Two Complementary Tools for the Formal Testing of Distributed Systems
with Time Constraints *

Ana Rosa Cavalli Edgardo Montes de Otawissam Malloult-* and Mounir Lallalt
UInstitut Telecom / Telecom SudParis, CNRS / SAMOVAR, France
{ana.cavalli, wissam.mallouli, mounir.lalla@it-sudparis.eu
2 Montimage Research Labs, 39 rue Bobillot, 75013, Paris)d&ra
edgardo.montesdeoca@montimage.com

Abstract passive testing approaches. In particular the tools imglud
for active testing, algorithms for automated test genenati
The complexity and the variety of the deployed time- from a formal specification (with time constraints) of the
dependent systems, as well as the high degree of reliabilitysystem under test (SUT) and, for passive testing, algogthm
required for their global functioning, justify the care pro to check whether the collected system trace respects a set of
vided to the design of the best possible tests. Moreoverproperties called invariants. These invariants may cantai
it is significant to automate these steps with an aim of re- time requirements.
ducing the time and the development cost and especially Both tools have been integrated into a testing platform
of increasing the reliability of the offered products. Insh that offers several capabilities and allows real experiaen
paper, we present two different tools to test systems withtion for validating protocols, services and applicatiomsi
time constraints. The first one allows to automatically gen- distributed soft real-time environment. By using differen
erate test cases based on model-based active testing techtechniques, the aim is to check whether some protocols ex-
nigues. Whereas the second tool is based on passive testinghanges are correct, as well as to decide if different estiti
approach to check that the collected system traces respect &an cooperate. In addition, it can also be used to decide
set of formal properties called Invariants. whether a service is properly delivered and deployed.
TestGen-IFandTestInvare respectively presented in sec-
Keywords: Formal Testing, Active and Passive Testing, tions 2 and 3. Some features of these tools applications are
Real-Time Systems. briefly provided in section 4.

1 Introduction 2 Active Testing tool

TestGen-1Rool is based on active testing techniques that
Due to the increasing complexity of distributed and real- are used if the interaction with the entity under test is fea-
time systems, formal testing is becoming a critical agtivit sible. In this case, the tester is a program that commu-
to guarantee the respect of functional and security reguire nicates with the system to apply a set of a test scenarios
ments by such systems. This formal testing can be dividedand studly its reaction according to its formal specification
into two categories: (i) the active testing [6, 8] which val- The automation of this kind of tests needs an exhaustive test
idates a system implementation by applying a set of testsuites generation including all possible scenarios. Tolrea
cases and analyzing its reaction and (i) the passive testthis aim, we rely on an automated test generation algorithm
ing [3, 9] (or monitoring) that consists in observing, dgin based a formal specification of the system described in IF

the execution, whether the system behavior conforms to a(Intermediate Format) formal language [4, 5] implemented
set of formal properties. in TestGen-IF

In order to ease both active and passive testing processes,
we have developed two software tools calleestGen-IF 2.1 TestGen-IF Background

and TestInvto automate all the phases of our active and
P 2.1.1 |F Language

*This work has been supported in part by POLITESS French
project (http:/ww.mrt-politess.info/) and SHIELDS fpean project A real-time _System described using IF Ianguagg is com-
(http://ww.shields-project.eu/). posed of active processes running in parallel and intergcti

input

asynchronously through shared variables and message ex- |TESTGEN-IF TooL i)
changes via communication channels or by direct address-

ing. Each IF process is described as a timed automaton ex- (T;;Ogﬁ:;s:es)

tended with discrete data variables, various communicatio . Time signals
. e . . . tates

primitives, dynamic process creation and destruction, and constraints | Messages

urgency attributes on transitions (used to control the time Automatic Test Generation
progress).
2.1.2 Hit-or-Jump exploration strategy II

TestGen-IEmplements an automated test generation algo-

rithm based on a Hit-or-Jump exploration strategy [7] and Aldebaran Format D\I
a set of timed test purposes. This algorithm efficiently con-
structs tests sequences with high fault coverage, avoiding Vs 5

. output output
the state explosion and deadlock problems encountered re- — -
spectively in exhaustive or exclusively random searches. | the implementation of the system |
allows to produce a partial accessibility graph of the SUT @

specification in conjunction with the IF simulator [5]. At
any moment it conducts a local search from the current state
in a neighborhood of the reachability graph. If a state is Figure 1. Basic architecture of the TestGen-IF
reached and one or more test purposes are satisfied (a Hit), tool.

the set of test purposes is updated and a new partial search

is conducted from this state. Otherwise, a partial search is

performed from a random graph leaf (a Jump).

Verdict

is displayed to inform the user. This message is followed
213 |F Simulator by the description of the test purpose that was found. The

number of test purposes already found and the number of
The TestGen-IFtool is based on the IF-2.0 simulator [S] those missing are also provided.
that allows to construct the aCCGSSibiIity graph from an IF Based on this approach’ a test suite is generated (repre_
specification. This simulator is developed by a researchsented by the Test Case Suite box). A test suite is com-
team at Verimag [1], for modeling and simulating asyn- posed of a finite set of test cases (or scenarios) described in
chronous timed systems such as telecommunication protog standard format. It is used to stimulate the implementa-
cols or distributed applications. It uses the IF-2.0 simula tion under test (IUT) to validate its reaction. As output of
tor libraries which provides some functionalities for dret TestGen-IFtool, three files can be generated: (i) thmut-
fly state-space traversal (state representation and sweses puyt.aut file in Aldebaran [10] format containing the system
computation). The tool is implemented in the same imple- pehavior as labeled transition system, (i) tritput.xml
mentation language as the IF-2.0 simulator, i.e. C++ lan-file containing some information about the system execu-

guage. tion (states, event, values of clocks, etc.), and (iii) thet”
. put.sequencédile (in Aldebaran or TTCN [11] format)
2.2 TestGen-IF Architecture containing the timed test cases. This last output is repre-

sented in the Figure 1 by the boxes Aldebaran format and
The active testing tool is illustrated by the Figure 1. The TTCN.
Properties (Test Purposes) box represents the timed system The test generation witflestGen-IFderives its benefits
objectives to be tested. For examplaction = inputsig in from Hit-or-Jump characteristics. It is faster that claabi
state =s when clocke = d” describes an action constraint test generation tools (a gain of almost 20%) and less mem-

that expresses that the sigraj can be received in the state ory consuming. In addition, it avoids the state explosion
s when the valuation of clockis d. and deadlock problems.

The Automatic Test Generation box represents the test
generation procedure combined with the IF specificatidn (.i
file) and the test purposes (.tp file). For the test generation
it is up to the user to choose the exploration strategy of the
generated partial graph he wants to perform during the test In some cases, active testing becomes difficult to per-
generation: in depth or in breath exploration [8]. During form. This is the case when the tester is provided without
this generation, when a test purpose is satisfied, a messagany direct interface (called also Observation and Control

3 Passive Testing Tool

Point) to interact with the IUT or when the implementa- |resmnv Toot
tion is built from components that are running in their envi- :> s
ronment and cannot be shutdown or interrupted for a long Module

period of time. In such situations, there is a particulagrint
est in using passive testing techniques. Indéedtinvtool TESTINV ——
Invariants Checking

does not need to interact with the IUT, it only need to collect — M (trve.faise)
the execution traces and then analyze them according to g m

set ofinvariants[3], without perturbing the IUT’s behavior. E.'>T"EV?:LN"'VS Correctness corection verac

Module

¥

3.1 TestInv Background

311 Invariants Ei)g:ue 2. Basic architecture of the Testinv
The distributed system informal description is studiedrin o
der to disclose particular properties that are true at arny mo
ment: that is why they are called invariants. These invari-
ants can be classified into three categories: (i) simple in-
variants that define packets flow properties via input/outpu
sequences (ii) obligation invariants that define condition
ally mandatory events (iii) timed invariants that express i
put/output sequences with timed constraints.

input and output primitives names as well as relevant data
(e.g. source address, destination address, etc.). This mod
ule includes an interface allowing the user to parametrize
the format of the traces to be collected. In other words, it

is not necessary to modify the module code to process log
files or data streams coming from differentimplementations

(protocols, databases, ...) that use different formats.

The Invariant Correctness Module checks the correctness
Some algorithms that decide the correctness of the proposedf the invariants on a given specification of the studied sys-
invariants with respect to a given formal specification are tem, represented as a Timed Automata. The Testinv tool
provided in [3]. InTestinvtool, we also check whether can perform this verification or not, depending on the user’s
the execution traces observed from the implementation re-choice. If not, then the IF specification of the IUT is not
spect the invariants. In order to perform this phase, we rely needed.
on three algorithms, one for each kind of invariant (sim- Finally, the Invariant Checking module determines if the
ple, obligation or timed). These algorithms are inspired captured traces satisfy the given list of invariants. The

3.1.2 Algorithms

from [2]. model of the output file or data stream can be customized.
For each primitive name we assign the type in terms of in-
3.2 TestInv Architecture put or output. The use of invariants Testinwere first in-

troduced to check properties on communication protocols,

The main task of th@estlinvprototype is to automate the ~Where relevant properties can be expressed as interactions
process of checking the correctness of invariants on real sy between protocols entities and with the environment. These
tem traces. This prototype code has been completely writtenconcepts are extended to be able to express properties that
in JAVA (J2SE 1.4.0 API specification) and the graphical concerns other systems where properties are not only based
interfaces have been developed using the Awt and Swingon inputs and outputs, but also on actions, time stamps,
Java packages. The Regex2 Java package has been usedptedicates and references to different parts of the code.
express invariants as regular expressions. This package pr Do must be noted that the first versioni@stinvallowed
poses classes to match character sequences againstpatteqrotocol based trace analysis and detecting unauthorized
described by regular expressions. A high level description communication packet sequences but was closely tied to the
of the tool is given in Figure 2. WAP protocol. The new version of the tool, has been gener-

In order to start the passive testing process, we first havealized to deal with any protocol or service. Currently, inis
to obtain real traces from a running implementation (the the process of being adapted to application based trace anal
gray box). To obtain such traces, different points of ob- ysis (i.e. database log messages to detect unauthorized SQL
servation (POs) are set-up depending on the needs of thénjections) and code debugging based trace to detect misuse
distributed testing architecture of the SUT (System Under of memory. The use of invariants is being enriched to in-
Test). clude variables and time constraints. It will also be pdssib

The Pre-processing module processes the collected tracdo define a testing architecture to deploy several POs and to
The input file or data stream is transformed to a suitable for- correlate their traces to monitor complex architectures an
mat and is filtered in order to obtain information concerning interactions.

4 Test Tools Applications

TestGen-IF is a recent tool that was applied to several
case studies. In the context of this paper, we choose to
present the experiments we carried out on the ‘Travel ser-
vice. ‘Travel’ is an internal service used by France Tele-
com to manage ‘missions’ corresponding to travels by its
employees. In this case study, a potential traveler can con-
nect to the system to request for a travel ticket and a hotel
reservation during a specific period according to a specific
objective (called mission). This request can be accepted or
rejected by his/her hierarchical superior. In the case of an
acceptance, the travel ticket and hotel room are booked by
contacting a specific travel agency. The specification &f thi
‘Travel’ system is performed using the IF formalism. Sev-
eral test purposes with time constraints are proposed-infor
mally by France Telecom and are specified according to our

methodology to automatically generate test cases that are [6]

later executed on a prototype version of Travel system.

The first prototype version of Testlnv has been applied
for validating protocols and services related to mobile en-
vironments (i.e. GSM/WAP, GPRS, UMTS). The aim was
to check whether some protocol exchanges in WAP over
GSM are correct, as well as to decide if different entities
cooperate correctly. In addition, the tool was used to deter
mine whether a given network service functions correctly.
In the context of this paper, we want to present the appli-
cation of Testlnv to a real-time protocol called RTSP [12]
(stands for Real Time Streaming Protocol). RSTP is a pro-
tocol for use in streaming media systems which allows a
client to remotely control a streaming media server, issu-
ing VCR-like commands such as "play” and "pause”, and
allowing time-based access to files on a server.

5 Conclusion

In this paper, we present two complementary tools
for the Formal Testing of Distributed Systems with Time
Constraints. TestGen-IF allows to automatically generate

test cases based on model-based active testing techniqueplo]
Whereas Testlnv bases on passive testing approach to check

the respect of collected system traces to a set of formalprop
erties callednvariants Both tools improves performances
of classical tools with similar objectives and are the resil
years of research in the testing field disseminated in severa

D. Hogrefe and A. Wiles, editorsiestCom volume
2644 of Lecture Notes in Computer Sciengeages
295-310. Springer, 2003.

[3] E. Bayse, A. R. Cavalli, M. Nlfez, and F. Zaidi. A
Passive Testing Approach Based on Invariants: Appli-
cation to the WAP.Computer Networks48(2):235—

245, 2005.

[4] M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P.
Krimm, L. Mounier, and J. Sifakis. IF: An Interme-
diate Representation for SDL and its Applications. In

SDL Forum pages 423-440, 1999.

[5] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The
IF Toolset. In M. Bernardo and F. Corradini, editors,
SFM volume 3185 of_ecture Notes in Computer Sci-

ence pages 237-267. Springer, 2004.

L. B. Briones and M. Rohl. Test Derivation from
Timed Automata. In M. Broy, B. Jonsson, J.-P. Ka-
toen, M. Leucker, and A. Pretschner, editdvydel-
Based Testing of Reactive Systemmume 3472 of
Lecture Notes in Computer Sciengmages 201-231.
Springer, 2004.

[7] A. Cavalli, D. Lee, C. Rinderknecht, and F. Zadi. Hit-
or-Jump: An Algorithm for Embedded Testing with
Applications to IN Services. lfformal Methods for
Protocol Engineering And Distributed Systerpages
41-56, Beijing, China, october 1999.

[8] A. R. Cavalli, S. Maag, W. Mallouli, M. Marche, and
Y.-M. Quemener. Application of Two Test Genera-
tion Tools to an Industrial Case Study. TestCom
volume 3964 oflLecture Notes in Computer Science
pages 134-148. Springer, 2006.

[9] A. R. Cavalli and D. Vieira. An Enhanced Pas-
sive Testing Approach for Network Protocols. In
ICN/ICONS/MCL. page 169. IEEE Computer Society,
2006.

J.-C. Fernandez, H. Garavel, A. Kerbat, L. M. R. Ma-
teescu, and M. Sighireanu. CADP : A Protocol Valida-
tion and Verification Toolbox. IMhe 8th Conference
on Computer-Aided Verification, CAV'98ew Jersey,
USA, August 1996. Springer Verlag.

publications. [11] J. Grabowski, D. Hogrefe, G. Rethy, I. Schieferdecker,
A. Wiles, and C. Willcock. An Introduction to The
Testing and Test Control Notation (TTCN-3).Gom-
References puter Networks 42(3pages 375-403, 2003.
[1] http://www-verimag.imag.fr/~ asyncl/if/. [12] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time

[2] J. A. Arnedo, A. R. Cavalli, and M. NUfez. Fast Test-
ing of Critical Properties Through Passive Testing. In

Streaming Protocol (RTSP), Internet RFC 2326, Apr.
1998.

