
A TESTING METHODOLOGY FOR AN OPEN
SOFTWARE E-LEARNING PLATFORM

Ana Cavalli, Stéphane Maag, Sofia Papagiannaki and Georgios Verigakis
GET / Institut National des Télécommunications
Laboratoire SAMOVAR / UMR CNRS 5157
9 rue Charles Fourier
F-91011 Evry Cedex, France
e-mails : {Ana.Cavalli, Stephane.Maag, Sofia.Papagiannaki, Georgios.Verigakis}@int-
evry.fr

Fatiha Zäıdi
University of Paris Sud 11,
Laboratoire de Recherche en Informatique,
UMR CNRS 8623
Bat. 490 University of Paris Sud
91405 Orsay Cedex, France
e-mail : Fatiha.Zaidi@lri.fr

Abstract This paper presents an outline of a methodology for the test of an open
software e-learning platform. The methodology includes a test genera-
tion method from UML descriptions, in particular Sequence, Activity,
Class diagrams and Navigation maps. It also includes data modelling
proposing two approaches: one based on OCL and the other on UML
profiles. The studied open software e-learning platform is dotLRN, an
open source enterprise-class suite of web applications and portal frame-
work for supporting course management, online communities and col-
laborations. The work presented in this paper is being developed in the
framework of the E-LANE1 project, an European and Latin American
collaboration for the creation of an open software integrated platform
for e-learning.

Keywords: UML, dotLRN, XMI, OCL, testing methodology, test generation meth-
ods

1http://www.e-lane.org/



2

1. Introduction
In the last few years major progress has been achieved in the de-

sign of e-learning methodologies and platforms, particularly developing
tools and methods to facilitate to users the access to these technologies.
More recently, this evolution has strengthened the idea to develop open
software platforms by integrating existing applications already used for
e-learning. In this context, educational organizations can organize the
teaching of a collection of courses using e-learning technologies, overcom-
ing the geographical barriers, addressing to a larger audience and last
but not least, by reducing the costs. To reduce the costs, organizations
only need to deploy a powerful web server with the goal that the users
may access these services using an open software platform connected to
internet. Moreover, these platforms are designed to stimulate users to
use and integrate new services.

This paper presents the work being developed in the framework of
the European-Latin American New Education (E-LANE) project, an
European and Latin American collaboration for the creation of an open
software integrated platform for e-learning in which GET/INT is a part-
ner. This project is part of the European Commission program @LIS
Demonstration Projects. The base platform for the development of E-
LANE is dotLRN, which is an open software platform composed by a
suite of web applications and a portal framework of an e-learning system.

These open software e-learning platforms integrating existing applica-
tions developed by different teams need to be tested to insure that these
applications are integrated together smoothly and correctly. The inte-
gration of new services by users also needs to be checked to guarantee the
systems functionalities are preserved. In particular, these systems are
exposed to many threats: a web server has to respond to requests from
each node in the network. For instance, testing should guarantee that a
user cannot gain permissions over the system he is not supposed to have.
In addition to this, modern web applications are becoming increasingly
complex and mission critical. This situation becomes even worse because
of the lack of standardization in the web clients (browsers). Testing has
to assert the system usability. For instance, an user is unable to com-
plete a process because the content of the web page does not appear
correctly or, due to a slow network connection, he may be unable to
login because of an unrealistic timeout value. Our approach takes into
account how these functional aspects have been implemented, checking
that they conform to the specification.

In this paper, we propose a testing methodology for the dotLRN plat-
form based on a test generation method and present some ideas of how



3

to test new services integrated by the users. We also give a short pre-
sentation of a new approach for testing e-learning services, which is
complementary of the test generation method.

The methodology presented in this paper is inspired by the work pre-
sented in [1, 4], which describes how UML diagrams developed in the
Analysis phase are analyzed in an automated way to produce test cases.
In relation to this work the paper presents several new contributions.
First at all, none of these work is well adapted to the test of a web
application tool. In our work, we need to check the graphical user inter-
faces but also the content of the generated pages. There is an extension
of UML for Web Applications but it is more focused on the Design View.
One of the contributions of this paper is to provide an answer to these
issues. Therefore, in order to produce diagrams which convey the infor-
mation needed to feed our tests we considered the work presented in [8]
and [7].

Other contributions given by this paper are the following: to present
the techniques and tools which are used for the conformance testing of
the platform. The methodology we propose includes the following steps:
description of the web services in UML, in particular use cases using Ac-
tivity diagrams, Sequence diagram, Class diagram and Navigation map;
export of diagrams into a XMI format; parsing of XMI formats in order
to generate test scripts; generation of tests scripts (using the different
languages for scripts). This paper also presents data modelling propos-
ing two approaches: one using Object Constraint Language (OCL) [10]
and the other using a UML profile.

Finally, this paper presents the perspectives of this work, in particular
we shortly introduces a new approach for testing that is complementary
to the previous one presented in this paper. In this new approach, we
propose to describe in OCL the expected properties of the web service
and to check these properties on the service execution traces.

In the following sections the article first describes the dotLRN plat-
form (section 2). Section 3 presents how to specify dotLRN using UML
models for testing. In section 4, we describe the tools to automate
the test generation from these models. Section 5 introduces the two
approaches proposed for data modelling and section 6 presents the per-
spectives for this work. Finally, section 7 gives the conclusion.



4

2. The dotLRN e-learning platform
dotLRN 2 is a web based e-learning platform and portal framework,

designed to support course management, online communities and col-
laboration. It is open source and built over the OpenACS 3, a toolkit
for building scalable, community-oriented web applications.

In dotLRN there are three main portal types: user, class and commu-
nity portals. The user portal is the private space that each user owns,
while the class and community portals contain all the pages related to a
specific class or community. Each of these three portal types is divided
into four sections: the main space, the calendar, the files and the control
panel. The pages in dotLRN are composed of portlets. Portlets are small
portals that have some specific functionalities, like the forums, the news
or the calendar.

A user portal is created automatically whenever a new user is regis-
tered in dotLRN, but the class and community portals are created by
the site-wide administrator according to the needs of the users. When
a new class or community portal is created, the site-wide administrator
assigns one ore more users as administrators of this portal. For example,
for computer science class portal, the administrators can be the professor
and his teaching assistants, while for a photography group community
portal, the administrator will be one or more students. The responsibil-
ities of a portal administrator are to add content, customize the layout
and decide the policy of the portal.

When a class or community has an open policy, any user can join,
while when the policy is closed only the administrator can add users. A
third policy exists, the wait policy, where any user can ask to join and
then the administrator will decide to accept or deny this user.

3. UML models for testing
In order to derive our test cases, we need to grasp and describe the

functionality of the system in a formal way. A model-based approach de-
velopment of Web applications can be performed using UML techniques
and UML notation. We use a design methodology which is based on a
UML extension for hypermedia [9]. It consists of three main steps that
constitute the conceptual model, the navigation map, and the presenta-
tion model.

The conceptual model is built taking into account the functional re-
quirements captured with use cases. We discover the use cases of the

2http://www.dotlrn.org
3http://openacs.org/



5

system under consideration and document them in a Requirements Doc-
ument which contains the scope of the system, the main actors, the use
case diagram and textual description of each use case [6]. The output of
this step is not directly used as an input to our test suite but it is im-
portant in order to design the UML diagrams which actually constitute
our input data.

From this conceptual model, the navigation space model, also repre-
sented as a static class model, is constructed. It defines a view on the
conceptual model showing which classes of this latter may be visited
through navigation in the Web application. Finally, a dynamic pre-
sentation model is represented by UML sequence diagrams describing
the collaborations and behaviors of the navigational objects and access
primitives. In order to specify our model, the following diagrams are
involved:

Class Diagram to introduce the main classes of the system.

Activity Diagram for each actor to display dependencies among
the use cases.

Navigation Map to provide information about the dynamic content
of the web pages.

Sequence Diagram for each use case describing the main and the
alternative scenarios of the use case to represent the dynamic pre-
sentation model.

dotLRN Specification

exported in XMI
UML diagrams

dotLRN UML Model

SMW XMI Parser
Test Implementation
using Python scripts

Figure 1. Outline of our methodology

From these three previous steps, we progress in our testing process.
These diagrams are exported in an XMI format. This activity is sup-
ported by all the modern CASE tools like ArgoUML and Rational Rose.
Afterwards the XMI is parsed and we produce a program which connects



6

to the web server and makes requests according to the given scenario in
the Sequence Diagram. Finally, the web page of the response is exam-
ined to verify if it conforms with the specification. Figure 1 presents
briefly the different steps of our study.

3.1 From Conceptual Model to Navigation Map
In order to specify the dotLRN platform we first need to build a

conceptual model of the application domain taking into account the
functional requirements captured with use cases. Techniques such as
finding classes and associations, and defining inheritance structures are
used.

Then, the Navigation Map of a web application introduced in [8] is
used because it provides information about the dynamic content of each
web page which is part of the system as well as the links between the
different web pages. This information is essential during the parsing of
the HTML pages (section 4.3).

The Navigation Map is a Class diagram where each web page is a class
and a link between two pages is an association between the two respective
classes. This extension of UML for web applications introduces a number
of stereotypes (such as indexes, guided tours, queries and menus), tagged
values and constraints.

The Table 1 summarizes the mapping we use between web entities
and metamodels in a class diagram.

3.2 Modelling Use Case Dependencies
The use cases of a system are not independent. Apart from the include

and extend relationships among them, there are also sequential depen-
dencies. In order one use case to be executed, another should have taken
place before. For instance, in dotLRN the user should login before being
able to do anything else. Since the automation of the testing procedure
is also of concern, we have to describe somehow these dependencies. We
achieve this by introducing an activity diagram where the vertices rep-
resent use cases and edges are sequential dependencies between the use
cases.

An edge in such a diagram denotes that the use case in the tail has to
be executed before the use case in the head. fork and join are used when
some use cases should be executed independently in order another one
to take place. For instance, in dotLRN “Add subject” and “Add term”
are two independent use cases which should be synchronized so as the
“Add class” can be tested.



7

Web Entity UML Metamodel Tagged Values

web page ¿web pageÀ class TitleTag: the title of the page
RelativeURL: the relative URL of the
page
BodyTag: the set of attributes for the
¡body¿ tag

page scripts ¿web pageÀ class operations

page variables ¿web pageÀ class attributes

link ¿linkÀ association

form ¿formÀ class Method: GET or POST

form types ¿formÀ class attributes
stereotyped by ¿form inputÀ

portal page ¿portal pageÀ class TitleTag: the title of the page
RelativeURL: the relative URL of the
page
BodyTag: the set of attributes for the
¡body¿ tag

portal element ¿portal elementÀ class BelongTo: the ¿portal pageÀ it belongs

Table 1. Mapping Web Applications to UML Class diagrams. Stereotypes are pre-
sented inside ¿ À.

Furthermore, in this diagram we have included also the parameters
of the use cases. The reason is that sometimes it is easier to realize the
dependencies between the parameters of the use cases. For instance, in
the above example, in order to add a new class, the administrator should
provide information about the term(Term.name) and the subject of the
class(Subject.name). As a consequence, there is a dependency between
the “Add class” use case and the “Add Term” and “Add Subject” use
cases.

Finally, in the diagram the use cases are organized in group accord-
ing to the object are associated with. These objects are instances of
the classes in the Class diagram. Figure 2 shows the respective activity
diagram for the Administrator. According to this latter, “Add depart-
ment” should precede “Add subject”. Also, “Add term” and “Add sub-
ject” should occur before “Add class”, and “Add user” and “Add class”
should take place before the execution of “Assign user to class”. Finally,
“Manage User” depends on “Add User” since first the user should be
added to the system and then the administrator can edit his profile and
modify his permissions.

In the testing phase, before simulating the scenarios in the Sequence
diagrams these activity diagrams should be scanned to obtain the se-
quence by which the use cases will be tested.



8

� � � �� �
� � �� �� � 	

� � � �
�� � � � �� � � � 	� 
 � � �� � �� 
 � � ���

� � � � � �
�� �

� � � �
�� � � � �� � � � 	 � 
 � � �� � �� 
 � � ���

� � � � � �
�� � � � �� � � � 	� 
 � � �� � �� 
 � � ���

� � � �
�� � � � �� � � � 	 � 
 � � � � � �� 
 � � ���

�� � � � �
�� � � � �� � � � 	 � 
 � � �� � �� 
 � � ���

� � � � � �
�� � � � �� � � � 	� 
 � � ��

� � � � �
�� � � � �� �� � 	� 
 � � �� � �� 
 � � ���

�� � � � �
�� � � � �� �� � 	 � 
 � � �� � �� 
 � � ���

�� � � � �
�� � � � �� � � � 	 � 
 � � �� � �� 
 � � � �

�� � � � �
�� � � �

� � � � � �
�� � � � �� � � � 	� 
 � � �� � �� 
 � � ���

� � � � � �
�� � � � �� � � � 	� 
 � � �� � �� 
 � � ���

� � � � � �
�� � � � �� �� � 	� 
 � � �� � �� 
 � � ���

�� � � � �
�� � �

� � � � � �
�� � � � �� � � � 	 � 
 � � �� � �� 
 � � ���

� � � � � �
�� � � � �� � � � 	� 
 � � �� � �� 
 � � ���

� � � � � �
�� � � � �� � � � 	� 
 � � �� � �� 
 � � ���

� � � � � �
�� � �

�� � � � �
�� � � � �� � � � 	 � 
 � � � � � �� 
 � � ���

�� � � � �
�� � � � �� � � � 	 � 
 � � �� � �� 
 � � ���

� � � � � �
�� � � � �� � � � 	 � 
 � � �� � �� 
 � � ���

� � � � � �
�� �

� � � � � �
�� � � � �� �� � 	� 
 � � �� � �� 
 � � ���

�� � � � �
�� � � � �� �� � 	 � 
 � � �� � �� 
 � � ���

�� � � � �
�� � � � �� � � � 	 � 
 � � �� � �� 
 � � � �

�� � � � �
�� �

��
�

� � � � � �
�� � � � �� � � � 	� 
 � � �� � �� 
 � � ���

� � � � � �
�� � � � �� � � � 	� 
 � � �� � �� 
 � � ���

� � � � � �
�� � � � �� �� � 	� 
 � � �� � �� 
 � � ���

�� � � � �
�� �

��
�

�� � � � �
�� � � � �� � � � 	 � 
 � � �� � �� 
 � � ���

� � � � � �
�� � � � �� � � � 	� 
 � � �� � �� 
 � � ���

� � � � � �
�� � � � �� � � � 	� 
 � � �� � �� 
 � � ���

� � � � � �
�

� ���
�� � � � �

�� � � � �� � � � 	 � 
 � � �� � �� 
 � � ���
�� � � � �

�� � � � �� � � � 	 � 
 � � �� � �� 
 � � ���
� � � � � �

�� � � � �� � � � 	 � 
 � � �� � �� 
 � � ���
� � � � � �

� ���
� � � � � �

�� � � � �� � � � 	� 
 � � �� � �� 
 � � ���
�� � � � �

�� � � � �� �� � 	 � 
 � � �� � �� 
 � � ���
�� � � � �

�� � � � �� � � � 	 � 
 � � � � � �� 
 � � ���
�� � � � �

� ���
� � � � � �

�� � � � �� � � � 	� 
 � � �� � �� 
 � � ���
� � � � � �

�� � � � �� � � � 	� 
 � � �� � �� 
 � � ���
� � � � � �

�� � � � �� �� � 	� 
 � � �� � �� 
 � � ���
�� � � �

� � ���
�� � � � �

�� � � � �� � � � 	 � 
 � � �� � �� 
 � � ���
� � � � � �

�� � � � �� � � � 	� 
 � � �� � �� 
 � � ���
� � � � � �

�� � � � �� � � � 	� 
 � � �� � �� 
 � � ���
� � � � �

�� � � � �� � � � 	 � 
 � � �� � �� 
 � � ���
�� � � � �

�� � � � �� � � � 	 � 
 � � �� � �� 
 � � ���
�� � � � �

�� � � � �� � � � 	 � 
 � � �� � �� 
 � � ���
� � � �

� � � � � � � �
�� � � � �� �� � 	� 
 � � �� � �� 
 � � ���

�� � � � �
�� � � � �� � � � 	 � 
 � � � � � �� 
 � � ���

�� � �

� �� � �� 
 � � ���
� � � � � �

�� � � � �� �� � 	� 
 � � �� � �� 
 � � ���
�� �

� �� � � � 	� 
 � � �� � �� 
 � � ���
� � �

User

Add user(
User.email
)

Class Term Subject Department

Add department(
Department.name
)

Add subject(
Department.name, 
Subject.name
)

Add term(
Term.name
)

Add class(
Subject.name, 
Term.name,
 Class.name
)

Assign user to class(
User.email,
Class.name
)

Manage User

Figure 2. Activity diagram dependencies for “Assign user to class” use case

3.3 Sequence Diagram
In UML, a Sequence diagram realizes the interaction of objects via the

interchange of messages in time. Similarly, as in activity diagrams the
objects are instances of a class described in the Class diagram. Usually
the sequence diagrams describe a single scenario.

We enumerate the messages as described in [4] so we can illustrate
a number of alternative scenarios in the same diagram. According to
this convention, capital letters denote alternatives (error messages). By
adopting this tactic we can derive easily the different Message Sequences
[1] related to the same use case. Figure 3 shows the respective sequence
diagram for the “Login” use case.

Our Sequence diagrams are also parameterized since input parameters
can influence the execution and constitute separate Choices [1]. Such a
parameter can be the email of a User. Whether this email belongs to a
registered user (exists in the database) or belongs to a new user (does
not exist in the database) determines what is going to happen later. In
the former case the dotLRN page is displayed otherwise a warning ap-
pears in the Log In page.
During the testing procedure, if there are such branches and parameters



9

Figure 3. Sequence diagram for “Login” use case

then the produced program has to fork to test all the different possibil-
ities.

Table 2 summarizes the actions we use in the Sequence diagram or-
ganized as HTTP requests of the user and possible HTTP responses
returned to the user by the server, since the success or the failure of our
tests depends upon these requests and the respective responses. Since
the system under testing is a web application there are three possibilities
for the user: either navigates to a URL or requests a web page through
another one (clicks on a link to the wanted page) or submits informa-
tion by filling an HTML form. The system answers either directly by
returning the requested page (display) or by giving an error message.

4. Automating the test generation
To automate the test generation, our goal is first to parse the UML

diagrams obtained from the previous steps. Therefore, based on these
diagrams, we generate the necessary requests to the dotLRN server and
then check if the server’s replies are as expected by the previous models.
Since dotLRN is a web application, the requests are HTTP requests that
simulate a user navigating the site through a web browser. The possible
actions are to fill and submit a form, to click on a link or to navigate



10

HTTP request HTTP possible responses

navigate(url:String): display(page:WebPage):
User makes an HTTP request for a url Web server returns the requested web page

link(target:String): display()ege:WebPage:
User clicks in a HTTP link Web server returns the target web page

submit(page:WebPage, form:Form, display(page:WebPage):
data:List): in case of legitimate input the web server
User submits an HTTP form responses with a new web page

error(msg:String):
in case of wrong input the web server
responses with the previous page displaying
a warning message

Table 2. Actions of the Sequence Diagram

to a given URL. Similarly the server’s replies are HTTP Responses that
can either contain an HTML page, a redirection to another URL or an
error message. Assuming the first case, the HTML page of the response
has to be parsed to see if its contents are the expected ones.

Based on these requirements, we had to choose the components that
were required to build our test suite.

4.1 The programming language
Since we are dealing with UML, it would be more efficient to choose

an object-oriented language. We also wanted this language to provide
easy string handling and a high level of abstraction for network com-
munications. The programming language that we found as the most
suitable was Python [5]. Python is a modern object-oriented language
which combines remarkable power with very clear syntax. Its built-in
modules provide numerous functions that facilitate string handling and
networking.

4.2 Parsing and executing the UML
To parse the UML diagrams we could either use the API of a UML

tool, or export the diagrams in an XMI format that would allow to
parse them using an XML parser. XMI is a standard created by the
Object Management Group (OMG) to represent UML diagrams in XML.
Exporting to XMI was the solution we preferred since it does not tie us
to a specific tool.

Although we could use any XML parser to parse the XMI, due to
the high complexity of the standard we decided to use a specialized



11

XMI parser. The one we used was the parser included in the System
Modelling Workbench tool 4. It is free, open-source and also is written in
Python, making it easier to integrate with our code. Being open-source
it also enabled us to fix some incompatibility issues that appeared when
used with XMI produced by the Poseidon tool.

4.3 Parsing the HTML pages
Since HTML mixes presentation and content data, the HTML output

of dotLRN does not allow us to extract the information we want without
first looking the implementation details. To avoid this we need to change
the page templates of dotLRN in order to provide the data in a more
formal way. We achieve this by adding id attributes to the tags we want
to query. For example, to the td tag that contains the user’s name in
the user pages will have an attribute id=“username”. That way we can
query any page independently of the implementation of the layout of the
page.

4.4 Example implementation
In this section we give the skeleton of a possible solution. In the code

that follows we have left out some code (mainly some functions) in order
to reduce the size and increase the clarity.

1 from urllib import urlopen

2 from smw.io import XMIStreamer

3 from smw.metamodel import UML14

4

5 class TestSuite:

6 returnedPage = None

7

8 def validateLink(self, link):

9 operation = self.getOperation(link)

10

11 if operation.name == "navigate":

12 url = self.getOperationParameters(operation)

13 fd = urlopen(serverbase + url)

14 self.returnedPage = fd.read()

15 fd.close()

16

17 elif operation.name == "display":

18 params = self.getOperationParameters(operation)

19 pageTemplate = generatePageTemplate(params)

20

21 parser = dotHTMLParser(pageTemplate)

22 parser.feed(returnedPage)

23

4http://www.abo.fi/˜iporres/html/smw.html



12

24 def execute(self, source):

25 xmi = XMIStreamer(UML14)

26 fd = open(source, "r")

27 model = xmi.loadFromStream(fd)

28 fd.close()

29

30 sequenceDiagram = self.getSequenceDiagram(model)

31 for link in self.getLinks(sequenceDiagram):

32 self.validateLink(link)

Function execute (line 24) is the main function of the class and it reads
the XMI code from the file defined in the variable source that is given
as a parameter. It then isolates the Sequence Diagram (for this example
we assume that only one exists) and then validate one by one all its
messages (links). All the getX functions (like getSequenceDiagram and
getLinks) are trivial to write and they consist of navigating through the
structures generated by SMW to get a specific data. They are assumed
to be defined inside the class.

The validation of each link depends on the operation. If the operation
is navigate (lines 11-15) then we have to extract the destination URL
from the parameters and then get the requested page. We assume that
destination is a relative URL, so we use the serverbase variable (line 13)
to make it absolute. The page is then kept in the returnedPage variable
to be used by the following commands.

In the case of a display operation (lines 17-22), we create a template
of the page based on the operations parameters and then use our HTML
parser to compare the returnedPage with the template. The skeleton of
the parser is as follows.

1 from HTMLParser import HTMLParser

2

3 class dotHTMLParser(HTMLParser):

4 pageTemplate = None

5

6 def __init__(self, pageTemplate):

7 self.pageTemplate = pageTemplate

8

9 def handle_starttag(self, tag, attrs):

10 for attr in attrs:

11 if "id" in attr:

12 validateElement(tag, attr)

The dotHTMLParser class inherits the HTMLParser class and over-
rides the handle starttag function to search for elements that have an
id attribute. Every such element will be validated according to the
pageTemplate that was given during the instantiation (the details of the
validation are not shown).



13

Similarly to the two example operations we can write the code to
handle the rest of the supported operations.

5. Inserting Test Data into the Model
In order to execute our tests and observe the behavior of the system

it is necessary to substitute the formal parameters by the actual values.
For instance in case we want to test whether a user with a valid email
and password can log in successfully in the system, we have to provide
to the test a valid pair of email and password. In analogous works the
tester provides this input through the user interface of the test suite
before the execution of each test. In our case since we are interested in
automatically creating some scripts which will be immediately executed
we would like to integrate somehow this information in our model.

Below we present two different approaches on how to deal with this
problem.

5.1 Modelling Test Data with OCL
For that purpose in [11] OMG defines a Data Pool as a collection of

values which is used by test components as a source of values for the
execution of the test cases. Unfortunately they do not describe how
these values can be integrated into the model but they just propose
that they can be represented by utility parts or be logically described
by constraints. In [3] the authors use OCL constraints expressed in a
static model in order to identify the test domains from which test cases
can be selected. However this approach requires extra effort in order
to discover these test domains and also to extract random values from
them. However, we think it is possible to use OCL expressions in order
to directly assign values to attributes and to parameters and relate them
to the model entities. In OCL, through invariants and init expressions
one can assign values to an attribute but since these constraints have
to be always true all the instances of an entity will hold these values.
This is different from what we need in our case since we want to define
different attribute values for different instances. For instance, we need
two instances of a class user to have different values for the email and
the password.

However, in a “let” expression we can define a variable which con-
tains all the related values. Since we want these variable to be visible
outside the specific constraint we define them inside a “definition” con-
straint. According to the specification, a “definition” constraint must
be attached to a Classifier. All variables and operations defined in this
constraint are known in the same context as where any property of the



14

Classifier can be used. Moreover, OCL 2.0 introduces Tuples in which
several values can be composed. Combining all these, we could associate
a classifier with a number of values of different type which represent an
instance. For example, in case we have defined a class “User” with two
attributes “email” and “age” and we want to represent two user instances
“user1” and “user2” we could define the following OCL expression:

context User

def: let user1 = Tuple{email: String = ’Sofia’, age: Integer = 12}

let user2 = Tuple{email: String = ’Georgios’, age: Integer = 5}

The advantages of using OCL is that OCL relies in types of UML
diagrams so it is strongly related to our model and also it is easy to
be checked for syntactic correctness and for consistency with the model
using either the OCL tools integrated into the CASE tools or more
sophisticated OCL parser. Moreover OCL expressions appear in the
XMI representation of the model. However, Tuples are only introduced
in OCL 2.0 and many CASE tools like Poseidon and ArgoUML do not
support this version.

5.2 Modelling Test Data with UML Profiles
Another approach to the problem of representing data values in UML

is the use of a UML Profile. UML Profiles is an extension mechanism
provided by UML that enables us to add specific features. UML profiles
are implemented using stereotypes and tagged values.

Different solutions could be proposed for the design of a suitable UML
Profile, but our solution will focus on simplicity and ease of implemen-
tation. When we want to represent an instance I of a class C, we can
define I as a new class having the same attributes and operations with
C. Each attribute of I will have a tagged value containing the actual
value of the respective attribute of C. If we want a tagged value to ref-
erence to an instance J of some other class then we use the notation
/J. Additionally, to show that I is of type C, it will have a stereotype
¿CÀ.

This method requires some extra development effort in order to check
the correctness of the given values. However, contrary to the first
method, it can be used with older versions of UML that are supported
better from most of the currently available open source CASE tools.

6. Perspectives
The software tool presented in the previous sessions perform the pars-

ing of the UML specification, the generation and translation of the tests



15

to the XMI form and their execution on the dotLRN platform. Another
option that we have is in the way we execute the UML diagrams, that
is it may gives us also another set of possibilities. The approach that we
introduced automatically parses and executes the UML diagrams. How-
ever it could be equally possible instead to generate the code that will do
the specified test. The generated code could be written in any language
and will have the benefit that it can be used to run the tests from any
computer, since it will run without the need of our software. Of course
this will need further development effort, but since it is independent of
the overall design it can be left for later stages of the project.

Concerning the test, in a first step, we started with the test of com-
munication interfaces and user requirements. Next steps will be the test
of authentication mechanisms and application contents (for instance, to
check the content of the required web page). For that purpose, we need
to treat data at the specification level. Indeed, to test if a user is per-
mitted to access to the system, we need to check if it enters his proper
login and password. To deal with this problem, two approaches were
proposed: one based on OCL expressions and another one on UML pro-
files. However, both present advantages and drawbacks and we plan to
investigate further both solutions.

Another issue that we still investigate is related to a new test method.
The method presented in this paper is based on a UML description of
the system to be tested. Experimentation results, with this approach,
are very promising. The automation of the testing procedure reduces the
time and costs to produce e-learning reliable software tools. In addition,
the test of users requirements contributes to the design of tools with
easy and convivial interfaces.

Nevertheless, we decide to propose another step-wise approach to au-
tomate the test generation and execution. This approach has no interac-
tion with the system under test as the test generation method presented
in this paper. Moreover, we do not need to use sets of UML diagrams.
This new approach is well fitted for service developers that do not in-
tend to spend time at the analysis phase. The approach is based on the
verification of service properties directly on the service trace execution.
For that purpose, we install a sniffer between the client and the server
to obtain dynamically all the html pages of each request on the service.
At the specification level, we associate to each class and each operation,
properties that have to be verified once the execution of the service is
performed. These properties are written using the OCL language and
represent the requirements of the web service that we want to test. This
language is not usable straightforward. We need to transform it in order
to check it on the traces. Thus, we translate the OCL described prop-



16

erties in regular expressions. Afterwards, these regular expressions are
those that we will check on the real traces execution. At GET/INT, we
have developed a tool to perform this verification [2].

This approach using OCL constraints allows to define formally func-
tionalities that services are intended to supply. Furthermore, this solu-
tion can also be used for the test of new services. Using this approach, we
are able to check if the new added service (i.e. new functionality) works
properly according to the OCL defined constraint. Moreover, we are
able to test that existing services are preserved, performing regression
tests by reusing OCL constraints already checked.

7. Conclusion
We have presented in this paper a new approach to test the function-

ality of an e-learning, web based system, the dotLRN platform. This
platform presents the advantage to be an open source toolkit for build-
ing scalable, community-oriented web applications.

The method and the software tool we propose has been applied to
dotLRN platform but they are generic enough and can be applied to
other e-learning and web based systems.

The test method is based on the test of objectives, which are selected
taking into account the experts and designers advice. These tests are
based on use cases and cover all relevant aspects of the system behavior.
Even if we cannot guarantee a total error coverage, it can be guaranteed
for the selected tests. We propose a UML models technique for testing,
that relies on a design methodology divided in three main steps, i.e. the
conceptual model, the navigation model and the presentation model.

References

[1] F. Basanieri, A. Bertolino, and E. Marchetti. The Cow suit Approach to Plan-
ning and Deriving Test Suites in UML Projects. Proc. Fifth International Con-
ference on the Unified Modeling Language - the Language and its applications
UML 2002, LNCS 2460, Dresden, Germany, pages 383–397, September 2002.

[2] Emmanuel Bayse, Ana Cavalli, Manuel Nunez, and Fatiha Zaidi. A passive
Testing Approach based on Invariants: Application to the WAP. Computer
Networks journal, 2003.

[3] Mohammed Benattou, Jean-Michel Bruel, and Nabil Hameurlain. Generating
Test Data from OCL Specification. In Proceedings of the ECOOP’2002 Work-
shop on Integration and Transformation of UML models (WITUML’2002), 2002.

[4] L. C. Briand and Y. Labiche. A UML-Based Approach to System Testing.
Software and Systems Modeling, 1(1):10–42, 2002.

[5] Jr. Drake Christopher A. Jones, Fred L. Python & XML. O’Reilly & Associates,
1st edition, 2001.



17

[6] A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 1st edition, 2000.

[7] J. Conallen. Modelling Web Application Architectures with UML. Communi-
cations of the ACM, 42(10):63–70, 1999.

[8] J. Conallen. Building Web Applications With UML. Addison-Wesley, 2nd edi-
tion, 2002.

[9] N. Koch, H. Baumeister, R. Hennicker, and L. Mandel. Extending UML to
Model Navigation and Presentation in Web applications. Proc. of Modeling
Web applications in the UML Workshop, UML2000, 2000.

[10] UML Object Constraint Language (2.0 submission). http://www.omg.org/cgi-
bin/apps/doc?ad/03-01-07.pdf.

[11] UML Testing Profile (Draft Adopted Specification).
http://www.omg.org/docs/ptc/03-07-01.pdf.


