that contains the position information
of each user. Moreover the databases are specified by arrays.
A number of functions are described in SDL specification for
manipulating arrays and reducing operation redundancy.

Fig. 6.SDL System

In order to give a general idea of the complexity of the
SDL system specification, we present some significant
metrics of the global system (Table II). It was simulated
using exhaustive simulation to verify that the specification is
free from livelocks or deadlocks [17]. To simulate the

system, we use a configuration file which initializes some
variables such as databases, SIM numbers, and the name of
the street or the keyword to look for.

TABLE II
METRICS OF THE SERVICE SPECIFICATION

Lines 11709
Blocks 5
Process 14
Procedure 29
States 80
Signals 40
Macro definition 0
Timers 1

C. Generation of test scenarios for the Nearness service
module

In this section, we present the experimental results for the
generation of test sequences for the Nearness service
module. The same method has been applied to the other
services. As we have no direct access to the Nearness
service module, the embedded testing technique is used.
Whenever a new service is developed, it will be added to the
application server without affecting the other components
(since we are using service testing in context).

The first step for generating test sequences is to define
test purposes. For simplicity, we focused here on the
following four test purposes for the Nearness service:

• Test purpose 1: To test whether, following a request
from the user, the service requests the mobile position from
the location service.

• Test purpose 2: To test whether the service when it gets
the mobile position from the location service, asks the user to
choose between different points of interest which are located
near the mobile (e.g. restaurants; theaters, …).

• Test purpose 3:To test whether the service, when it
receives the user’s selection, asks her/him if she/he wants to
end the service or access the Itinerary service.

• Test purpose 4: To test whether, when the Nearness
service receives the user’s intention to use the Itinerary
service, sends a request to the Itinerary service to check for
the best itinerary.

When all the above test purposes have been reached, the
test generation algorithm terminates. The results obtained are
illustrated in Table III. Once all the tests purposes have been
exercised, we obtain a single conformance test sequence. The
obtained sequence is of length 46 transitions and the
execution times are relatively short (on a Sun Sparc Ultra 5).

TABLE III
RESULTS OBTAINED

Test purpose Test sequence length Duration
#1 20 4.0 s
#2 3 2.1 s
#3 36 8mn 23 s
#4 10 7.4 s

Notice that we could generate one test case for each test
purpose. Figure 7 shows a part of the generated test
sequences represented as MSC trace. Note that the generated

6

test sequences include the behavior of all components
(mobile, menu, Nearness and LCS).

The generated test sequences are executed following the
architecture model of Figure 1.(c) to test the existing WML
implementation. We didn’t find erroneous behavior of the
implemented services.

V. CONCLUSION

This paper has presented the application of a testing
methodology to two case studies. Concerning the
methodology, the contribution of the paper is two fold: first,
the proposed methodology covers all the steps of testing
(specification, selection, test generation and test execution);
and, second, it introduces new architectures for
interoperability testing. This is different from other works in
this area where the focus is primarily on specific testing

aspects: test generation, test execution, etc.
Two case studies have been presented: conformance

testing and interoperability testing of WAP protocol layers;
and, conformance testing of a service based on user location.
The results of the experimentation are very promising. Faults
can be observed and detected in very short times. It is
expected that service providers will be able to use these
techniques to test their services and configurations, as for
instance, services described using WML.

The work presented in this paper shows the interest of
using formal methods for conformance and interoperability
testing for the validation of real telecommunication systems.
It also proposes new architectures that (to our knowledge)
have not been introduced so far.

Fig. 7. Part of Nearness service MSC

VI. REFERENCES

[1] http: //www.kannel.org.
[2] http://www.wirelessdevnet.com/channels/lbs/features/

mobilepositioning.html.
[3]Wireless application protocol architecture specification. Technical

report, WAP Forum, April 1998. http://www.wapforum.org/.
[4]Cédric Besse, Ana Cavalli, Myungchul Kim, and Fatiha Zaïdi.

Automated generation of interoperability tests. In Kluwer, Testing
Internet Technologies and Services, Berlin, March 2002.

[5] R. Castanet and O. Kone. Deriving coordinated testers for
interoperability. Protocol Test Systems, VI (C-19): 331–345, 1994.
Elsevier Science Publisher B. V.(North-Holland).

[6]A. Cavalli, D. Lee, Ch. Rinderknecht, and F. Zaïdi. Hit-or-Jump: An
Algorithm for Embedded Testing with Applications to IN Services. In
Proceedings of FORTE/PSTV’99, Beijing, China, Octobre 1999.

[7]A. R. Cavalli, B. Chin, and K. Chon. Testing methods for SDL Systems.
In Computer Networks and ISDN Systems, volume 28, pages 1669–
1683, 1996.

[8]The PLATONIS Consortium. The platonis project. In First International
Workshop on Services Applications in the Wireless Public Infrastructur,
Mai 2001. http: //www-lor.int-evry.fr/platonis.

[9]N. Griffeth, R. Hao, D. Lee, and R. K. Sinha. Integrated system
interoperability testing with applications to VOIP. In FORTE/PSTV’00,
October 2000.

[10] ITU. Recommendation Z.100 : CCITT Specification and Description
Language (SDL), 1992.

[11] S. Kang and M. Kim. Interoperability test suite derivation for
symmetric communication protocols. In FORTE/PSTV’97, 1997.

[12] D. Lee, K. Sabnani, D. Kristol, and S. Paul. Conformance Testing of
Protocols Specified as Communicating Finite State Machines - A
Guided Random Walk Based Approach. In IEEE Transactions on
Communications, volume 44, No.5, May 1996.

[13] D. Lee and M. Yannakakis. Principles and Methods of Testing Finite
State Machines - A Survey. Proc. of the IEEE, 84(8): 1090–1123,
august 1996.

[14] O.Dubuisson. ASN.1. Springer, 1999.
[15] O. Rafiq and R. Castanet. From conformance testing to interoperability

testing. The 3rd Int. Workshop on Protocol Test Systems, 1990.

7

[16] M. Clatin, R. Groz, M. Phalippou, and R. Thummel. Two approaches
linking test generation with verification techniques. In A. Cavalli and
S. Budkowski, editors, Protocol Test Systems VII. Chapman & Hall,
1996.

[17] http://www.telelogic.com

