
Specification of Timed EFSM
Fault Models in SDL

S. S. Batth, E. R. Vieira, A. Cavalli, and M. Ü. Uyar

The City College and Graduate Center of City University of New York,
New York, NY 10016, USA

{batth,uyar}@ees1s0.engr.ccny.cuny.edu

Laboratoire SAMOVAR (CNRS) and GET/INT Evry Cedex, France
{elisangela.rodrigues,ana.cavalli}@int-evry.fr

Abstract. In this paper, we apply our timing fault modeling strategy
to writing formal specifications for communication protocols. Using the
formal language of Specification and Description Language (SDL), we
specify the Controller process of rail-road crossing system, a popu-
lar benchmark for real-time systems. Our extended finite state machine
(EFSM) model has the capability of representing a class of timing faults,
which otherwise may not be detected in an IUT. Hit-or-Jump algorithm
is applied to the SDL specification based on our EFSM model to generate
a test sequence that can detect these timing faults. This application of
fault modeling into SDL specification ensures the synchronization among
the timing constraints of different processes, and enables generation of
portable test sequences since they can be easily represented in other
formal languages such as TTCN or MSC.

Key words: Extended Finite State Machines, Timing Fault Models,
SDL, Hit-or-Jump.

1 Introduction

If the inherent timing constraints are not properly specified in a formal speci-
fication of a communication protocol, start and expiration of concurrent timers
may lead to infeasible test sequences, which can generate false results by failing
correct implementations, or worse, passing the faulty ones.

In this paper, we first introduce an extended finite-state machine (EFSM)
model with timer variables based on our earlier work [FUDA03, UWBWF05,
UBWF06a] for the Controller process of the so-called rail-road crossing sys-
tem [ALUR98]. This system has been studied as a benchmark in many real-time
systems [HJL93,HL96,AKLN99,XEN04,CRV05a] . We then augment this timed
EFSM model such that the test sequences generated from the augmented model,
when applied by a tester to an implementation under test (IUT), will detect the
presence of a class of timing faults. In this augmentation, a set of new edges and
states are created in the system model (i.e., the edge conditions and actions use
timing variables as well as the external inputs) such that the resulting model is a

2 Specification of Timed EFSM Fault Models in SDL

timed EFSM. In addition, a set of special purpose tester timers are implemented
inside the testing system (not in the IUT since the implementation is assumed to
be a black box). Only a small number of new states and edges are introduced by
our augmentation, and hence the overall length of the test sequences generated
from the augmented model, compared to the original system model, does not
increase significantly.

We focus on the incorrect timer setting faults [EDK02, EDKE98, EKD99],
which represent the timers that are incorrectly implemented either too short or
too long in Controller. We then provide a formal specification for this system
in Specification and Description Language (SDL) [ITUZ1], which represents the
fault detection capabilities of the augmented EFSM model. In this SDL specifica-
tion of Controller, a transition of the EFSM fault model that can be triggered
when its time constraint is satisfied is represented by one or more continuous
signal operators. We specify these EFSM timing constraints by introducing two
new variable types in SDL, namely time and duration, which are also used to
define the test purposes. By using a global clock, called now, to represent the
passage of discrete time, synchronization among timing constraints of different
processes is achieved. The SDL specification can also handle the cases where
multiple trains try to cross at the same time.

A test sequence is generated for this SDL specification using the Hit-or-
Jump [CLRZ99] algorithm. Using the test purposes (also called stop conditions),
which represent the timing constraints of the EFSM timing fault model, Hit-
or-Jump algorithm constructs efficient test sequences while avoiding the state
explosion. In [CRV05a], Hit-or-Jump has been applied to railroad crossing system
without any fault detection capabilities of our EFSM model. In this paper, we
generate the test sequences that are capable of detecting incorrect timer setting
faults.

Section 2 of this paper presents an English specification of railroad cross-
ing system. Section 3 introduces the definitions, graph augmentation algorithms
GA-A, GA-B and GA-C, and fault modeling for Controller. The SDL specifi-
cation with timing constraints and test sequence generation using Hit-or-Jump
algorithm are in Section 4. The concluding remarks are presented in Section 5.

2 English Specification for Railroad Crossing System

The railroad crossing system is one of the popular examples for studying timing
constraints in timed FSMs [HJL93, HL94, HL96, AKLN99, ALUR98, XEN04]. It
consists of three main processes: Train, Gate and Controller, all of which must
communicate with one another within certain time constraints. Train process
communicates with Controller by sending the messages called approach, in, out
and exit. The output signal approach must be sent to Controller at least two
minutes before a train is crossing the railroad. When a train is inside the gate,
the corresponding output signal in is generated. Between the signals approach
and exit, there must be a delay of maximum five minutes. When Controller
receives the input signal approach, it must send the output signal lower to Gate

Specification of Timed EFSM Fault Models in SDL 3

at most one minute after the receipt of approach. If Controller receives exit, it
must send the output signal raise to Gate with a maximum delay of one minute.

Gate and Controller communicate through the signals lower, raise, up and
down. The signals lower and raise are inputs to Gate process. If lower is received,
Gate must respond with down output signal, indicating that the gate is closed
and the crossing is safe. The interval between the reception of lower and the
sending of down must be at most one minute. If the input signal raise is received
by Gate, it must send the output signal up at least one minute and at most two
minutes after the receipt of raise.

3 Modeling Timed Extended Finite State Machines

A communicating protocol modeled as a finite state machine (FSM) can be
represented by a directed graph G(V,E). Vertex set V represents the nodes and
edge set E represents the edges triggered by events of a system. A protocol
specification may include timing variables and operations based their values. To
represent these timing related variables, we extend FSMs with timing variables.
Our model is complimentary to those presented in timed automata [ALUR98],
and has the advantage that it is specifically designed for test generation without
state explosion [FUDA03].

3.1 Definitions and Notations

Let R denote the set of real, R◦+ the set of the nonnegative real, and R∞ =
R◦+ ∪ {−∞,+∞} is the set of nonnegative real with elements −∞ and +∞.
Let Z denote the set of integers and Z+ is the set of positive integers. Interval
[α, β] is a subset of R◦+, [α, β] ⊂ R◦+, and δ is an instant of [α, β], δ ∈ [α, β]. α
is the lower bound of δ, Inf(δ) = α; β is the upper bound of δ , Sup(δ) = β.

Definition 1 A timed FSM is an FSM augmented to form an Extended Fi-
nite State Machine (EFSM), represented by directed graph G, denoted by M =
(V, I,O, T , E, v0) where V is a finite set of nodes, v0 ∈ V is the initial node, I
is a finite set of inputs, O is a finite set of outputs, T is a finite set of variables,
and E is a set of edges V ×A×T −→ V ×O×T . Edge ei ∈ E can be represented
by a tuple ei = (vp, vq, ii, oi, Pt(T) ≡ 〈ei〉, Actt (T) ≡ {ei}), where vp ∈ V is a
current node, vq ∈ V is a next node, ii ∈ I is the input that triggers the transi-
tion represented by vp

ei→vq, oi ∈ O is the output from current transition vp
ei→vq,

Pt(T) ≡ 〈ei〉 is the set of possible conditions of timing variables. Actt(T) ≡ {ei}
is the set of possible actions on timing variables.

Definition 2 A timer tmj ∈ TM can be defined with timing variables of (Tj , Dj ,
fj) ⊆ T , where TM = {tm1, · · · , tmj , · · · } is a set of N timers, Tj ∈ {0, 1} is a
timer running status variable, Dj ∈ R◦+ is a time-characteristic variable, and
fj ∈ R∞ is a time-keeping variable.

4 Specification of Timed EFSM Fault Models in SDL

• Time Keeping Variables (Dj and fj), where Dj indicates the length of timer
tmj , and fj indicates the time elapsed since tmj started. If tmj has just
started, fj := 0; if tmj is inactive, fj := −∞. Over an edge ei, the value of fj
is increased by the amount of time ci ∈ R◦+ required to completely traverse
the current transition ei, fj := fj + ci. The difference of (Dj − fj) represents
the remaining time until tmj ’s expiry.
• Timer Status Variable (Tj) is a boolean variable, where Tj == 1 (Tj) denotes

timer tmj is active and Tj == 0 (¬Tj) denotes timer tmj is passive (i.e.,
stopped, expired or not started yet).

Definition 3 TMactive ⊆ TM and TMpassive ⊆ TM are a set of timers which
are active and passive respectively, such that TM ≡ TMactive

⋃
TMpassive.

• For a transition ei = (vp, vq, ii, oi, 〈ei〉, {ei}), a passive timer tmj ∈ TMpassive,
∀j ∈ [1, N], can be activated by setting Tj := 1 and fj := 0 in its edge
actions (Actt(T) ≡ {ei}). For all the other active timers tmk ∈ TMactive,∀k ∈
[1, N], k 6= j, fk is updated by ei’s traversal time. The edge condition is
formally written as: 〈ei〉 : 〈¬Tj ∧ Tk ∧ (fk < Dk)〉 ∀k,∀j ∈ [1, N], k 6= j
The edge actions can be formally written as: {ei} : {Tj := 1; fj := 0; Tk :=
Tk; fk := fk + ci} ∀k,∀j ∈ [1, N], k 6= j
• For a transition ei = (vp, vq, ii, oi, 〈ei〉, {ei}), an active timer tmj ∈ TMactive,
∀j ∈ [1, N], can be stopped by setting Tj := 0 and fj := −∞ in its edge
action (Actt(T) ≡ {ei}). For all the other active timers tmk ∈ TMactive,∀k ∈
[1, N], k 6= j, fk is updated by ei’s traversal time. Formally, the edge conditions
are: 〈ei〉 : 〈Tj ∧ (fj < Dj) ∧ Tk ∧(fk < Dk)〉 ∀k,∀j ∈ [1, N], k 6= j. The edge
actions can be formally written as: {ei} : {Tj := 0; fj := −∞; Tk := Tk; fk :=
fk + ci} ∀k,∀j ∈ [1, N], k 6= j
• An active timer tmj ∈ TMactive is defined as expired or timed out iff fj is

equal or greater than the timer length Dj , which can be written as: 〈Tj∧(fj ≥
Dj)〉 The action is Tj := 0 and fj := −∞.

Definition 4 A transition which becomes feasible when one of the active timers,
with the least remaining time, expires is defined as a timeout transition. In
other words, tmj ∈ TMactive, tmk ∈ TMactive (∀k ∈ [1, N],∀k 6= j), and
tmj’s remaining time was the least, then it was tmj that expires and triggers
the timeout edge ei. The edge actions set Tj = 0, fj = −∞, and fk is up-
dated by ei’s traversal time. The edge conditions can be formally written as:
〈ei〉 : 〈Tj ∧(fj > Dj)∧Tk∧(fk < Dk)∧(Dj−fj < Dk−fk)〉 ∀k ∈ [1, N],∀k 6= j.
Formally, the edge actions are: {ei} : {Tj := 0; fj := −∞; Tk := Tk; fk :=
fk + ci} ∀k ∈ [1, N],∀k 6= j.

Definition 5 A non-timeout transition becomes feasible iff none of the ac-
tive timers have expired, or all the timers are passive. In other words, tmj ∈
TMactive,∀j ∈ [1, N], and none of these active tmj’s have expired. fj is updated
by ei’s traversal time. The edge conditions are: 〈ei〉 : 〈Tj∧(fj < Dj)〉 ∀j ∈ [1, N].
Formally, the edge actions are: {ei} : {Tj := Tj ; fj := fj + ci)} ∀j ∈ [1, N]

Specification of Timed EFSM Fault Models in SDL 5

Definition 6 Flow Enforcing Variable (Lp) is an exit condition to leave a state
vp. It is denoted by a boolean variable Lp ∈ {0, 1} ∀vp ∈ V , where Lp == 0 means
none of the transitions is allowed to leave vp, and Lp == 1 means transitions
are allowed to leave vp.

Definition 7 A transition whose action updates Lp from 0 to 1 is defined as an
observer edge. The edge conditions and actions for an observer edge are formally
written as: 〈ep,obs〉 : 〈Lp == 0〉 and {ep,obs} : {Lp := 1} ∀vp ∈ V.

Definition 8 For an active timer, a transition which consumes the least pend-
ing timeout is defined as a wait edge. In other words, tmj ∈ TMactive, tmk ∈
TMactive (∀k 6= j, k ∈ [1, N]) and tmj’s remaining time is the least, then the
wait edge updates fj by tmj’s remaining time Dj − fj. The conditions for a
wait edge are: 〈ep,wait〉 : 〈Tj ∧ (fj < Dj) ∧ Tk ∧ (fk < Dk) ∧ (Dj − fj <
Dk − fk)〉 ∀k 6= j, k ∈ [1, N],∀vp ∈ V. The actions for a wait edge are:
{ep,wait} : {fj := fj+(Dj−fj); fk := fk+(Dj−fj)} ∀k 6= j, k ∈ [1, N],∀vp ∈ V.

Definition 9 A return edge is a transition which is always true with no time
constraints and has no actions:

〈
eretp

〉
: 〈1〉 and

{
eretp

}
: { } ∀vp ∈ V.

Definition 10 During testing an edge ei = (vp, vq, ii, oi, 〈ei〉, {ei}), after input
ii is applied to an IUT, the expected output oi should be generated no later than
a certain θ time units, θ ∈ R◦+, measured by a timer which is a part of the test
harness rather than the IUT.

3.2 Graph Augmentation Algorithm GA-A

The graph augmentation algorithm called GA-A [UBWF06a] is specifically de-
signed for generating tests, if the timer related variables are linear and their
values implicitly increase with time. GA-A converts G into G′(V ′, E′) by defining
the exit condition for all the nodes, creating a set of new nodes and edges to
ensure that the timing conditions and actions are incorporated into the timed-
EFSM model correctly:

Step (i): If there exists a self loop for vp ∈ V in G, an additional node called
v′p is created in G′, to which all self-loops ep,k ∈ E defined in vp are directed;

Step (ii): All self-loops ep,k ∈ E in G are converted to node-to-node edges
in G′ as ep,k = (vp, v′p).

Step (iii): For v′p ∈ V ′ in G′, a return edge eretp from v′p to vp is created in
G′ as eretp = (v′p, vp).

Step (iv): An observer node is created in G′, namely vp,wait, which is con-
nected to vp via newly created an observer edge as ep,obs = (vp, vp,wait) , a
wait edge as ep,wait = (vp, vp,wait), and a return edge from observer node as
eretp,obs = (vp,wait, vp). The role of the observer node vp,wait is to consume pend-
ing timeouts on ep,wait and enable outgoing edges by setting the flow enforcing
variable Lp to 1 on ep,obs. Fig. 1 shows, for node vp, the conversion of self-loops
to node-to-node edges, the creation of the observer node, wait edge and observer
edges.

6 Specification of Timed EFSM Fault Models in SDL

The time condition and the action for the wait edge ep,wait are formulated
as 〈Lp == 0〉 and {fj := fj + 1} or {fj := fj + (Dj − fj)}, respectively, where
Dj − fj is the remaining time of timer tmj ∈ TMactive to timeout. For the
observer edge ep,obs from the original node vp to the observer node vp,wait in G′,
the time condition and the action are formulated as 〈Lp == 0〉 and {Lp := 1},
respectively. The return edges of eretp and eretp,obs are added by GA-A to G′ are no-
cost edges with time condition as: 〈1〉 (i.e., always true with no time constraints
imposed) with no actions: { }.

vp

ep,1

ep,3

ep,2

vp’vp

ep,1
ep,2
ep,3
epret

ep,obs

ep,obsret
vp,wait

ep,wait

ej
ei ei

ej

Fig. 1. Modeling self-loops for vp in G into vp, v
′
p and vp,wait in G′.

Step (v): The conditions and actions for a timeout edge in G′ are:
• The condition for a timeout self-loop edge in G becomes: 〈Tj ∧ (fj > Dj) ∧
Tk ∧ (fk < Dk) ∧ (Dj − fj < Dk − fk) ∧ (Lp == 0)〉 ∀Tk 6= Tj , where the
remaining time for tmj ∈ TMactive is less than that of tmk ∈ TMactive (i.e.,
Dj − fj < Dk − fk) and the flow enforcing variable Lp is zero.
• The condition for a timeout node-to-node edge in G becomes: 〈Tj ∧ (fj >
Dj)∧Tk ∧ (fk < Dk)∧ (Dj−fj < Dk−fk)∧ (Lp == 1)〉 ∀Tk 6= Tj , where the
remaining time for tmj ∈ TMactive is less than that of tmk ∈ TMactive (i.e.,
Dj − fj < Dk − fk) and Lp is 1.
• The actions for a timeout edge in G become: {Tj := 0; fj := −∞;Tk :=
Tk; fk := fk+ci;Lp := 0} ∀ tmk 6= tmj , where timer tmj ∈ TMpassive becomes
passive and the time keeping variable for tmk ∈ TMactive is incremented by
the edge cost of ci.
These equations imply that before a timeout edge, tmj should be still run-

ning, remaining time should be the least among all other running timers and the
flow-enforcing variable is appropriately set for either a converted (i.e., self-loop
edge in G) or an original (i.e., node to node edge in G) edge in G′.

Step (vi): The conditions and actions for a non-timeout edge in G′ is for-
malized as follows:
• A non-timeout self-loop edge in G becomes: 〈(¬Tj∨(Tj∧(fj < Dj)))∧(Lp ==

0)〉 ∀ tmj ∈ TMactive

• A non-timeout node-to-node edge in G becomes: 〈(¬Tj ∨ (Tj ∧ (fj < Dj))) ∧
(Lp == 1)〉 ∀ tmj ∈ TMactive

Specification of Timed EFSM Fault Models in SDL 7

• The action for a non-timeout edge in G becomes:
• {fj := fj + ci; fk := fk + ci;Lp := 0} ∀ tmk 6= tmj , tmj ∈ TMactive, tmk ∈
TMactive if edge starts no timers;
• {Tj := 1; fj := 0;Tk := Tk; fk := fk + ci;Lp := 0} ∀ tmk 6= tmj if edge

starts timer tmj .
Since both timeout and non-timeout edges disable outgoing edges by setting

Lp := 0 in Steps (v) and (vi) of GA-A, the only edges whose actions will enable
the outgoing edges in G′ are the artificially-created observer edges.

It is proven [UBWF06a] that GA-A terminates with a running time of O(E),
and that the order of magnitude of the nodes and edges in G′(V ′, E′) are equal
to those of G(V,E).

3.3 Classification of Timing Faults

A class of timing faults in an implementation of a timed system have been defined
in [EDK02, EDKE98, EKD99] as 1-clock timing faults (including 1-clock corner
point and 1-clock interval faults) and incorrect timer length setting faults.

Incorrect Timer Setting Faults occur in an IUT when a timer length is
incorrectly implemented as either too short or too long (i.e., the timer expires
either too early or too late). The definition of incorrect timer setting faults is
based on the following timing requirement:
• Timing Requirement : In a test sequence, edge hk starts timer tmj and

is traversed before ei. Timeout transition ei = (vp, vq, timeout tmj , oi, 〈tj〉 ,
{tj}) triggers exactly in Dj time units, where Dj is the timer length.
• Timing Fault B (TFB): Timeout transition ei triggers in D′j time units and

output oi is observed and node vq is verified in shorter than the expected time
(i.e., D′j < Dj).
• Timing Fault C (TFC): Timeout transition ei triggers in D′j time units and

output oi is observed and node vq is verified in longer than the expected time
(i.e., D′j > Dj).
In a specification, suppose a timer tmj is defined to be of length Dj to be

started by the actions of edge hk and to expire at edge ei (reachable from hk).
A special purpose timer tms with length Ds = Dj is created in the test harness
by GA-2.B to detect if tmj is set too short as D′j < Dj :

Step (B.i): Edge conditions and actions for hk are modified such that it
starts a special purpose timer tms.

Step (B.ii): ei’s condition is modified such that it traverses only when both
tms and tmj have expired.

Step (B.iii): All self-loops in vp are represented as node-to-node edges by
the creation of an additional node, called v′p, to which they are directed. A return
edge eretp (with zero cost) is also created for their return to vp.

Step (B.iv): An observer node vp,wait is appended to node vp via a new
observer edge ep,obs, wait edge ep,wait (with cost cp,wait) and return edge eretp
(with cost cretp := 0). The edge condition of ei is modified such that it triggers
only when fs > Ds and tmj expires.

8 Specification of Timed EFSM Fault Models in SDL

As proven in [UBWF06a], GA-2.B terminates with a running time of O(E),
and the order of magnitude of the nodes and edges in G′ and G′′ are the same.
A test sequence generated from G′′ will contain · · · , hk, · · · , ei−1, ep,wait, eretp ,
ep,obs, eretp , ei which will not be feasible to traverse if timer tmj expires earlier
than expected. The condition for ep,wait requires that both the timers tmj from
the IUT and tms from the test harness are still running. If tmj times out before
tms, it will create a deadlock at vp (i.e., none of the conditions leaving vp is
valid), which in turn will flag the tester that a timing fault TFB has occurred.

Algorithm GA-2.C [UBWF06a] for TFC , is similar to GA-2.B, with the same
run time complexity and the augmented graph size of G′.

3.4 Timed EFSM Model for Railroad Crossing System

Due to space constraints, we only consider timing fault TFB in the edges of
e2 and e4 in Controller, whose FSM model is given in Fig. 2. The steps for
generating graph G′′ is follows:

Step 1: Obtain graph G from the specification of Controller process. The
directed graph representing Controller is in Fig. 2 with its actions and condi-
tions given in Table 1. Timer tmz can be started either in edge e1 or in e3 with
the timer length of 1 min (i.e., Dz = 1 min).

Step 2: Generate G′ for Controller by applying the graph augmentation
algortihm GA-A to G. The new observer nodes and edges (i.e., s0,wait, e0,wait,
e0,obs, eret0,obs, s1,wait, e1,wait, e1,obs, eret1,obs, s2,wait, e2,wait, e2,obs, eret2,obs, s3,wait,
e3,wait, e3,obs, eret3,obs) are added to the original nodes of G. The self-loop edge of
e0 is converted to a node-to-node edge by introducing s′0 and eret0 in G′.

Step 3: Apply the graph augmentation algorithm GA-B to G′ to generate
G′′ for Controller. A special purpose timer, namely tms (with Ds = 1), is
introduced in the tester (not in the IUT) to model the timing constraints over
the edges of e2 and e4. Note that, in G′′, e1 starts both the special purpose timer
tms in the tester and the timer tmz in the IUT; similarly, e3 starts the same two
timers in the tester and the IUT. Graph G′′ is shown in Fig. 3 with its respective
edge conditions and actions given in Table 2.

4 SDL Specification Based on Timed EFSM Model

To specify a set of timed EFSM models in SDL one may either (i) define
each component (e.g., Train, Gate and Controller) as an independent sys-
tem, where each one exchanges messages with the environment, or (ii) define
each component as a process of the same system. Although both approaches
are equivalent, in this paper we follow the latter approach. In order to model
discrete time properly, we introduce a Clock process as a part of the system.
Therefore, our SDL specification for the railroad crossing system consists of a
main Railroad system, which includes a Railroad Control block (Fig. 4) with
four processes, namely Train, Gate, Controller and Clock.

Specification of Timed EFSM Fault Models in SDL 9

s0 s1
e0

start tmz

e1

e4 e2

s3 s2e3

start tmz

Fig. 2. Finite state machine for Controller.

Table 1. Original specification of Controller (Fig. 2) and its graph G

Edges English Specification Our EFSM Model G
Timing Timing

Conditions Actions

e0 Idle 〈1〉 { }
e1 Input approach is received 〈(i1 == approach)〉 {Tz := 1; fz := 0}
e2 Output lower is generated at 〈Tz ∧ (fz ≥ Dz)〉 {o2 := lower;

maximum delay of 1 mins after Tz := 0; fz := −∞}
input approach is received

e3 Input exit is received 〈(i3 == exit)〉 {Tz := 1; fz := 0}
e4 Output raise is generated 〈Tz ∧ (fz ≥ Dz)〉 {o4 := raise;

maximum delay of 1 mins Tz := 0; fz := −∞}
after input exit is received

In our EFSM model, each edge ei is associated with a timing cost ci, repre-
senting the expected time that is required to traverse (or, realize) the edge in
an implementation (see Section 3). The corresponding state transition in SDL
specification can be represented as the difference between two internal variables
that are set at the instances of the beginning and end of the transition. This
way, these two variables, one with the clock value at the beginning and the other
one at the end, can be used to approximate the edge traversal time in SDL, Sim-
ilarly, the following assumptions are considered to specify a real-time system in
SDL [AKLN99,TMCB03]:
• All untimed events will take a negligible time to realize;
• Time advances through the expiration of local clocks; if two clocks expire at

the same moment, only one of them is taken into account first;
• As time progresses, time dependent transitions may trigger only if their con-

ditions are satisfied;
• The global clock called now is the only clock which gives the current time.

In this approach, time constraints are represented as continuous signal oper-
ators. This construct allows to represent a transition that does not need an input

10 Specification of Timed EFSM Fault Models in SDL

s0’

s0
e1

e0ret

e0
s0,wait

e0,obsret
e0,obs

e0,wait
s1,wait

s1
e1,obsret

e1,obs
e1,wait

e4 e2

e3
s2 e2,obsret

e2,obs

e2,wait s2,waits3,wait

s3
e3,obs

e3,obsret

e3,wait

Fig. 3. Augmented Graph G′′ for Controller (Fig. 2) after applying GA-A and GA-B

Table 2. Augmented edge conditions and actions for Controller of Fig. 2 in G′′

(Fig. 3)

Edges 〈 Edge Conditions 〉 { Edge Actions }
e0 〈¬approach〉 { }
eret0 〈1〉 { }
e0,obs 〈(Lp == 0)〉 {Lp := 1}
e0,wait 〈¬approach ∧ (Lp == 0)〉 {fi := fi + c0,wait}
eret0,obs 〈1〉 { }
e1 〈approach ∧ (Lp == 1)〉 {Ts := 1; fs := 0;

Lp := 0}
e1,wait 〈(Lp == 0)〉 {fi := fi + c1,wait}
e1,obs 〈(Lp == 0)〉 {Lp := 1}
eret1,obs 〈1〉 { }
e2 〈Ts ∧ (fs ≥ Ds) ∧ (Lp == 1) {lower; Ts := 0; fs := −∞;

∧(Tz timeout)〉 Lp := 0}
e2,wait 〈¬exit ∧ (Lp == 0)〉 {fi := fi + c2,wait}
e2,obs 〈(Lp == 0)〉 {Lp := 1}
eret2,obs 〈1〉 { }
e3 〈exit ∧ (Lp == 1)〉 Ts := 1; fs := 0; Lp := 0}

e3,wait 〈(Lp == 0)〉 {fi := fi + c3,wait}
e3,obs 〈(Lp == 0)〉 {Lp := 1}
eret3,obs 〈1〉 { }
e4 〈Ts ∧ (fs ≥ Ds) ∧ (Lp == 1) {raise; Ts := 0; fs := −∞;

∧(Tz timeout)〉 Lp := 0}

Specification of Timed EFSM Fault Models in SDL 11

block Rail_Control

Clock

[c]

[c]

[c]

Train

Controller

Gate

[ok, nok]

[approach, exit,
inside, outside]

[down, up]

[lower, raise]

Fig. 4. Rail Control block of SDL specification.

signal to be fired, but is triggered when the time constraint is satisfied. In our
SDL specification, two variable types are introduced: a time variable to register
the moment when an event occurs, and a duration variable to represent the
difference between two time variables. For example, in the timing condition of
(f1 − f2 > D2), variables f1 and f2 are of type time, whereas D2 is a duration
variable. Both time and duration variables are also defined in our EFSM model
in Section 3. For example, for the special purpose timer tms in G′′ (Section 3.3),
time keeping variable fs and the timer length Ds are represented as the time
and duration types of variables in our SDL specification, respectively.

Since we modeled a global clock called now for the system, we did not uti-
lize the SDL local timer construct to represent the timer tms. Therefore, for
Controller, fs is represented by four time type variables, namely zapproach,
zexit, zlower and zraise. The moment when approach and exit signals are re-
ceived is represented by zapproach and zexit, respectively. Similarly, the two
variables of zlower and zraise are used to capture the moment when lower and
raise are sent, respectively. Timer length Ds is modeled by two duration type
variables, namely sent lower delay and sent raise delay, both equal to 1 min.
Table 3 illustrates the relationship between our SDL specification and the EFSM
model based on G′′.

Our SDL specification also allows representation of more than one train try-
ing to cross at the same time. To model multiple trains, additional variables
such as (ntrains and max trains), and signals (ok and nok) are introduced (in
the SDL specification given in this paper, max trains = 1). Since there are a
limited number of tracks available to the trains, variables ntrains counts the
number of trains which have sent approach to Controller. Therefore, if the
condition of (ntrains <= max trains) is true, Controller sends ok ; otherwise
it sends nok. If Train receives ok from Controller, the train continues its ap-
proach to the railroad crossing. Similarly, if nok is received by Controller, the
train waits until it receives a signal of ok. When one of the Train processes
sends exit, Controller decrements the value of ntrains by one. If the updated
value of ntrains is still greater than zero, Controller sends another ok to one

12 Specification of Timed EFSM Fault Models in SDL

Process Controller

ntrains:=0

Idle

approach

ntrains:=
ntrains + 1

ntrains>1

True Else

-

nok ok

zapproach
:= now

Sent_Lower

*
inside,down,
outside,up,c

-

exit

zexit:=
now

ntrains:=
ntrains - 1

ntrains

=0 >0

Sent_Raise

ok-

dcl sent_lower_delay duration:=1;
dcl sent_lower_delay duration:=1;
dcl zapproach, zexit, zlower,
zraise time;
dcl ntrains integer;

Sent_Raise

Idle

* c

-

now–zexit>
sent_raise

_delay

raise

zraise:=
now

Sent_Lower

Idle

* c

-

now–zapproach>
sent_lower

_delay

lower

zlower:=
now

Fig. 5. SDL specification of Controller

of the Train processes waiting to approach the railroad crossing; otherwise,
Controller sends raise signal to Gate.

4.1 Application of Hit-or-Jump Algorithm

Hit-or-Jump [CLRZ99] algorithm can be used for embedded testing of com-
plex communication systems which are modeled as communicating EFSMs. It
is a generalization and unification of exhaustive search and random walks; both
of which are special cases of Hit-or-Jump. It efficiently constructs testing se-
quences with a high fault coverage, does not suffer from the drawback of state
space explosion as encountered in exhaustive search, and quickly covers the
system components under test without being trapped, as experienced by ran-
dom walks. Furthermore, it has also been applied to embedded testing of tele-
phone services [CLRZ99], conformance and interoperability testing of web ser-
vices [CMZ04] and in the domain of real-time systems [CRV05a,CRV05b]. The
strategy used to generate a partial accessibility graph in Hit-or-Jump is that if
a visited node satisfies the test purposes, it is said that a hit is done; otherwise,
the algorithm randomly choses another node from the neighborhood graph, and
moves (jump) to it. Then from this new node, it continues its search. Parameters
required to execute the Hit-or-Jump are:

Specification of Timed EFSM Fault Models in SDL 13

Table 3. Relationship between SDL Specification (Fig 5) and EFSM Model (Fig 3)
for Controller

Current State Next State Edge Constraint Action
SDL EFSM SDL EFSM Name
Spec. Model Spec. Model

Start Idle s0 ntrains:= 0

Idle s0 Idle s0 (approach?) and (nok !) and
(ntrains > 1) (zapproach:= now)

Idle s0 Sent Lower s1 e1 (approach?) and (ok !) and
(ntrains 6 1) (zapproach:= now)

Sent Lower s1 Sent Lower s1,wait e1,wait (∗?) or
(now− zapproach 6

sent lower delay)

Sent Lower s1 Idle s2 e2 (now− zapproach > (lower !) and
sent lower delay) (zlower := now)

Idle s2 Idle s2 (exit?) and (ok !) and
(ntrains > 0) (zexit := now)

Idle s2 Sent Raise s3 e3 (exit?) and (zexit := now)
(ntrains 6 0)

Sent Raise s3 Sent Raise s3 e3,wait (∗?) or
(now− zexit 6

sent raise delay)

Sent Raise s3 Idle s0 e4 (now− zexit ≥ 1) (raise!) and
(zraise := now)

Legend: Input = ?, Output = !, now = Global Clock, ∗ = Any other signal;
Time type variables = zapproach, zexit, zraise, zlower;
Duration type variables = sent lower delay, sent raise delay

(i) SDL specification of the IUT (Fig. 5);
(ii) Test purposes described in several stop conditions, which are the properties

to be verified at each node. Each property can be defined in input signals,
output signals, time, and duration variable types. In our case study, the test
purposes are defined according to the timing fault models of G′′ graph. These
are then modeled for SDL specification and used as stop conditions. Table 4
gives the details of test purposes for all the processes of the railroad crossing
system;

(iii) A preamble scenario (optional) may be furnished in order to guide the
algorithm to easily and quickly find a sequence which satisfies the stop condi-
tions (test purposes). If no preamble scenario is given, the search starts from
the initial state of all processes;

(iv) The strategy of the search, which can either be a breadth or a depth
search, in order to generate an internal accessibility graph;

(v) A local search parameter (an integer), which defines the space required
for the search before a jump.
The test sequence generated from SDL specification of Controller by apply-

ing Hit-or-Jump is given in Table 5. Note that all untimed transitions have zero

14 Specification of Timed EFSM Fault Models in SDL

Table 4. Test purposes for SDL specification and EFSM model

Process Test Purposes for Test Purposes for
Name EFSM Model SDL Specification

Train Output in is generated in less xinside− xapproach < 2
than 2 minutes after approach

Output exit is generated in more xexit− xapproach > 5
than 5 minutes after approach

Controller Output lower is generated in less zlower − zapproach < 1
than 1 minutes after approach

Output raise is generated in more zraise− zexit > 1
than 1 minutes after exit

Gate Output down is generated in more ydown− ylower > 1
than 1 minutes after lower

Output up is generated in more yup− yraise > 2
than 2 minutes after raise

cost because of the assumption in SDL that these transitions take insignificant
time to run. The cost of the wait edges is expressed in minutes.

Using our SDL specification, Hit-or-Jump generates test sequences with tim-
ing fault detection capabilities. Although, in our case study only timing fault
TFB is considered for Controller, other types of timing faults can also be mod-
eled for Controller, Train and Gate processes [FUDA03,UWBWF05,UBWF06a].
Hit-or-Jump can then be used to generate a test sequence which takes into ac-
count all of the timing fault models for three processes. Therefore, the test
sequences can be used both for unit testing of each process, and for verifying
the communication among processes during the integration phase. Another ad-
vantage is the flexibility of representing the test sequences in Tree and Tabular
Combined Notation (TTCN) [ETSI] or Message Sequence Chart (MSC) [ITUZ2]
notation, facilitating the portability of the tests.

Table 5. Test sequence generated from SDL specification of Controller

Step No. Current State Next State Cost (Mins.) Inputs Outputs

1 Idle Sent Lower 0 approach

2 Sent Lower Sent Lower 2

3 Sent Lower Sent Lower 0

4 Sent Lower Idle 0 lower

5 Idle Sent Raise 0 exit

6 Sent Raise Sent Raise 2

7 Sent Raise Sent Raise 0

8 Sent Raise Idle 0 raise

Specification of Timed EFSM Fault Models in SDL 15

5 Conclusions and Future Work

In this paper, we apply our timing fault modeling strategy to writing formal
specifications for communication protocols. As part of this approach, using the
formal language of SDL, we specify the Controller process of rail-road crossing
system, a popular benchmark for real-time systems. The EFSM model has the
capability of representing a class of timing faults, which otherwise may not be
detected in an IUT. We then apply Hit-or-Jump algorithm to the SDL specifi-
cation based on our EFSM model to generate a test sequence that can detect
these timing faults. In addition, including fault modeling into SDL specification
ensures the synchronization among the timing constraints of different processes,
and enables generation of portable test sequences since they can be easily rep-
resented in other formal languages such as TTCN or MSC.

As an extension of this work, we will consider the EFSM models with fault
detection capabilities for other classes of timing faults, and multiple occurrences
of these faults. This approach of modeling the timing faults of communicating
processes into formal specifications will also applied to generate integration tests.

References

[AKLN99] M. Ashour, F. Khendek, and T. Le-Ngoc. Formal description of real-time systems using
SDL. In Proc. of the Sixth Int’l. Conf. on Real-Time Comp. Sys. and Appl. (RTCSA’99),
Hong-Kong, December 1999.

[ALUR98] R. Alur, D. Dill A theory of timed automata. In Theoretical Comput. Sci., vol. 126,
pp. 183-235, 1994.

[CLRZ99] A. Cavalli and D. Lee and C. Rinderknecht and F. Zaidi. Hit-or-jump an algorithm for
embedded testing with applications to in services. Proc. of IFIP Int’l. Conf. FORTE/PSTV’99,
October 1999.

[CMZ04] A. Cavalli and A. Mederreg and F. Zaidi Application of a Formal Testing Methodology
to Wireless Telephony Networks. Journal of the Brazilian Comp. Soc., Number 2, Vol. 10, pp
56-68, November 2004.

[CRV05a] A. Cavalli and E. Rodrigues Vieira. Test Case Generation based on Timed Constraints.
In IEEE ICESS 2005, Xian, China, December 2005.

[CRV05b] A. Cavalli and E. Rodrigues Vieira. A Formal Approach of Interoperability Test Cases
Generation Applied to Real Time Domain. In IEEE I2TS 05, Florianpolis, SC, Brazil, December
2005.

[DU04] A.Y. Duale and M.U. Uyar. A method enabling feasible conformance test sequence gener-
ation for EFSM models. IEEE Trans. Commun. 53(5), pp. 614–627, 2004.

[EDK02] A. En-Nouaary, R. Dssouli, and F. Khendek. Timed Wp-method: Testing real-time sys-
tems. IEEE Trans. Softw. Eng. 28(11), pp. 1023–1038, 2002.

[EDKE98] A. En-Nouaary, R. Dssouli, F. Khendek, and A. Elqortobi. Timed test cases generation
based on state characterisation technique. In Proc. IEEE Real-Time Syst. Symp. (RTSS), pp.
220–229, Madrid, Spain, 1998.

[EKD99] A. En-Nouaary, F. Khendek, and R. Dssouli. Fault coverage in testing real-time systems.
In Proc. IEEE Int’l Conf. Real-Time Comput. Syst. Appl. (RTCSA), Hong Kong, China, 1999.

[ETSI] ETSI. Methods for Testing and Specification (MTS); The Testing and Test Control Notation
version 3; Part 1: TTCN-3 Core Language.

[FAUD00] M.A. Fecko, P.D. Amer, M.U. Uyar, and A.Y. Duale. Test generation in the presence of
conflicting timers. In Proc. IFIP Int’l Conf. Test. Communicat. Syst. (TestCom), pp. 301–320,
Ottawa, Canada, 2000.

[FUDA03] M.A. Fecko, M.U. Uyar, A.Y. Duale, and P.D. Amer. A technique to generate feasible
tests for communications systems with multiple timers. IEEE/ACM Trans. Netw. 11(5), pp.
796–809, 2003.

[HJL93] C. L. Heitmeyer and R. D. Jeffords and B. G. Labaw. A Benchmark for Comparing
Different Approaches for Specifying and Verifying Real-Time Systems. In Proc. Tenth Int’l.
Workshop on Real-Time Operating Sys. and Software, May 1993.

[HL94] C. Heitmeyer and N. Lynch. The Generalized Railroad Crossing: A Case Study in Formal
Verification of Real-Time System. In Proc. of the 15th IEEE Real-Time Sys. Symp., Puerto Rico,
December 1994.

16 Specification of Timed EFSM Fault Models in SDL

[HL96] C. Heitmeyer and N. Lynch. Formal Verification of Real-time Systems Using Timed Au-
tomata. Trends in Formal Methods for Real-Time Computing. John Wiley and Sons, Ltd., pages
83-106, April 1996.

[ITUZ1] ITU-T. Rec. Z.100 Specification and Description Language, 1980.
[ITUZ2] ITU-T. Rec. Z. 120 Message Sequence Charts, Geneva, 1996.
[LRS98] R. Lanphier, A. Rao and H. Schulzrinne. Real time streaming protocol (RTSP). RFC

2326, IETF, 1998.
[SCFJ96] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport protocol

for real-time applications. RFC 1889, IETF, 1996.
[TMCB03] C. Teyssie, Z. Mmammeri, F. Carcenac, and F. Buniol. Etude Comparative de SDL et

UML pour la Modelisation de Systemes Temps Reel. In 11th Conf. on Real-Time and Embedded
Systems, pages 75–97, Paris, April 2003. Teknea.

[UWBWF05] M. U. Uyar, Y. Wang, S. S. Batth, A. Wise, M. A. Fecko Timing Fault Models for
Systems with Multiple Timers, IFIP Int’l. Conf. on Testing of Comm. Systems (TESTCOM),
Concordia, Canada, 2005.

[UBWF06a] M. U. Uyar, S. S. Batth, Y. Wang, and M. A. Fecko. EFSM graph augmentation
algorithms for modeling a class of single timing faults. IEEE Trans. Comput. , 2006. (in review).

[UFDA01] M.U. Uyar, M.A. Fecko, A.Y. Duale, P.D. Amer, and A.S. Sethi. A formal approach to
development of network protocols: Theory and application to a wireless standard. In Proc. Con-
cordia Prestigious Wksp Commun. Softw. Eng. (CPWCSE), Montreal, Canada, 2001. (invited
paper).

[UZ93] H. Ural and K. Zhu. Optimal length test sequence generation using distinguishing sequences.
IEEE/ACM Trans. Netw. 1(3), pp. 358–371, 1993.

[XEN04] Z. Xiang and A. En-Nouaary. Test cases generation for embedded real-time systems based
on test purposes. In NOTERE’2004, Saidia, Maroc, Juin 2004.

