
Observability and Controllability Issues
in Conformance Testing

of Web Service Compositions

Jose Pablo Escobedo1, Christophe Gaston2, Pascale Le Gall3 and Ana Cavalli1

1 TELECOM & Management SudParis (ex INT) - CNRS SAMOVAR
9 rue Charles Fourier, 91011 Évry, France

email: {jose.escobedo, ana.cavalli}@it-sudparis.eu
2 CEA LIST, Point Courrier 94, 91191, Gif-sur-Yvette, France

email: christophe.gaston@cea.fr
3 Programme d’Épigénomique Université d’Évry-Val d’Essonne, 91000 Évry, France

Laboratoire MAS, Grande Voie des Vignes, 92195 Châtenay-Malabry, France
email: pascale.legall@ecp.fr

Abstract. We propose a model-based black-box testing approach to
test conformance of Web Service Compositions (WSC). When a WSC
under test makes use of implementations of Web Services, two situations
may occur: either communications between the WSC and the Web Ser-
vices are observable or hidden internal actions. We show by means of
an example how to generate test cases whose verdicts are provided with
explanations taking into account the status of the Web Services.
Keywords: Conformance testing, Web Service composition, observabil-
ity and controllability, verdict testing report.

1 Introduction

Web Services (WS) are available through the network to be accessed by any
computer that wants to communicate with them. Web Services Compositions
(WSC) are mechanisms to produce new services by making use of already ex-
isting WSs. In this paper we address the problem of testing such kind of WSC
following a model-based approach like in [4], using Input/Output Symbolic Tran-
sition System (IOSTS) to represent WSC specifications. Contrarily to systems
considered in [4], the system under test may include not only the WSC system,
but also some Web Services interacting with it. As the approach described in [1],
the most natural solution to overcome that problem is to reduce it to the case of
unit testing case by isolating WSCs from their Web Services so that the tester
may directly interact with WSCs. Communication channels with Web Services
are then qualified as controllable. However, it may occur that channels used
to communicate with Web Services may technically be uncontrollable by the
tester. In such cases, two situations may occur: either channels are observable,
which means that the tester may observe exchanges of values through them, or
they are hidden, and in that case, exchanges of messages through them can



only be considered as internal actions. The paper presents a model-based test-
ing approach for testing WSC implementations in the context of a system also
containing some Web Services.

The paper is structured as follows. The test architecture and a running ex-
ample are presented in Section 2. In Section 3, we present the key ideas of our
approach by illustrating it on the example.

2 The context: Test architecture

WS-BPEL stands for Web Services Business Process Execution Language [3],
and is a standard for specifying Web Services Compositions in the form of or-
chestrations (or choreographies), where a central entity guides the composition.
Basically, it defines how the interaction between Web Services is coordinated in
order to achieve a business goal.

Let us introduce the Loan Request example depicted in Fig. 1. Three part-
ners interact in the process: the user (bank’s client), the WS-BPEL process (LR-
WSC) and the Loan Service (LS, the Web Service). The behavior of the Loan
Request WS-BPEL is as follows. The client initiates the process by sending his
ID, the amount of money he wants to borrow and the maximal reimbursement
duration. The LR-WSC sends this information to the LS, which first decides
whether the loan is approved or not. If approved, it returns the minimum du-
ration and the monthly fee and then, the LR-WSC sends the monthly fee to
the user. Otherwise, the process ends and the user gets a Good bye reply mes-
sage. If the duration computed by the bank and the one proposed by the client
are the same, the loan is approved by sending a Good bye message to the user.
Otherwise, if the duration proposed by the client is greater than the duration
computed by the LS, the client can try again by proposing a new value for the
duration until the loan is approved or until he decides to finish the process.

Fig. 1. Diagram of the Loan Request (LR) example.

Following the classification given in the Introduction, a communication chan-
nel between the WSC and a WS is said to be (see Figure 2 for an illustration):

Controllable, if communications over the channel are controllable by the
tester through control points CP. The tester has a complete control over the
channel, both for stimulating the System Under Test (SUT) implementing the
WSC with inputs and for observing its outputs. If all communication channels
are controlled, the WSC becomes an independent component which can be tested
according to a classical unit testing framework.



Hidden, if the tester cannot access the communication channel. This is the
usual case when using the implementations of Web Services. The SUT is not just
the WSC in isolation but a system composed of the WSC providing an interface
to the user and of some encapsulated Web Services.

Observable, if the tester can only observe the communication channel through
observation points OP.

Fig. 2. Testing scenarios according to the accessibility to the communication channels.

Figure 3 shows the Loan Request example written as an IOSTS [4]. The
user is represented by the letter u. IOSTS contain attribute variables useful to
store data values. In the case of the LR-WSC, attribute variables are: d, for the
(maximal) duration proposed by the client to pay the loan; a, for the amount of
money the user wants to borrow; id, for the client’s ID; b, for the boolean variable
indicating if the user wants to try (if possible) to get another loan proposition
with a smaller duration; min, for the minimal duration computed by the LS
for the reimbursement period allowed; approve, for the boolean variable used
by LS to indicate if the duration proposed by the client is satisfactory or not;
and mf, for the monthly fee computed by the LS. Channels are represented, for
readability reasons, as EntityName ChannelName OperationName. The initial
state is q0 and the final state is q9.

Transitions of IOSTS are defined by a guard, an action (reception, emission
or internal action) and assignments of attribute variables. Transition q0 → q1

represents the initialization of the WS-BPEL process (LR-WSC). Transitions
q1 → q2, q2 → q3 represent the first communication between the LR-WSC and
the LS to check if the information given by the client is correct. Transition q4 →
q5 represents a positive answer from LS, and transition q5 → q6 represents the
corresponding following information sent by the LR-WSC to the user informing
him about the monthly fees. Transition q4 → q9 represents a negative answer
from LS and the corresponding Good bye message sent to the user. Transition



q6 → q9 represents the approval of the loan request and the corresponding Good
bye message notifying the user. Transitions q6 → q7, q7 → q8 q8 → q2 · · · ,
q8 → q9 represent respectively, the case where, if min 6= m, the user is asked to
propose a new value for the duration of the reimbursement and start the process
again or to finish the loan request process.

Fig. 3. The Loan Request example expressed as an IOSTS.

3 Our approach of Conformance testing for WSC

Fig. 4. Observable behaviors of LR-WSC, assuming that LS is hidden. Transitions
labeled by [1] (resp. [2]) are introduced by applying enrichment by quiescence (resp. by
hiding transitions on hidden channels and internal actions reduction).



The first step consists in symbolically executing the IOSTS representing the
WSC under test. The technique uses symbols instead of concrete data and allows
us to represent all behaviors in a symbolic execution tree. The tree is then mod-
ified to take into account observable and hidden communication channels. The
symbolic tree is first enriched by transitions carrying on the quiescence action
δ and indicating that the WSC is waiting for a request either from the user or
from a WS on an hidden or observable channel. Then, WS requests on observable
channels are transformed into special observations (denoted as outputs). Finally,
all transitions on hidden channels are translated into internal actions and the
resulting symbolic tree is reduced by removing all internal actions which are
useless from a testing point of view. Fig. 4 shows the dedicated symbolic execu-
tion tree of the LR example with the assumption that the LS’s communication
channels are all hidden.

With the dedicated symbolic execution tree, we adapt the rule-based algo-
rithm of test case generation presented in [4] and defined for the classical ioco
conformance relation. In few words, the algorithm consists in a simultaneous
traversal of the modified execution tree and a test purpose defined as selected
finite paths of the tree, in order to stimulate and observe the SUT in such a way
that, as long as possible, the sequence of stimulations and observations corre-
sponds to a trace of the test purpose. In practice, each path of the tree beginning
in the initial state and ending in the final one can be used as a test purpose. Each
algorithm step involves the computation of constraints issued from the values of
messages exchanged in the beginning of the test sequence and the constraints
stored in the symbolic states of the tree and of the test purpose. This process is
repeated until a verdict is emitted together with a testing report illustrating the
trace (exchange of values) and explaining which conditions lead to that verdict.

Fig. 5. Verdicts for hidden channels.

Fig. 5 shows results when the algorihm is performed with the test purpose
characterised as the restriction of the tree in Fig. 4 with η8 as the (accept)



state. In case (a), the tester sends the stimulation u client duration → 12,
u client amount → 1000, u client id → 42 and observes δ. The observation
belongs to a trace of the execution tree but not of the test purpose. So, we
obtain the inconclusive verdict. The report produces the two scenarios as shown
in Fig. 6: (1) the LS does not send the approve answer or, (2) the LS sends the
approve answer, but does not send the monthly fee and minimum duration. In
case (b), the tester stimulates the SUT with the sequence u client duration →
12, u client amount → 1000, u client id → 42 and observes the monthly fee
proposed by the LR-WSC, followed by the message Good bye. The algorithm
produces the verdict pass with its corresponding scenario report (Fig. 5). In [2],
more examples are available.

Fig. 6. Two possible scenarios when observing δ after sending the client information.

In this article, we have shown an example of how to test a WSC (orches-
tration) from its specification taking into account that WSs are connected to it
during the testing phase. This corresponds to a situation of test in context or
embedded testing for which no knowledge is available of the rest of the system
(made of WSs invoked by the WSC). The complete formal description can be
found in [2].

References

1. L. Bentakouk, P. Poizat, and F. Zäıdi. A Formal Framework for Service Orches-
tration Testing based on Symbolic Transition Systems. In International Conference
TESTCOM/FATES 2009, Eindhoven, the Netherlands, 2009. Long version as tech-
nical report of LRI, University of Paris-Sud.

2. J. Escobedo, P. Le Gall, C. Gaston, and A. Cavalli. Examples of testing scenarios for
web service composition. Technical Report 09003 LOR, TELECOM & Management
SudParis, http://www.it-sudparis.eu/, 22 pages, 2009.

3. A. Alves et al. Web Services Business Process Execution Language Version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, April 2007.

4. C. Gaston, P. Le Gall, N. Rapin, and A. Touil. Symbolic Execution Techniques
for Test Purpose Definition. In Proc. of the 18th Int. Conference TestCom 2006,
volume 3964 of LNCS, pages 1–18. Springer-Verlag, 2006.


