A Scenario-based Approach for Feature Interaction
Detection of Communication Software Systems

Ana Cavalli*, David Lee**, Stephane Maag*

*Institut National des Telecommunications
9 rue Charles Fourier
F-91011 Evry Cedex, France
Email : {Ana.Cavalli, Stephane.Maag}Qint-evry.fr

“*Bell Laboratories, Research China
15/FAero Space Great Wall Building

30 Hai Dian Nan Lu

Beijing, 100080
China

Email : lee@research.bell-labs.com

Abstract

Feature interactions in communication systems manifest themselves as unex-
pected behaviors when multiple features are invoked jointly. We present a new
approach for feature interaction detection, based on the analysis of scenarios and
structures of the systems. We study the theoretical foundation of the feature inter-
action and propose efficient algorithms for their detection. As a case study, we also
present an experiment on a real system in order to illustrate our approach.

Keywords: Telecommunication system, Feature interaction, Finite State Machine,
Formal methods.

1 Introduction

Researchers have been working on one of the most critical problems in the telecommunica-
tions domain: Service Interaction. In order to give an idea of the problem, let us imagine
two users A and B, subscribers of the service Call Forwarding on Busy Line. The user A
forwards his incoming calls to B who forwards his own to A. Now, suppose that A calls B
who is on line. What happens to user A ? what happens in the telecommunication network
? The increase in the number of services that we are witnessing makes the resolution of
these interaction problems even more complex and crucial. To manage this complexity,
different methods and techniques have been proposed: analysis of interactions at the early

user-needs stage, or at the service specification stage, when designing and conceiving the
environment supporting the services or at the service implementation stage [3].

As pointed out, for example in [4], several different types of interactions have been ob-
served. This fact complicates the task of finding a universal method to detect all possible
interactions. It is therefore necessary to integrate different methods to be applied at the
early stages of development [6], as well as, during later stages, when implementing specific
environments [1].

In this paper we present an analysis and a formal method for feature interaction detec-
tion. In order to create an effective detection algorithm, we work at the upper level of the
service life cycle, that is, in the specification phase. In this case, there exist several suitable
formalisms to model protocols. For example, extended finite state machines [15], transition
systems [16], process algebras [2] and Petri nets [18]. Many works tackle this problem and
thus several analysis lead to the creation of detection methods based on different kind of
specifications. The study presented in [5] leads to the use of Message Sequence Charts
scenarios. However, scenarios usually describe a partial behavior of the system while we
would like to perform a global behavior analysis. So, there are methods allowing to de-
tect some interactions (e.g. [11, 13]). Nevertheless, the services are specified from their
requirements. In turn, requirements are expressed by properties. Thus we cannot detect
each kind of interaction. Indeed, one of the main drawbacks of the properties oriented
approaches is that it is often very difficult to describe all the system properties by logic
expressions. Furthermore, when we add new features to a system, it is necessary to rewrite
several properties. That is why the choice of our study is a formal approach based on finite
state machines.

The analysis and detection of interactions use a specification of services based on Ex-
tended Finite State Machines (EFSMs). Work involving the same formal concepts is pre-
sented in [14]. However, the use of a restriction function on automata deprives the analysis
of a specification part. A reason could be that the pruned part is useless to the feature
interaction studies. Unfortunately, no satisfying method is given to show that this part
is negligible to the feature interaction detection. Our work consists in the detection of
interactions based on the comparison of automata traces after some projections. The main
contribution of our work consists in the design of a new algorithm for the detection of
interactions from the global behavior of a telecommunication system. Furthermore, we
try to avoid the increasing number of redundant detections. This algorithm has been
implemented and applied to the feature interaction detection on an intelligent network
architecture. It describes five services on the Basic Call Service (BCS) implemented in
SDL. We present here the results dealing with the Originating Call Service (OCS) and the
Call Forward Unconditional (CFU).

The rest of the paper is organized as follows. Section 2 introduces basic concepts used to
describe telecommunication system and services definitions. Section 3 presents the feature

interaction definition and algorithms with the application to the case study. Finally, Section
4 concludes the paper.

2 Preliminaries and definitions

The Extended Finite State Machines (in short EFSM) are the basis of the specification
processes in SDL (Specification and Description Language). The goal of SDL is to specify
system behaviors from the representation of their functional properties and to describe
their effective behavior. Therefore, this language is particulary suited to study systems
that can be described by using extended finite state machines. However, our technique can
also be applied on other mathematic models such as transition systems, labelled transition
systems, process algebras and Petri nets. In our work, EFSMs (modeled by using SDL)
are deployed into Finite State Machines.

Definition 2.1 A Finite State Machine (in short FSM) is a 5-tuple Aut=(s°, D, X, Act g4y, T)
with:

s® € ¥ is the initial state of Aut,

e D is the set of the Aut final states,

Y is the set of Aut states,

Act gy is the set of Aut actions,

T C X X Actpy X 2 defines the transition set. 0

We call A the set of the Finite State Machines. An action of a FSM is composed by a
primitive and data, as for instance offhook(A) which means that user A has offhooked. This
notion of Finite State Machine allows us to obtain the description of telecommunication
system behaviors from SDL specifications. We use here the usual notion of telecommuni-
cation system in the sense that it provides a set F of features to some customers such as
F e P{Fy, F1,...,F,}). F is the Basic Call Service (BCS) on which the other value-
added features F; (i € I = {1,...,n}) are connected. Each service F; contains a set of
feature primitives Pp, which support the transitions in the FSM. For example, the feature
primitive offhook to the action offhook(A) for the BCS, where A is the subscriber. We call
Prim and prim the two functions giving, respectively, the feature primitive of an action

and the set of primitives from a set of actions in a finite state machine. For instance,
prim(offhook(A))=offhook.

Definition 2.2 A telecommunication system Ty for I C I is a finite state machine such

as 1, = BCS ®ielk F;. If I, = I, we call T, the global telecommunication system.

The connections @ are defined in the model presented in [17, 20| according to each F;
specification. In our work, we assume that the connections are specified and that the final
finite state machines are given.

Next, we introduce some notions concerning undesirable properties of systems. A live-
lock in T}, is a loop that can be reached from the initial state. When the system gets
into a livelock, it will loop around indefinitely without any outgoing actions. This is an
underisable system behavior. In the case of telecommunication systems the users may
not act normally. Another undesirable system behavior is deadlock. As a matter of fact,
both livelocks and deadlocks are to be checked for system design, and are well studied in
protocol validation and verification research [7].

Definition 2.3 We say that a system is valid when it is free of deadlocks and livelocks.
O

We shall not digress here and proceed with our discussion of feature interaction analysis
with the assumption that each telecommunication system is valid.

When we analyze system features, we often mention the notion of behavior. However,
this behavior is not always formalized. There are several aspects that may define it. For
instance, the functional aspects, which concern the sequences of possible states/events, and
the non-functional aspects, with regard to any real time and performance aspects of the
behavior. In this paper, we restrict our analysis to functional aspects. Systems will be
defined as finite state machines. Erecution sequences are a good and formal way in order
to capture this kind of behavior. Next, we introduce this concept in our framework.

Definition 2.4 For a finite state machine Aut=(s°, D, ¥, Act sy, T'), we define an ezecu-
tion sequence s as an element of 1.
For a finite state machine Aut, we represent all its execution sequences by the set E(Aut).

g

The behavior of a whole system depends on the different features. In order to analyze
feature interactions, we need to perceive them as an observer that tracks only a feature F;.
This is performed with respect to the corresponding feature primitives. Next, we define the
appropriate projections where primitives not related with the corresponding set of features
are hidden.

Definition 2.5 Let I, C I and a € Acty;,. We define the function 77, : Acty, —
Prim(Actr,) U {e} as:
prim(a) if prim(a) € U Pr,
mr,(a) = i€ly
€ otherwise.
Where € represents the empty-move.

This function may be extended to execution sequences as follows. We consider the
function I, : E(T,) — (Prim(Acts,) U {})*, defined as

HIP((yOaalayI)U'Qay% <o Ym—15Amy Y, -)) = (yOaﬂ-Ip(al))yla .- -:ymflaﬂ-lp(am)ayma .)
O
We also call I1;, the canonical function applied to execution sequences sets in order to
ease the reading of this paper.

Our approach is based on the analysis of sequences of actions that represent the system
behavior. In these telecommunication systems, some behaviors may be redundant in the
sense that the messages exchanged between the switch and the users are composed by the
same primitives. Indeed, when no services are activated, the behaviors are equal either
user A calls B or B calls A. That is why, in our work, we use scenarios sets as defined
below.

Definition 2.6 Let F(Aut) be the set of execution sequences of Aut. We define S(Aut),
the scenarios set of Aut, as the set of elements belonging to E(Aut) in which each action
is replaced by its primitive by using the function prim. 0

Let us remark that the projection functions introduced in Definition 2.5 may be extend
to deal with scenarios set in the expected way.

The feature interactions may have different causes and thus many definitions. In our
work, feature interaction refers to situations where different features or instances of the
same features influence each other. Generally, they can be observed when two telecom-
munication systems affect each other [12]. This mechanism is developed in the following
section.

3 Feature Interaction Detection

In order to analyze feature interactions, we need to obtain the whole studied system behav-
ior. As we have previously mentioned, our method tackles interactions by observing the
scenarios from sets of services in a global telecommunication system. In this section, we
present a new approach to detect them, and we are specially careful to avoid the increasing
number of redundant detections.

3.1 Defining Feature Interactions

Let T, and T, be two valid telecommunication systems. We say that 7, has no feature
interactions with 7}, if and only if the behavior of 7}, is present in Tj. In order to satisfy
this informal definition, we compare every T, and T} scenario such that an interaction is
detected when a scenario belonging to S(7},) is not present in S(7},) in which the actions

whose primitives are in U Py, have been replaced by e. Indeed, in this case, this means
i€l \I,
that a T}, behavior has been modified. We can formalize all of this as follows.

Definition 3.1 Let I, C I, be two subsets of I. We say that a valid telecommunication
system Ty has no feature interactions with a valid telecommunication system 7}, if and only
if S(Tp) = 11;,(S(1})). A valid telecommunication system 7 is interaction-free if and only

if VI, such as I, C I, C I, we have S(T},) = I1;,(S(1}))- -

We assume in the previous definition that 7, and 7}, are different from the FSM com-
posed only by the Basic Call Service. We show the use of this definition in the next
example.

Example 3.1: Let us assume that we have n features F; in the global telecommunication
system and we wish to verify that the system composed by Fi, F, and F3 is interaction-
free. We denote by 75 the finite state machine representing this system. In respect with
Definition 3.1, we have 6 I, sets for I, = {1,2,3}, that is we need to check six equalities

with I, € {{1},{2}, {3}, {1,2},{2,3}, {1,3}} upon Ts.

Let us remark that, even if we can decide whether 7T} is interaction-free or not, this
method does not still allow us to be convinced that it is also totally interaction-free, that
is, the systems 7T}, are also interaction-free. In order to analyze all the behaviors, we also
need to verify that all these T}, are interaction-free. In Example 3.1, the number of equalities
to check is 12. They are the six mentioned above and the cases where T}, is {1,2}, {1,3}
and {2,3}. We notice that the number of checked equalities quickly becomes important if
we wish to detect feature interactions among the n features. This number may be reduced
by using a lattice structure.

Definition 3.2 We define the complete lattice L = ({T}, | Ty = BCS@,¢,, Fi, Ir C
I}, <) such as:

e the bottom is the empty set (),

e the top is the global telecommunication system G7T,

e T, <T,if and only if I, C I,. O

The following result states that the notion introduced in Definition 3.1 presents a tran-
sitive behavior in the scope of the previous lattice.

Proposition 3.1 Let 7,, T, and T, be three finite state machines belonging to L such
as T, < T, <T,. If S(T,) = I;,(S(Ty)) and S(1},) = 111, (S(1;)) then we have S(T}) =
I, (S(13))-

Proof: In 117, (S(T})), every primitive belonging to U Pp, is, by definition of IIj,_, substi-

i€ \I,
tuted by € in S(7,). As T, < T,, we have U Pr.C U Pp,. Then, each element of U Pr,
i€lp 1€ly €lp

still remains in II;, (S(7})). The other primitives have been replaced by the empty-move.

Now, if we apply IIj,, the elements belonging to U P, are substituted by ¢, and only
i€l \Ip
the elements of U Py, are kept. Finally, the set II;, (II;, (S(7;))) for I, C I, C I, is
i€l,
equal to II;, (S(7,)) and by assumptions we have S(T,) = Il (II;,(S(77))). Therefore,
S(Tp) = 1, (S(T7))- m

This proposition allows to reduce the number of necessary checked equalities. Indeed, in
this lattice L we only have to detect the interactions peers to peers in order to detect them in
an upper finite state machine 7}, in L. Informally, it means that a valid telecommunication
system T}, is interaction-free if every 7T}, such as T, < T, is interaction-free.

{1,2,3}

Figure 1: Lattice of the subsets of {1,2,3}.

Definition 3.3 A valid telecommunication system 7T; is totally interaction-free if and
only if S(T,,) = I, (S(T,)) for all (T,,,T,) in the set of the lower bounds of T,, such
as the greatest lower bound and the least upper bound of (7;,,7,) in the lattice L are
respectively 7T, and T,,. N

We remove cases with the empty set () and 7T,,, = T},, indeed such equalities are always
verified.

Ezample 3.2: We take back the example above in which we have six I, sets. According
to Definition 3.1, we need to check 12 equalities. In Figure 1, we represent the lattice of
all subsets of the set {1,2,3} under the ordering relation of set inclusion, as related to
Definition 3.2 of the lattice L. From the proposition above, in order to obtain the same
result than in Example 3.1, we use the transitivity and then, only 9 equalities have to be
analyzed instead of 12. This example shows how Definition 3.3 significantly decreases the
number of checked equalities when we have n features.

Nevertheless, this method of detection leads us to think over obtaining the scenarios of
a finite state machine. The task is not so easy and we develop this aspect in the following.

3.2 Scenarios and feature interactions

As we note in Definition 3.3, our feature interactions detection method uses sets of scenarios
in finite state machines. In order to ease the FSM analysis, we can notice that it is possible
to operate the projection directly on the automata to obtain the same detections. We define
V¥, a function that has the same effect than II;, except that it is applied on automata,
instead of sets of scenarios.

Definition 3.4 Let I, C I, be two subsets of I and Ty = (s°, D, ¥, Actr,,T) be a FSM.
We define the function ¥, such as

\I/Ip A— A

\I/Ip (Tq) = (SO, D, Z, H[p (ACth), T’),

where (s,a,s') € T" if and only if 3(s, b, s") € T such as a = 7, (b).

This definition allows us to give the following proposition.

Proposition 3.2 For a finite state machine Aut = (s°, D, 3, Actay;, T) and I, C I, we
have II; (S(Aut)) = S(¥r,(Aut)).

Proof: We prove it by double inclusion. Let s = (yo, 1, Y1, - - - s Ym—1, Pm; Ym) b€ a scenario
belonging to S(Aut). The action primitives composing s belong to Prim(Actau). By
definition of Wy, (Aut), action primitives composing II; (s) belong to ¥ (Aut). Moreover,
7,(5) = (Yo, 71, (1) Y15 - - - s Ym—1, T1, (Pm), Ym). Therefore, II; (s) € S(¥y,(Aut)), that is
I, (S(Aut)) C S(¥y, (Aut)).

Now, let s be an element of S(¥,(Aut)). Let us note that the transitions of s belong
to ¥ x II; (Actau) x X. We may obtain s’ € S(Aut) such that II; (s') = s because s is
provided from Aut for the same reason than above. Then, S(¥y,(Aut)) C II;, (S(Aut)). =

This proposition allows us to ease the verification of Definition 3.3 for a valid telecom-
munication system. Indeed, instead of analyzing scenarios of finite state machines, we may
use the automata structures in different cases.

3.2.1 Deterministic Finite State Machines

We need to check the equality S(T},) = Il (S(T,)) for T, < T,. According to Proposition
3.2, we may check S(T,) = S(¥;,(T,)). The set S(¥y,(Ty)) of all the scenarios describes
the automaton language. In the case where after projections, the finite state machines are
deterministic, the problem is solvable in polynomial time by using trace equivalence [8].
When the equality holds, we say that T}, and ¥y, (7}) are isomorphic (see [15] for a good
survey on the topic). We assume the deterministic structure after projecting. Indeed ¥,
may generate a non-deterministic finite state machine (NDFSM) as shown in Figure 2.

a a
Yo
b c _— b €
Ip={ab}
a b a b
DFSM NDFSM

Figure 2: From deterministic FSM to NDFSM with W .

Therefore, the feature interaction detection between two deterministic FSMs is easily
computed, for example by using a depth-first search. Unfortunately, this is not the case
with non-deterministic finite state machines.

3.2.2 Non-deterministic Finite State Machines

We suppose here that one of the two FSMs is non-deterministic. We cannot use isomor-
phism as before in this case. Then, the first reflex we may have is to transform the NDFSM
into a deterministic one [19]. This reasoning is interesting and also applicable when we
have small automata (|| < 106). After projecting we only have to check isomorphism, as
before. However, most of the time, the obtained finite state machine has a huge number
of states, resulting from an exponential increase in the number of states in the worse case.
That is why we need to use other steps allowing to reduce the complexity of the analysis.

Our approach here study Strongly Connected Components (SCC) of the NDFSM. First,
we obtain the SCC partitions of a finite state machine Aut in a linear time complexity with
respect to the set of states and to the set of transitions [19]. Therefore, we find every simple
loop (that is, loops which do not contain any other loops) by the following algorithm.

Input: N a strongly connected component in Aut, v a state in N.
Output: A set of scenarios in N starting from v.
1- Let v;, be a node belonging to N, (v;,t;,v;) € Taut, where v; is a node in N,

2- y(v;) = U (vi,y tj,vj)v(vj) where y(v;) = {A} if v; has already been visited by
(Ui ’tj "Uj)ETAut

v(v;). \ * {A} illustrates the empty scenario \x.

3- return y(v)

We apply this last algorithm to the SCC represented in Figure 3 and to the state v = 1.
We obtain the set v(1) = {(1,a,2,b,3,¢,1),(1,a,2,b,3,d,4,e,1),(1,a,2,b,3,d,4, f,5,9,3)}.

Figure 3: A strongly connected component.

Every simple loop in N is obtained from this last set by projecting the segments of
scenarios. That is, in each element of y(v), we extract all the scenarios beginning from a
state p and terminating to the same state p. In the previous case, we obtain the simple

loops Set {(]‘5 a’? 27 b7 37 c? 1)7 (17 a’7 27 b7 35 d7 47 e’ 1)7 (37 d7 47 f? 57 g7 3)}'

Proposition 3.3 This last algorithm allows to obtain all the simple loops in a strongly
connected component.

Proof: By the SCC definition, all states are reachable from any states. From one state, we
execute all the possible transitions. We thus may reach from this state all the other states
in a recursive way and we eventually reach this same state. Therefore, all the simple loops

are generated by any state. =

The sets of simple loops corresponding to each strongly connected component are useful
to reduce the analysis of NDFSM in the sense that we compare each simple loops set in
the Direct Acyclic Graphs (DAG) of T, and ¥y, (T;). Nevertheless, we need to make two
SCC match.

Definition 3.5 We say that two strongly connected components scc; and scey, which
respectively belong to two finite state machines Aut; and Aut,, match if there exists a

scenario belonging to both Aut; and Aut,, which reaches scc; and sccs.
O

10

1sec2

Figure 4: Two matching strongly connected components.

We may see in Figure 4 that the SCCs scc; and scco match. Indeed, the scenario
(1,a,2,b,3) (renaming the states if necessary) allows to reach these two SCCs. The next
result allows us to reduce the difficulty of the finite state machines analysis in the case
where at least one of them is non-deterministic.

Proposition 3.4 Let T, and T; be two finite state machines such as I, C I,. We have
S(Tp) # 1y, (S(T,)) if one of the following conditions holds:

- there exists some strongly connected components having no SCC to match with,

or

- each element of the simple loops set of each SCC from T}, has to be executable in the
matched SCC from Tj,.

Proof:

- If it exists some loops in a FSM that can not be executed in the other FSM, it means that
the behaviors of the two automata are not equal, thus the equality may not be verified.

- If this second point arises, it means that the sets of the scenarios are not the same. In

this case, a scenario cannot be executed in one of the FSM.
[|

Let us note that if the previous result cannot be applied, then the determinization of the
automata is necessary. Actually, we can perform it step by step begining with the direct
acyclic graphs, by using Proposition 3.4, and finally finish with a complete determinization
of the finite state machine.

3.3 Application to a Case Study

In this section, we describe the experimental results obtained by an implementation of our
algorithm. We present an application of the tool developed in our laboratory to a real

11

telecommunication system upon an intelligent network architecture [9]. This system is
described usinf the SDL language [10] and includes several services (the Originating Call
Service (OCS), Terminating Call Service (TCS), Call Forward Unconditional (CFU), Call
Forward on Busyline (CFB) and the Automatic Call Back (ACB)). The model is described
such as it allows the parallel execution of different calls and also calls instanciated by the
network. The environment sends some messages to the users’ process (Users) which is
modeled by instances of SDL processes. The process Users represents the combination
between the phone line, the terminal and the customer. The global system whose we
give few significantly numerals in Figure 5, has been simulated in using the exhaustive
simulation mode of the ObjectGEODE tool [21] and a startup file in order to obtain a
complete reachability graph. The startup file allows us to restrict the simulation and thus
to avoid the combinatory explosion problem.

Lines 3,098
Blocks 4 : T Ty T
Process 9 Configurations || BCS@OCS || BCSEPCFU || The global
Procedures 12 system
States 38 Number of 56072 60186 210453
: States
Signals 50
Macro definition 12 Numb.e? of 57952 62228 242126
: Transitions
Timers 0

Figure 5: Metrics of the Figure 6: The three input automata allowing the interac-
service specification. tion detection.

We apply our method with the goal to detect feature interactions between two services
Call Forward Unconditional (CFU) and Originating Call Screening (OCS) in a telephonic
system. As illustrated in Figure 6, the obtained finite state machines contain thousands of
states and cannot be illustrated in this article. That is why we present here a simplified
specification of the system. The global system T is represented in Figure 9 (see appendix).
We may also extract two FSMs 7 and 75 where OCS and CFU are respectively specified
(Figures 5 and 6 in appendix).

In order to verify that the behaviors of each feature are respected in T, we need to
check here two equalities: S(T1) = S(oes}(T)) and S(T2) = S(Iepuy(T)) . Our tool
respectively detects 723 and 344 scenarios implying the feature interactions. Some of them
may be illustrated by the present finite state machines. Indeed the scenario (offhook,
dialtone, digit, route, route, onhook) invalidates S(T1) = S(Iljes3(T)). Therefore, we
conclude that a feature interaction has been detected between OCS and CFU. We analyze
deeply the result and see that one of the main cause is due to the scenario part (route,
route) which correponds to a re-route of the call. These scenarios correspond to the same
interaction instance. This means that when a call is redirected and the feature OCS is
present in the system, an interaction occurs. This may be explained by the configuration
in which a user A, having activated OCS with the user C in its black list, calls B who

12

unconditionally forwards the call to C'. In this case, A is connected to C' without respecting
the black list requirements.

4 Conclusion

The contribution of our work is the definition of a formal method allowing the analysis of
the global behavior of a system containing several services in order to detect the eventual
feature interactions. We are careful in order to reduce the number of necessary checked
equalities allowing the feature interaction detections. The contribution is also noticeable
by the fact that we do not use constraints or pruning functions. In this paper, we also
present a new approach that reduces the task of the detection in the case where one or
several finite state machines are non-deterministic. An implementation of the algorithms
has been made and they have been applied to a real telecommunication system upon an
intelligent network architecture. We have detected feature interactions between two ser-
vices and have given an explanation of the results.

References

[1] M. Amer, T. Gray, A. Karmouch, and S. Mankovskii. Feature-Interaction Resolution Using
Fuzzy Policies. Feature Interactions in Telecommunications and Software systems VI, pages
94-112, 2000.

[2] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process Algebra. Elsevier,
2001.

[3] T.F. Bowen, F.S. Dworak, C.H. Chow, N.D. Griffeth, G.E. Herman, and Y.-J. Lin. The
Feature Interaction Problem in Telecommunication Systems. Proceedings of the Seventh
IEE International Conference on Software Engineering for Telecommunications Systems,

pages 58—63, March 1989.

[4] E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, W. K. Schnure, and H. Velthuijsen.
A Feature Interaction Benchmark for IN and Beyond. Technical report, Bellcore and PTT
Research, 1993.

[5] R. Dssouli, S. Some, J. W. Guillery, and N.Rico. Detection of Feature Interactions with
REST. In L.M.S. Logrippo P. Dini, R. Boutaba, editor, 4th Int. Workshop on Feature
Interactions in Telecommunications Networks and Software Systems, pages 271-283. 10S
Press, June 1997. Netherland.

[6] J. Hassine, T. Kikuno, L. Logrippo, and M. Nakamura. Feature Interaction Filtering with
Use Case Maps at Requirements Stage. Feature Interactions in Telecommunications and
Software systems VI, pages 163178, 2000.

[7] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall International
Editions, 1991.

13

[8] J. E. Hopcroft and J. D. Ullman. Formal Languages and Their Relations to Automata.
Addison-Wesley Publishing Company, 1969.

[9] ITU-T. General Recommendations on Telephone Switching and Signalling, Intelligent Net-
work, QQ-Series Intelligent Network Q.1200-Q).1290. Technical report, ITU-T, 1993.

[10] ITUT-T. Recommandation Z.100: CCITT Specification and Description Language (SDL).
Technical report, IUT-T, 1999.

[11] B. Jonsson, T. Margaria, G. Naeser, J. Nystrom, and B. Steffen. Incremental Requirement
Specification for Evolving Systems. In M. Calder and E. Magill, editors, Feature Interactions
in Telecommunications Systems VI, pages 145-162. IOS Press, 2000.

[12] D. O. Keck and P. J. Kuehn. The Feature and Service Interaction Problem in Telecommu-
nications Systems: A Survey. In IEEE Transactions on Software Engineering, volume 24,
pages 779-795. TSE, October 1998.

[13] F. Khendek and A. Sefidcon. A Pragmatic Approach for Feature Interaction Detection in
Intelligent Networks. In Proceedings of the IEEE International Conference on Computer
Communications and Networks, October 1999. Boston, Massachusetts.

[14] T. F. LaPorta, D. Lee, Y.-J. Lin, and M. Yannakakis. Protocol Feature Interactions. Proc.
FORTE XI-PSTV XVIII, France, pages 59-74, 1998.

[15] D. Lee and M. Yannakakis. Principles and Methods of Testing Finite State Machines - A
Survey. The Proceedings of IEEE, 84(8):1090-1123, August 1996.

[16] R. Milner. Communication and Concurrency. Prentice Hall, Englewood Cliffs, New Jersey,
1989.

[17] E. Najm and O. C. Dahl. Specification and Detection of IN Service Interference Using
LOTOS. In Richard L. Tenney, Paul D. Amer, and M. Umit Uyar, editors, FORTE, IFIP
Transactions, pages 53—-69, 1993.

[18] J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, First edition,
1981.

[19] R. Tarjan. Depth-First Search And Linear Graph Algorithms, volume 1. SIAM Journal
Computer, June 1972.

[20] K. J. Turner. An Architectural Foundation For Relating Features. In L.M.S. Logrippo
P. Dini, R. Boutaba, editor, Proc. 4th.International Workshop on Feature Interactions in
Telecommunication Networks and Software Systems, pages 226-241. IOS Press, 1997. Nether-
lands.

[21] Verilog. ObjectGEODE Simulator, Reference Manual, 1997.

A Appendix

14

onhook(A),

CFU_getin(B) 4 offhook(B)/ ™ connect(A,

N
cF routepngy ABITngtonel®) 00k(8)

disconmect(A,B)

rojite(fn(B)) disconnéxt(A,B)

; offhook(fn(B)C
ring(fn(B))|rington

connect(A fn(B))

k(fn(B)) onfioak(fn(B))

disconnect(A fn(B)) discopnect(A fn(B))

Figure 8: The finite state machine T»: the feature CFU on the BCS.

15

CFU_getfn(B)

~ N
U routeey eBlringrone(A)

N\ oﬁhook(fn(B)O
fingln(®)lringonesy’

Figure 9: Global finite state machine 7'.

16

