Security Rules Specification and Analysis
Based on Passive Testing

Wissam Mallouli Faycal BessayahAna Cavallf and Azzedine Benametur

lnstitut Telecom SudParis, CNRS/SAMOVAR

2SAP Research

{wissam.mallouli, faycal.bessayah, ana.cavalli}@itparis.eu
{azzedine.benameur}@sap.com

Abstract—Security is a critical issue in dynamic and open
distributed environments such as network-based servicesro
wireless networks. To ensure that a certain level of secustis
maintained in such environments, the system behavior has tbe
restrained by a security policy in order to regulate the natue and
the context of actions that can be performed within the systa,
according to specific roles. In this paper, we propose a pas&
testing approach that permits to check whether a system regzts
its security policy. To reach this goal, we specify this potly using
‘Nomad’ formal language which is based on deontic and tempad
logics. This language is well adapted to passive testing nietds
that aim to analyze collected system execution traces in oed to
give a verdict about their conformity with to the system secuity
requirements. Finally, we apply our methodology to an indugrial
case study provided by SAP group to demonstrate its reliabity.

Index Terms—Security Policy Checking, Nomad Language,
Trace Collection, Passive Testing.

|. INTRODUCTION

the implementation is built from components that are rugnin
in their environment and cannot be shutdown or interrupted f
a long period of time. In such situations, there is a paréicul
interest in using passive testing techniques. Indeed, siveas
tester does not need to interact with the IUT, it only colebe
execution traces and then analyze them without perturthieg t
IUT behavior. For this reason, we choose to rely in this paper
on the passive testing technique to study the conformanae of
system according to its security requirements. To perfdris t
analysis, we rely on a dedicated formal language to describe
the security requirements of the system. Then, we check
using well adapted algorithms whether these security rules
are verified on the collected traces to deduce the apprepriat
verdict about the system security conformance.

Our main contributions in this paper are (i) the formal
specification of security policies using a well adapted falrm
ism. This latter is used to describe advanced security rules

A security policy is a set of rules that defines the desiretlith temporal aspects regardless of the nature of the tested
behavior of users within an information system. Its mainlgoapplication. To achieve this, we rely on Nomad language [8]
is to describe how data and other critical system resouragbBich is more convenient in use than a generic temporal logic
are protected. If a security policy is written in a naturallike LTL). (ii) Then, we propose a passive testing approtch
language specifying for example: ‘fil& is only accessible analyze collected execution traces, and deduce autoriiatica

from terminalT" in the contextC”, it will be very difficult to

a verdict concerning the respect of the system to its sgcurit

verify its correct implementation using an automatic tegti policy. We claim that with our methodology and algorithms,
approach because it is a completely informal specificatiosl the verdicts are correct: we do not generate any false
Consequently, if such verification is not performed, thexe alarm comparing with previously proposed approaches [2].
no guarantee that the security rules of the system are pgyopdiii) Finally, we present an industrial case study provided

implemented.

SAP group to demonstrate the reliability of our framework. A

Nowadays, security policies are the key point of evemiscussion of the results is also provided.
modern infrastructure. Challenging security issues comce The remainder of this paper is organized as follows. In

ing network-based services or collaborative applicatiozse

section Il, we discuss the related work tackling with the

arisen because of the complexity and the variety of thEssive monitoring for checking security. Section Il @nets
implemented system, as well as the high degree of religbilthe formalism we rely on to specify security policies. Our

required for their global security. To guarantee that thetean
respects its security policy, we can rely on formal testiagdul

checking methodology is presented in section IV. In section
V, we present a case study where SAP R/3 transactions are

methods. The main ones are (i) the active testing [17] whigludited in order to demonstrate the reliability of our tegti
validates a system implementation by applying a set of ggcurmethodology. Finally, section VI presents the conclusiod a
test cases and analyzing its reaction and (ii) the moniorimtroduces the future work.

(or passive testing) that consists in observing, during the

execution, whether the system behavior is conform accgrdin

to its functional and security formal specification.

1. RELATED WORK
Previous work have focused on the definition of languages

In some cases, active testing becomes difficult to perforthat allow to specify security policies in a more formal way
This is the case when the tester is provided without amynd verify if there is or conflict [7], [12] between the spesifi
direct interface (called also Observation and Control Boirrules. With the great majority of languages, security rules
to interact with the implementation under test (IUT) or wheare defined with modalities like permissions, prohibitiamsl

obligations that express possible constraints on the li@hawan emission of a message by EntitMsg(Par,Pas,...,Pay,)
of the system [9]. Among these languages, we can mentigpresents the message exchanged between EatityEntity
for instance Ponder [10] which is an object-oriented lagguawith its parameters. Entity Entity,, Msg, and Parcan be
used to describe security rules and management policiesréplaced by the symbel to represent any entity, any message
distributed systems, or Or-bac [1] (for Organization Basew any parameter.
Access Control) which allows to specify more flexible rules Definition 2: (Non-atomic action) It and 3 are actions,
introducing the concept of ‘context’ that allows to deseribthen («; 3), which means & is followed immediately by”
the circumstances in which certain security rules should bed («; *; 3), which means "« is followed by3" are non-
applied. We can also mention Nomad [8] a security modatomic actions.
with ‘Non Atomic Actions and Deadlines’ which allows, not Definition 3: (Formula) If o is an action thenstart(a)
only the specification of the rules context, but can also leelus(action « is being started) andione(a) (action « is done)
to describe temporal constraints in security rules. are formula.

Once security policies are formally specified, it remains tdere are some properties on actions and formula:

verify that the IUT is in conformity with its security policy If A and B are formula ther(A A B) and (A v B) are
Several researches [11], [16], [17] focused on the problem ¢ o

and proposed, on one hand, some approaches based on acti_/elf A is a formulae themA,
testing techniques to generate test suites that can beedppli
to the system under test. In [17] for example, the authors
proposed a framework to specify security policies and to tes ando" A (in then previous messages in the tracewas
their implementation on a system. The behavior of the system true) are formula.

is specified using the extended finite state machine (EFSM), If Ais a formula therD<?A (—d units of time ago,A
[15] formalism. The integration of security rules withineth was true ifd < 0 or in the nextd units of time, A will
system specification is performed using specific algorithms be true ifd > 0) is a formulae.

Then, the automatic tests generation is performed based on a (A|C) is a formulae: in the context C the formula A is
dedicated tool. In [16], the authors adapted model basédges true.
techniques for security policies checking. They proposed a o _ . .

approach to produce test cases from a security policy specif Definition 4: (Deontic modalities) If A is a formula then

in Or-bac model. To achieve this goal, they first generate tégof,ja”tyo ('.IA"diS ma?datorly),]-' ("A" is forbidden) andP
purposes from Or-bac rules then they generate test cases f is permitted) are formula.

these test purposes. More details about the §yntax and semantics of this formal
On the other hand, some studies [3], [4], [13], [14] relfAnguage are presented in [8].

on passive testing techniques to check the conformance of

a system with regards to its functional specification witholB. Examples of Security Rules Specification

taking into account security issues. The security checlsng

usually performed using intrusion detection systems (I(h&) specifications according to Nomad language:
employ either misuse detection or anomaly detection [6]. Example 1: '

In this paper, we propose a new methodology based on P(start (usi! Msg (ReqWrite, fich1.doc) Serve|

@A (next in the trace A
will be true), ®™ A (in the n next messages in the trace,
A will be true),© A (previously in the traced was true)

We present in this section some examples of security rules

passive testing techniques to address t_he problt_am of_the o(done (usr ! Msg (AuthReq) Servaj)
conformance of a system according to its security policy A done (ust? Msg (AuthOK) Server)
including temporal aspects. A— done (usr? Msg (DisconnectReq) Serve))

I1l. SECURITY PoLICY SPECIFICATION This rule expresses a permission granted t@ tskvrite on

‘filel.doc’ which is managed by Serverif earlier, the user

A. Formal Language Presentation . .
. _ i usr was authenticated and not disconnected.
To specify the set of security properties that the a SySteﬁ@(ample 2:

has t_o respect, we rely on Nomad_formal language. The c_hqu:e O(start (Server! Msg (DisconnectOK) user)
of this language was mainly motlvated_ by the qhgractesstlc_ O=—30min_ done (ServerA ? Msg() user))
of Nomad that provides a way to describe permissions, prohi- _] o)
bitions and obligations related to non-atomic actions inith According to this obligation rule, Servgmust disconnect any
different contexts. Nomad allows to express privileges dser If this latter remains inactive for 30 minutes.
non atomic actions. It combines deontic and temporal logiEXample 3:
and can describe conditional privileges and obligationth wi F(start (Server ? Msg (https, AuthReq) user)
deadlines. 0= N done (Server ? Msg (https, AuthReq) user
. ;% Servery ? Msg (https, AuthReq) user))
Definition 1: (Atomic action) We define an atomic action
as the emission or the reception of a message between twdhis prohibition rule means that Seryecan not accept
system entities (or components) using the following syntaxmore than two authentication requests from the same user in
Entity, ?or! Msg(Pay,Pa,...,Paf,) Entity, the same second.
Where: Entity and Entity, represent the source or the des- The next section presents our passive testing approach to
tination of the message. '?’ and '!I" define a reception aneerify security rules specified in Nomad.

IV. PASSIVE TESTING METHODOLOGY « Parsing the global trace and creating a trace table which
A. Preliminaries constitutes the target of the ‘Test Engine’ module queries.
Each line of the trace table corresponds to an emission

We can distinguish three steps in our passive testing method . ;
9 P P 9 or a reception of a message in the network.

ology for security checking: _ o _)

« The definition of passive testing architecture: in generdrinally, the trace analysis is performed using three algors
to collect execution traces on a running system, we ne@gcording to the rule nature: permission, prohibition oli-ob
to install observation points (called also probes) intBat'On; Thgse three algorithms are based on the.same concept
specific strategic points. These observations points aim&Ch line in the trace table can correspond to (i.e. can be an
collect data exchanged between relevant entities. The cistantiation of) one or many atomic actions described ie on
lected traces are usually stored in one or many trace fil@§.Mmany properties. o _ _
In some specific systems (mainly industrial systems), we Definition 5: (L=Instantiation(A)) a lineL in the trace
can have an integrated module within the system thi@ble 7' is an instantiation of an atomic actiod described
collects all the traces. In both cases, we retrieve trace fil@ the security propertyPr if the sender componerft, the
that describe the communication between system entitié&ceiver component? and all the message parameter$

« The description of the system security policy using gentioned in the actionl are the same existing in the table
formal specification language: the description concerfige L.
the security rules that the studied system has to respectf-or example, the first line of the table 1 is an instantiation
We rely in this paper on Nomad language introduced i@f one of theses actions:
section III. - Bob ! Msg (AuthReq, 'password = Bob08’) Seryer

« The security analysis: based on the security policy speciBob ! Msg (AuthReq, *) Server
fication, the passive tester has to perform security arslysi * ! Msg (AuthReq, 'password = Bob08’) Server
on the trace file(s) to deduce a global verdict. This verdictServen ? Msg (AuthReq, *) *
is PASSif the system trace respects the specified security

policy and FAIL if it does not. TheINCONCLUSIVE Msg_Type | Sender| Receiver| Message_Text
verdict is possible if the tester can not extract the neced-L1 | AuthReq | Bob | Serven | ‘password = BobO8'
sary information from the collected traces in the case of a Table |

short trace for example. We assume here that if the trace AN EXAMPLE OF A LINEIN A FORMATTED TABLE

is long enough (according to the IUT) or if the traffic)] .
collection is continuous, we can claim that it describe's: Algorithms for Security checking
the global behavior of the system and consequently thejn this section, we describe the general idea of rules
verdict concerns the system conformance according to #ecking algorithms and provide in particular the overview
security policy. of the algorithm dealing with obligation rules.
B. Passive Testing Approach . 1) O.inglations Handlgr:The algorithm that allows check-
. _ ing obligation rules begins first by parsing the trace talle |
.TO run_the te_stlng process, _the security test tool ne_eds %Y line to verify the validity of each rule on a given line
dlfferent input files: the trace file coIIecte_d by the obsépbra I It begins by verifying the context rule then its mandatory
point or generaFe.zd by the sys.tem (ng file) and a second fﬁ%tion following these steps: (i) the algorithm verifieg i§ an
where are specified the security policies. instantiation of an atomic actiom mentioned in the context
of r. If it is the case, it checks if the chronological order of
71 Trace | | [Freprocessing actions described in th_e contextis ver?fied (using the ptooe _
File module ﬂ re Ch_e_ck_Conte)yt t_hen it can deduc_e if thg whole conte_xt is
Test Engine Pass, Fail or verified or not. (ii) If the context is verified, the algorithm
Security Polic : - %} Inconclusive has to ensure that the action described in the first part of the
Yy | | | Syntax Checking K i X N A)
Specification | | | module obligation (the mandatory action) is present in the tratd. |
securitTest ool finds such action (usinGheck_Mandatory_Actioprocedure),
the verdict isPASS Otherwise, it concludes that the current
Figure 1. Tool Architecture for Security Checking. rule is not verified, the verdict in this case BAIL. If the
First, the security test tool verifies through a syntax civegk trace length is not long enough to ensure the verificatiom, th
module that security policies are well specified accordimg produced verdict iSNCONCLUSIVE
the Nomad format. This avoids syntax-related bugs in thie tes Algorithm 1 presents the pseudo-code of the procedure used
engine module. to check obligation rules on a trace and deduce the apptepria
Second, the collected traces files have to be analyzed usirgdict. For each rule , we define ‘r.action’ as its mandatory
a pre-processing module that performs the following tasks:action and ‘r.context’ as its context. ‘r.action’ (respctintext’)
« Filtering the traces files keeping only the relevant infolis composed of one or many chronologically ordered atomic
mation for the protocol(s) under test. The basic idea &ctions ‘r.act.action (respectively ‘r.context.actiof) where
to keep in the traces only the messages and parametelsespectivelyj) is the number of atomic actions in the
corresponding to the specified properties to check. prohibited action (respectively context).

2) Prohibitions Handler: For prohibitions rules, the ap-

Algorithm 1 Obligation Rules Handler proach is very similar to the one used for testing obligation
Require: ORS[r]: Obligation Rules Set #r[l]: the trace rules. We start first by checking whether the context of the
table. rule is verified. Then, we check if the action specified in the
1: for each Ruler of ORS do first part of the rule is present in the trace. If it is the cdke,
2. Context(r) = ‘not verified’ verdict is FAIL otherwise it iSPASS If the trace is not long
3 end for enough to check the context, the verdictiCONCLUSIVE.
4- for each line I of Tr do 3) Permissions Handler:The permission to perform an
5. for each Ruler of ORS do action in a particular context does not mean that action must
6 if (Context(r)="verified’)then be systematicglly execqteq when this comext is vc_erifiedhdan
7. verdict[r] := INCONCLUSIVE case of chec_klng permission rules, we first look in the traces
s if (Obligation deadline Reachethen file the permitted activity then_ we ensure that the cqnte>d wa
9 (a mandatory action has a deadline predefinéﬁJe to _conclude thgt t_he rule is well resp_ected (verBi&ES),
in the context rule) otherwise the verdict i§AIL. If .the trace is not long enough
10: verdict[r] := FAIL to check the context, the verdict ISCONCLUSIVE.
i;: eISl\(/laemorlze error and position in the trace V. CASE STUDY: AUDIT SYSTEM OF SAP R/3
13- if (3 i where I=instantiation(r.act.actigy) then In this section, we gpply our methodology on an industrial
14: verdict [r] := Check_Mandatory_Action case study and consider the SAP R/3 technology product of
(r.action,l) SAP group.
15: if (verdict [r] := ‘PASS’) then)
16: Context(r)="not verified’ A. System Presentation
17: else SAP R/3 is an enterprise solution developed by SAP group.
18: if (verdict [r] := ‘FAIL) then It is a package that incorporates various functions grouped
19: Memorize error and position in the tracedistributed modules that can interact with each other thinou
20: else a centralized information system based on a client/server
21: Memorize verified parts of the manda-architecture.
tory action (case of verdict [r] := ‘IN- SAP R/3 is a real time based system. Thus, every consump-
CONCLUSIVE) tion (purchase, sale, etc.) or movement (in stocks for examp
22: end if has to be immediately valued by updating all system modules
23: end if involved in this activity. Let us study for example the opema
24: end if of a shipment confirmatiomhis operation engenders an auto-
25: end if matic billing operation, an operation for recording moveitse
26: end if in stocks and bills, and possibly other updates at certain
27: if (3 j where I=instantiation(r.context.actigi) then ~ accounting services of the company. All these operatioms ha
28: Context(r) = Check_Context(r.context,l) to be done in real time, hence the conception of SAP R/3 as
20: if (Context(r) = ‘verified’)then an integrated management software able of updating data of
30: Calculate Obligation deadline different modules instantaneously.
31 else
32: if (Context(r) = ‘not yet verifiedthen B. SAP R/3 Security
33: Memorize verified parts of the context In SAP R/3, any transaction that could be performed by
(Context (r) = ‘not yet verified’ if some ac- ysers is identified by a unique code named: transaction code.
tions of the context are verified and are irFor example, the function used to changephiacipal supplier
the right chronological order. But the wholefield of the system information table has the transactiorecod
context is not yet verified. We have to check-k02 and the codéB60 is used to describe the transaction,
next messages in the trace, to deduce if thBat managesustomer invoicestc. SAP R/3 administrators
tested system is in the right context or not.)have defined a set of rules including permissions, proloifsti
34: else and obligations that regulates performing each transactio
35: Erase memorized parts of the context if exisHowever, certain combinations of these transactions coaes
(This is case when the context is no morgead to situations of conflict and/or incoherence. To avaiths
verified) situations, SAP R/3 system uses a generator profile to define
36: end if generic roles that can be assigned later to users.
37 end if In SAP R/3, many security rules are defined to guarantee the
38: end if system integrity and to control the access to critical déte.
39: end for identified more than 120 different rules relatives to 10ntte
40: end for and 26 possible operations (see section V-D).

Ihttp://iwww.sap.com

Date Time Client | User | Code | Terminal ID Message Text
E1 || 01.04.2007| 08:55:04 600 Bob S826-01 | AU2 Login Failed
E1 || 01.04.2007| 08:56:30| 600 Bob S826-01 | AUl Login Successful
E2 || 01.04.2007| 13:43:11| 600 Bob | F110 | S826-01 | AU4 | Transaction F110 Failed
E3 || 08.04.2007| 08:55:04| 654 | John S826-01 | AU2 Login Failed
E3 || 08.04.2007| 08:55:06| 654 | John S826-01 | AU2 Login Failed
E3 || 08.04.2007| 08:55:08 | 654 | John S826-01 | AU2 Login Failed
E3 || 08.04.2007| 08:55:09 | 654 | John AUM User John Locked
in Client 654
Table I

EXAMPLE OF FORMATTED CONTENTS IN A FILE AUDIT

C. Trace Collection: Audit System E. Passive Tester Implementation

SAP R/3 has an audit system that permits to store all theThe passive tester dedicated to monitoring SAP R/3 system
events and transactions that occur during a period of tinde arespects the design presented in section IV-B. This tool is
to give the system administrators an overview about thesuseentirely programmed using Java language and is designed to
activities within the system. It provides a set of files thatffline passive testing.The extraction of the traces fileas n
contain detailed information about every activity undeera taken into account in this passive tester tool.
by system users. These files represent the execution traced/e can distinguish in the graphical interface of the tool,
of SAP R/3 and constitute an important source of data fpresented in Figure 2, three different features: 4i)Policy
all kinds of testing or checking system security to detegt arfile Browse Button’that allows to upload the security rules
intrusion attempts, fraud, or any other malicious activity specified using nomad language (IAn Audit File Browse
our case, we will use these files to test the respect of SAP RB8tton’ that allows to upload the collected traces of SAP
to its security policy specified by administrators. R/3 execution. (iii)‘A Blank Space’that allows to display

In our case study and for confidentiality reasons, we cdhe result of the security checking and to give the final \atrdi
lected the execution traces of a running SAP R/3 systeand eventually the violated rule.
managing a fake database (with fake users’ names and fake

transactions). All the transactions are performed rang@md Lidbasals S =o&
many times by all the users. The obtained log file has a size of - '

800 MByte and contains the details of 2.5 millions transansi Palicy file: |CDocuments anl | Browse.. | PEMMISSION rules ; PASS

(lines). Each transaction has a pre-formatted structurietwh _ Profibition ules : FAIL

Audit file : |C \Documents an! ‘ Browse... ‘ rule number 3

can be divided into 8 fields.
In Table I, we present three formatted examples of events
that we can find in a file log of SAP R/3. In the first one | proceea.. |
(E1), the userBob’ connects from the workstation 1 which
is located in Room S826. In second event (E2), the same USglire 2. Passive Tester Interface in the Case of a Fail derdi
tried unsuccessfully to execute the transaction F110 which
deals with a payment operation. In E3, the usgthn’ has F. Passive Testing Results
made three attempts to connect without success. Hence thigye first performed our test to check the 120 rules on the
account has been locked by the system. SAP R/3 collected traces. The result of this first test was
D. Security Policy Formal Specification a PASS verdict which means that according to information
Based on nomad language, we specified formally the 120ntained in the audit file, all security rules were respeiee
security rules. For matter of space, only 3 basic rules achecked manually that each rule was verified at least onoe). T

werdict . FAIL

presented in this section: obtain this final verdict, the tester performed a simple Baal

- Rule 1:P(start(John ! Msg(Tr.Code = FKO01) R/3)) operation, which combines the three partial verdicts dlyea
This rule means thatJohn’ is permitted to execute theestablished by the three different sub-modules dedicaied f
transaction FKOL. permissions, prohibitions and obligations. Thus, if onéheke

- Rule 2: F(start(User | Msg(x) R/3)] verdicts is INCONCLUSIVE or FAIL the final verdict will be

S done(User ? Msg(ID = AUM) R/3)A too. Otherwise PASS is the verdict to be deduced.
—done(User ? Msg(ID = UNLOCK) R/3)) To demonstrate the reliability of our tester, we manually
This rule expresses that any user whose access has beed loeki#ed the file containing traces of SAP R/3 system. We have,
by the system is prohibited to perform transactions. for instance, added a transaction that violates the rulebeum

- Rule 3: O(Start(User ? Msg(ID = AUM) R/3)] © 3. The verdict given by the tester shown in Figure 2 is FAIL:
done((User ! Msg(ID = AU2) R/3); (User! Msg(ID = AU2) the violation of the rule has been detected which indicdtes t
R/3);(User ! Msg(ID = AU2) R/3))) correctness of the tester.

This obligation rule expresses that the R/3 system has tolTo study the performances of the passive tester, we tried to
lock any user who has made three unsuccessful connectiamy the number of security rules and the Traces file size. The
attempts. results are shown in Figures 3.

70

T T T
Execution time —+—

Duration (s)

50 60
Number of Rules

(a) Tool performance with
a variable number of Rules

100

Figure 3. Tool Performances

In Figure 3.a, we vary the number of security rules from 5 to

Duration (s)

70

60

50

40

30

T T
Execution time —+—

1000 10000 100000

Trace Length
(b) Tool Performance with
a variable audit file length

1e+006 1e+007

REFERENCES

120 ano! we fix the audit file length to 2.5 miIIi(_)ns transaction [1] A. Abou El Kalam, R. E. Baida, P. Balbiani, S. Benferhat Géippens,
We obviously observe that the curve is growing. The curve is Y. Deswarte, A. Miége, C. Saurel, and G. Trouessin. Orgtiniza8Based
not linear; the slope of the curve depends on the complexity
of the added rules. The memory consumption increases ar[}‘ql

leads to bigger time to deduce a verdict.

Contrary to Figure 3.a, in Figure 3.b, we vary the audit file3]
length and we consider that the number of rules is fixed to 100.
The curve is also growing in non linear manner. This resuli4] A. Benharref, R. Dssouli, R. H. Glitho, and M. A. Serharowards

is predictable and is due to a bigger complexity to verify a
t

5
number of lines in the audit trace and leads to bigger duratio

rule context. The memory consumption also increases wih

Access Control. Irdth IEEE International Workshop on Policies for
Distributed Systems and Networks (Policy’03)ine 2003.

A. Alharby and H. Imai. IDS false alarm reduction usingntauous
and discontinuous patterns. ACNS pages 192-205, 2005.

E. Bayse, A. R. Cavalli, M. Nufiez, and F. Zaidi. A passiesting
approach based on invariants: application to the wa@omputer
Networks 48(2):235-245, 2005.

the testing of composed web services id Yeneration networks. In
TestCom pages 118-133, 2006.

] D. Byers, S. Ardi, N. Shahmehri, and C. Duma. Modelingtsafe

vulnerabilities with vulnerability cause graphs. I68SM, pages 411—

to deduce a verdict. When the trace size becomes bigger than 422, 2006.
one million lines, the execution time becomes exponential d

to memory swapping but remains reasonable.

VI. CONCLUSIONS ANDFUTURE WORK

] Y. Chen, Y. Li, X. Cheng, and L. Guo. Survey and taxonomyfezture

(7]

In this paper, we presented a security policies specificatiog)

model well adapted for passive testing. We first began by defin

ing the syntax and the semantics of the proposed formalis

and illustrated it with a few examples of specifications. The

next step was to expose our passive testing methodologyand t

demonstrate its effectiveness, through an industrial sasty
proposed by SAP group namely: SAP R/3.

Finally, at the end of this paper, we presented the ex-

] N. Damianou, N. Dulay, E. Lupu, and M. Sloman.

perimental results we had obtained and discussed about m?

performance of the implemented tester. It is important tiiceo

that the performances of our tester are very suitable cosadpar

to the complexity of the described rules and the length d
the trace. We also showed that our approach permitted us
to specify and verify temporal security constraints thag af13]

considered as an important issue in security policiesngsti

As future work, we plan to adapt the proposed model fg1y)
a specific type of applications such as Web services and

authentication protocols. We are also investigating sdve

approaches to improve the test algorithms so that we will
able to perform online passive testing, possibly by inaigdi

=

vulnerability cause graphs [5] of the implementation undéf®!
test. This will enable us to detect on real-time system @ssh;7
and security rules violations and most importantly to besabl

to stop this kind of malicious behaviors without any delay.

selection algorithms in intrusion detection system. Iiscrypt pages
153-167, 2006.

F. Cuppens, N. Cuppens-Boulahia, and M. B. Ghorbel. Higyel
conflict management strategies in advanced access contdels
Electr. Notes Theor. Comput. Scl86:3-26, 2007.

F. Cuppens, N. Cuppens-Boulahia, and T. Sans. Nomad: ciirisg
model with non atomic actions and deadlines. ABFW pages 186—
196, 2005.

N. Damiannnou, A. Bandara, M. Sloman, and E. Luptiandbook
of Network and System Administratioohapter A Survey of Policy
Specification Approaches. Elsevier, 2007 (to appear).

Ponder: An
object-oriented language for specifying security and rgangent poli-
cies. In10th Workshop for PhD Students in Object-Oriented Systems
(PhDOOS’2000), 12-13 June 2000, Sophia Antipolis, Frar2@00.
Extended Abstract.

V. Darmaillacq, J.-C. Fernandez, R. Groz, L. Mouniew d.-L. Richier.
Test generation for network security rules. TestCom pages 341-356,
2006.

J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulataalysis of
policy anomalies on distributed network security setupsESORICS
pages 496-511, 2006.

H. Hallal, S. Boroday, A. Ulrich, and A. Petrenko. An antata-based
approach to property testing in event tracesTéstCompages 180-196,
2003.

T. Jéron, H. Marchand, S. Pinchinat, and M.-O. Cordi8upervision
patterns in discrete event systems diagnosis. TechnicpbriRd 784,
Irisa, 2006.

D. Lee and M. Yannakakis. Principles and methods ofrigdfinite state
machines - A survey. IfProceedings of the IEEE/olume 84, pages
1090-1126, 1996.

K. Li, L. Mounier, and R. Groz. Test generation from segupolicies
specified in or-bac. ICOMPSAC (2)pages 255-260, 2007.

W. Mallouli, J.-M. Orset, A. R. Cavalli, N. Cuppens-Bahia, and
F. Cuppens. A formal approach for testing security rulesSACMAT
pages 127-132, 2007.

