
Two Complementary Tools for the Formal Testing of Distributed Systems
with Time Constraints ∗

Ana Rosa Cavalli1, Edgardo Montes de Oca2, Wissam Mallouli1,2 and Mounir Lallali1
1 Institut Telecom / Telecom SudParis, CNRS / SAMOVAR, France

{ana.cavalli, wissam.mallouli, mounir.lallali}@it-sudparis.eu
2 Montimage Research Labs, 39 rue Bobillot, 75013, Paris, France

edgardo.montesdeoca@montimage.com

Abstract

The complexity and the variety of the deployed time-
dependent systems, as well as the high degree of reliability
required for their global functioning, justify the care pro-
vided to the design of the best possible tests. Moreover,
it is significant to automate these steps with an aim of re-
ducing the time and the development cost and especially
of increasing the reliability of the offered products. In this
paper, we present two different tools to test systems with
time constraints. The first one allows to automatically gen-
erate test cases based on model-based active testing tech-
niques. Whereas the second tool is based on passive testing
approach to check that the collected system traces respect a
set of formal properties called Invariants.

Keywords: Formal Testing, Active and Passive Testing,
Real-Time Systems.

1 Introduction

Due to the increasing complexity of distributed and real-
time systems, formal testing is becoming a critical activity
to guarantee the respect of functional and security require-
ments by such systems. This formal testing can be divided
into two categories: (i) the active testing [6, 8] which val-
idates a system implementation by applying a set of test
cases and analyzing its reaction and (ii) the passive test-
ing [3, 9] (or monitoring) that consists in observing, during
the execution, whether the system behavior conforms to a
set of formal properties.

In order to ease both active and passive testing processes,
we have developed two software tools calledTestGen-IF
and TestInv to automate all the phases of our active and

∗This work has been supported in part by POLITESS French
project (http://www.rnrt-politess.info/) and SHIELDS European project
(http://www.shields-project.eu/).

passive testing approaches. In particular the tools include,
for active testing, algorithms for automated test generation
from a formal specification (with time constraints) of the
system under test (SUT) and, for passive testing, algorithms
to check whether the collected system trace respects a set of
properties called invariants. These invariants may contain
time requirements.

Both tools have been integrated into a testing platform
that offers several capabilities and allows real experimenta-
tion for validating protocols, services and applications in a
distributed soft real-time environment. By using different
techniques, the aim is to check whether some protocols ex-
changes are correct, as well as to decide if different entities
can cooperate. In addition, it can also be used to decide
whether a service is properly delivered and deployed.

TestGen-IFandTestInvare respectively presented in sec-
tions 2 and 3. Some features of these tools applications are
briefly provided in section 4.

2 Active Testing tool

TestGen-IFtool is based on active testing techniques that
are used if the interaction with the entity under test is fea-
sible. In this case, the tester is a program that commu-
nicates with the system to apply a set of a test scenarios
and study its reaction according to its formal specification.
The automation of this kind of tests needs an exhaustive test
suites generation including all possible scenarios. To reach
this aim, we rely on an automated test generation algorithm
based a formal specification of the system described in IF
(Intermediate Format) formal language [4, 5] implemented
in TestGen-IF.

2.1 TestGen-IF Background

2.1.1 IF Language

A real-time system described using IF language is com-
posed of active processes running in parallel and interacting

asynchronously through shared variables and message ex-
changes via communication channels or by direct address-
ing. Each IF process is described as a timed automaton ex-
tended with discrete data variables, various communication
primitives, dynamic process creation and destruction, and
urgency attributes on transitions (used to control the time
progress).

2.1.2 Hit-or-Jump exploration strategy

TestGen-IFimplements an automated test generation algo-
rithm based on a Hit-or-Jump exploration strategy [7] and
a set of timed test purposes. This algorithm efficiently con-
structs tests sequences with high fault coverage, avoiding
the state explosion and deadlock problems encountered re-
spectively in exhaustive or exclusively random searches. It
allows to produce a partial accessibility graph of the SUT
specification in conjunction with the IF simulator [5]. At
any moment it conducts a local search from the current state
in a neighborhood of the reachability graph. If a state is
reached and one or more test purposes are satisfied (a Hit),
the set of test purposes is updated and a new partial search
is conducted from this state. Otherwise, a partial search is
performed from a random graph leaf (a Jump).

2.1.3 IF Simulator

The TestGen-IFtool is based on the IF-2.0 simulator [5]
that allows to construct the accessibility graph from an IF
specification. This simulator is developed by a research
team at Verimag [1], for modeling and simulating asyn-
chronous timed systems such as telecommunication proto-
cols or distributed applications. It uses the IF-2.0 simula-
tor libraries which provides some functionalities for on-the-
fly state-space traversal (state representation and successors
computation). The tool is implemented in the same imple-
mentation language as the IF-2.0 simulator, i.e. C++ lan-
guage.

2.2 TestGen-IF Architecture

The active testing tool is illustrated by the Figure 1. The
Properties (Test Purposes) box represents the timed system
objectives to be tested. For example, ”action = inputsig in
state =s when clockc = d” describes an action constraint
that expresses that the signalsig can be received in the state
s when the valuation of clockc is d.

The Automatic Test Generation box represents the test
generation procedure combined with the IF specification (.if
file) and the test purposes (.tp file). For the test generation,
it is up to the user to choose the exploration strategy of the
generated partial graph he wants to perform during the test
generation: in depth or in breath exploration [8]. During
this generation, when a test purpose is satisfied, a message

I F S p e c i f i c a t i o n o f I U T A u t o m a t i c T e s t G e n e r a t i o n

P r o p e r t i e s
(T e s t P u r p o s e s)

T e s t C a s e

T T C NA l d e b a r a n F o r m a t

T E S T G E N - I F T O O L

S t a t e s
T i m e

C o n s t r a i n t s
S i g n a l s

M e s s a g e s

i n p u t

i n p u t

o u t p u to u t p u t

E x e c u t i o n o f t e s t s c e n a r i o s o n
t h e i m p l e m e n t a t i o n o f t h e s y s t e m

V e r d i c t

Figure 1. Basic architecture of the TestGen-IF
tool.

is displayed to inform the user. This message is followed
by the description of the test purpose that was found. The
number of test purposes already found and the number of
those missing are also provided.

Based on this approach, a test suite is generated (repre-
sented by the Test Case Suite box). A test suite is com-
posed of a finite set of test cases (or scenarios) described in
a standard format. It is used to stimulate the implementa-
tion under test (IUT) to validate its reaction. As output of
TestGen-IFtool, three files can be generated: (i) the ”out-
put.aut” file in Aldebaran [10] format containing the system
behavior as labeled transition system, (ii) the ”output.xml”
file containing some information about the system execu-
tion (states, event, values of clocks, etc.), and (iii) the ”out-
put.sequences” file (in Aldebaran or TTCN [11] format)
containing the timed test cases. This last output is repre-
sented in the Figure 1 by the boxes Aldebaran format and
TTCN.

The test generation withTestGen-IFderives its benefits
from Hit-or-Jump characteristics. It is faster that classical
test generation tools (a gain of almost 20%) and less mem-
ory consuming. In addition, it avoids the state explosion
and deadlock problems.

3 Passive Testing Tool

In some cases, active testing becomes difficult to per-
form. This is the case when the tester is provided without
any direct interface (called also Observation and Control

Point) to interact with the IUT or when the implementa-
tion is built from components that are running in their envi-
ronment and cannot be shutdown or interrupted for a long
period of time. In such situations, there is a particular inter-
est in using passive testing techniques. Indeed,TestInvtool
does not need to interact with the IUT, it only need to collect
the execution traces and then analyze them according to a
set ofinvariants[3], without perturbing the IUT’s behavior.

3.1 TestInv Background

3.1.1 Invariants

The distributed system informal description is studied in or-
der to disclose particular properties that are true at any mo-
ment: that is why they are called invariants. These invari-
ants can be classified into three categories: (i) simple in-
variants that define packets flow properties via input/output
sequences (ii) obligation invariants that define condition-
ally mandatory events (iii) timed invariants that express in-
put/output sequences with timed constraints.

3.1.2 Algorithms

Some algorithms that decide the correctness of the proposed
invariants with respect to a given formal specification are
provided in [3]. In TestInv tool, we also check whether
the execution traces observed from the implementation re-
spect the invariants. In order to perform this phase, we rely
on three algorithms, one for each kind of invariant (sim-
ple, obligation or timed). These algorithms are inspired
from [2].

3.2 TestInv Architecture

The main task of theTestInvprototype is to automate the
process of checking the correctness of invariants on real sys-
tem traces. This prototype code has been completely written
in JAVA (J2SE 1.4.0 API specification) and the graphical
interfaces have been developed using the Awt and Swing
Java packages. The Regex2 Java package has been used to
express invariants as regular expressions. This package pro-
poses classes to match character sequences against patterns
described by regular expressions. A high level description
of the tool is given in Figure 2.

In order to start the passive testing process, we first have
to obtain real traces from a running implementation (the
gray box). To obtain such traces, different points of ob-
servation (POs) are set-up depending on the needs of the
distributed testing architecture of the SUT (System Under
Test).

The Pre-processing module processes the collected trace.
The input file or data stream is transformed to a suitable for-
mat and is filtered in order to obtain information concerning

T E S T I N V
P r e - p r o c e s s i n g
M o d u l e

T E S T I N V
I n v a r i a n t s C h e c k i n g
M o d u l e

V e r d i c t L o g
(t rue , fa l se)

T E S T I N V
I n v a r i a n t s C o r r e c t n e s s
M o d u l e

C o r r e c t i o n V e r d i c t
(t r ue , fa l se)

P r o t o c o l T r a c e s

F o r m a t e d T r a c e s

I n v a r i a n t s

S p e c i f i c a t i o n

i n p u t

o u t p u t

o u t p u t

i n p u t

i n p u t

T E S T I N V T O O L

Figure 2. Basic architecture of the TestInv
tool.

input and output primitives names as well as relevant data
(e.g. source address, destination address, etc.). This mod-
ule includes an interface allowing the user to parametrize
the format of the traces to be collected. In other words, it
is not necessary to modify the module code to process log
files or data streams coming from different implementations
(protocols, databases, ...) that use different formats.

The Invariant Correctness Module checks the correctness
of the invariants on a given specification of the studied sys-
tem, represented as a Timed Automata. The TestInv tool
can perform this verification or not, depending on the user’s
choice. If not, then the IF specification of the IUT is not
needed.

Finally, the Invariant Checking module determines if the
captured traces satisfy the given list of invariants. The
model of the output file or data stream can be customized.
For each primitive name we assign the type in terms of in-
put or output. The use of invariants inTestInvwere first in-
troduced to check properties on communication protocols,
where relevant properties can be expressed as interactions
between protocols entities and with the environment. These
concepts are extended to be able to express properties that
concerns other systems where properties are not only based
on inputs and outputs, but also on actions, time stamps,
predicates and references to different parts of the code.

Do must be noted that the first version ofTestInvallowed
protocol based trace analysis and detecting unauthorized
communication packet sequences but was closely tied to the
WAP protocol. The new version of the tool, has been gener-
alized to deal with any protocol or service. Currently, it isin
the process of being adapted to application based trace anal-
ysis (i.e. database log messages to detect unauthorized SQL
injections) and code debugging based trace to detect misuse
of memory. The use of invariants is being enriched to in-
clude variables and time constraints. It will also be possible
to define a testing architecture to deploy several POs and to
correlate their traces to monitor complex architectures and
interactions.

4 Test Tools Applications

TestGen-IF is a recent tool that was applied to several
case studies. In the context of this paper, we choose to
present the experiments we carried out on the ‘Travel’ ser-
vice. ‘Travel’ is an internal service used by France Tele-
com to manage ‘missions’ corresponding to travels by its
employees. In this case study, a potential traveler can con-
nect to the system to request for a travel ticket and a hotel
reservation during a specific period according to a specific
objective (called mission). This request can be accepted or
rejected by his/her hierarchical superior. In the case of an
acceptance, the travel ticket and hotel room are booked by
contacting a specific travel agency. The specification of this
‘Travel’ system is performed using the IF formalism. Sev-
eral test purposes with time constraints are proposed infor-
mally by France Telecom and are specified according to our
methodology to automatically generate test cases that are
later executed on a prototype version of Travel system.

The first prototype version of TestInv has been applied
for validating protocols and services related to mobile en-
vironments (i.e. GSM/WAP, GPRS, UMTS). The aim was
to check whether some protocol exchanges in WAP over
GSM are correct, as well as to decide if different entities
cooperate correctly. In addition, the tool was used to deter-
mine whether a given network service functions correctly.
In the context of this paper, we want to present the appli-
cation of TestInv to a real-time protocol called RTSP [12]
(stands for Real Time Streaming Protocol). RSTP is a pro-
tocol for use in streaming media systems which allows a
client to remotely control a streaming media server, issu-
ing VCR-like commands such as ”play” and ”pause”, and
allowing time-based access to files on a server.

5 Conclusion

In this paper, we present two complementary tools
for the Formal Testing of Distributed Systems with Time
Constraints. TestGen-IF allows to automatically generate
test cases based on model-based active testing techniques.
Whereas TestInv bases on passive testing approach to check
the respect of collected system traces to a set of formal prop-
erties calledInvariants. Both tools improves performances
of classical tools with similar objectives and are the result of
years of research in the testing field disseminated in several
publications.

References

[1] http://www-verimag.imag.fr/ ˜ async/if/.

[2] J. A. Arnedo, A. R. Cavalli, and M. Núñez. Fast Test-
ing of Critical Properties Through Passive Testing. In

D. Hogrefe and A. Wiles, editors,TestCom, volume
2644 of Lecture Notes in Computer Science, pages
295–310. Springer, 2003.

[3] E. Bayse, A. R. Cavalli, M. Núñez, and F. Zaı̈di. A
Passive Testing Approach Based on Invariants: Appli-
cation to the WAP.Computer Networks, 48(2):235–
245, 2005.

[4] M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P.
Krimm, L. Mounier, and J. Sifakis. IF: An Interme-
diate Representation for SDL and its Applications. In
SDL Forum, pages 423–440, 1999.

[5] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The
IF Toolset. In M. Bernardo and F. Corradini, editors,
SFM, volume 3185 ofLecture Notes in Computer Sci-
ence, pages 237–267. Springer, 2004.

[6] L. B. Briones and M. Röhl. Test Derivation from
Timed Automata. In M. Broy, B. Jonsson, J.-P. Ka-
toen, M. Leucker, and A. Pretschner, editors,Model-
Based Testing of Reactive Systems, volume 3472 of
Lecture Notes in Computer Science, pages 201–231.
Springer, 2004.

[7] A. Cavalli, D. Lee, C. Rinderknecht, and F. Zadi. Hit-
or-Jump: An Algorithm for Embedded Testing with
Applications to IN Services. InFormal Methods for
Protocol Engineering And Distributed Systems, pages
41–56, Beijing, China, october 1999.

[8] A. R. Cavalli, S. Maag, W. Mallouli, M. Marche, and
Y.-M. Quemener. Application of Two Test Genera-
tion Tools to an Industrial Case Study. InTestCom,
volume 3964 ofLecture Notes in Computer Science,
pages 134–148. Springer, 2006.

[9] A. R. Cavalli and D. Vieira. An Enhanced Pas-
sive Testing Approach for Network Protocols. In
ICN/ICONS/MCL, page 169. IEEE Computer Society,
2006.

[10] J.-C. Fernandez, H. Garavel, A. Kerbat, L. M. R. Ma-
teescu, and M. Sighireanu. CADP : A Protocol Valida-
tion and Verification Toolbox. InThe 8th Conference
on Computer-Aided Verification, CAV’96, New Jersey,
USA, August 1996. Springer Verlag.

[11] J. Grabowski, D. Hogrefe, G. Rethy, I. Schieferdecker,
A. Wiles, and C. Willcock. An Introduction to The
Testing and Test Control Notation (TTCN-3). InCom-
puter Networks 42(3), pages 375–403, 2003.

[12] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time
Streaming Protocol (RTSP), Internet RFC 2326, Apr.
1998.

