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Abstract This paper presents a new formal method for telephony ser-
vices engineering allowing feature interactions detection. System and ser-
vice specifications are provided using the specification language SDL.
These specifications are simulated in order to obtain finite state ma-
chines. An algorithm allowing to compare service scenarios according to
marked transitions is proposed. The algorithm has been implemented
and applied to a case study, a telecommunication system on Intelligent
Network architecture including the Basic Call Service (BCS) and two
supplementary: Originating Call Service (OCS) and Call Forward Un-
conditional (CFU). The results of this application are presented.
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1 Introduction

The service interaction is one of the most critical problems in the telecommuni-
cations domain. In order to give an example of such problems, let two users A
and B be subscribers of the service Call Forward Unconditional. A forwards his
calls to B and the latter B forwards to A. Let us imagine a third user C who calls
A or B. What happens to user C'? What happens for the telecommunication
network ? The detection and resolution of these interactions become more and
more complex and crucial. Indeed, the number of services (or features, we do
not differentiate the two terms here) may be witnessed. In order to manage this
complexity, different methods and techniques have been proposed: analysis of
interactions at the early user-needs stage, or at the service specification stage,
when designing and conceiving the environment supporting the services or at
the service implementation stage [3].

Many types of feature interactions may be observed [5], this is the reason why it
is very difficult to find a universal method to detect all possible interactions. It
is therefore necessary to integrate different methods to be applied at the early
stages of development [9], as well as, during later stages, when implementing
specific environments [1].



We may notice that the number of service interactions is growing up through all
these stages. Therefore, in order to be efficient, we present in this paper an anal-
ysis and a formal method for feature interactions detection based at the upper
level of the life cycle, that is the specification phase. There exists several suitable
formalisms to model protocols. For example, extended finite state machines [15],
transition systems [16], labelled transition systems [4], process algebras [2] and
Petri nets [17]. Many works tackle this problem and thus several analysis lead to
the creation of detection methods based on different kind of specifications. The
study presented in [6] leads to the use of Message Sequence Charts scenarios.
However, a partial behavior of the system is described while we would like to
perform a global behavior analysis. There are others methods allowing to detect
some interactions (e.g. [7,8,13]) such as the ones using the feature requirements.
In turn, requirements are expressed by properties. Nevertheless, one of the main
drawbacks of the properties oriented approaches is that it is often very difficult
to describe all the system properties by logic expressions. Furthermore, when we
add new features to a system, it is sometimes necessary to rewrite some proper-
ties. That is why the choice of our study turns on a formal approach based on
finite state machines.

We use a specification of services based on Extended Finite State Machines
(EFSMs) to analyze and detect feature interactions. Work involving the same
formal concepts is presented in [14]. The authors use a restriction function on
automata that deprives the analysis of a specification part. However, no satisfy-
ing method is given allowing to show that the pruned part is negligible to the
feature interaction detection. Our work consist in the detection of interactions
based on comparison of scenarios with marked transitions. The main contribu-
tion of our work consists in the design of a new algorithm for the detection of
interactions from the behavior of a telecommunication system. This algorithm
has been implemented and applied to the feature interaction detection on an in-
telligent network architecture. It describes five services on the Basic Call Service
(BCS) implemented in SDL [11], however we present here only the results dealing
with the Originating Call Service (OCS) and the Call Forward Unconditional
(CFU).

The article is organized as the following. Section 2 introduces the basic notions
and the definitions illustrating the problematic. Section 3 describes the feature
interaction detection algorithm. Section 4 presents the application of the case
studied on a real telecommunication system. And finally, Section 5 concludes the
article.

2 Basics

The Extended Finite State Machines (abbreviated by EFSM) are the basis of
the specification processes in SDL (Specification and Description Language).
The goal of SDL is to specify system behaviors from the representation of their



functional properties and to describe their effective behavior. Therefore, this
language is particularly suited to study systems that can be described by using
the extended finite state machines. Our technique can also be applied on other
mathematic models such as transition systems, labelled transition systems, pro-
cess algebras and Petri nets. In our work, EFSMs (modeled by using SDL) are
deployed into Finite State Machines.

Definition 1: A Finite State Machine (in short FSM) or automaton, is a
quintuple Aut = (s°, D, X, Act oy, T) with:

— % € ¥ is the initial state of Aut,

— D is the set of Aut final states,

— X is the set of Aut states,

— Act gy is the set of Aut actions,

— T C X x Act gyt X X defines the set of transitions. O

An action of a FSM is composed by a primitive and data, as for instance

offhook(A) which means that user A has offhooked. This notion of Finite State
Machine allows to obtain the description of telecommunication system behaviors
from SDL specifications. We use here the usual notion of telecommunication
system in the sense that it provides a set F of features to some customers such
that F € P({Fo, F1,...,Fn}). Fy is the BCS on which the other value-added
features F; (i € I = {1,...,n}) are connected. A telecommunication system
T}, is a finite state machine such that Ty = BCS @;c;, 5 Fi- In our work, we
assume that the connections are specified and that the finite state machines are
given.
When we analyze the system features, we often mention the notion of behavior.
However this behavior is not always formalized. There are several aspects that
may define it. For instance, the functional aspects, which concern the sequences
of possible states/events, and the non-functional aspects, with regard to any
real time and performance aspects of the behavior. In this paper, we restrict our
analysis to the functional aspects. Execution sequences (or scenarios) are a good
and formal way in order to capture this kind of behavior. Next, we introduce
this concept in our framework.

Definition 2: Let Aut be a finite state machine. A scenario s in Aut is a
concatenation of elements in 7', where data have been removed. Only primitives
named feature primitives are kept. In our paper, we study feature interactions
from the control part of the system behaviors. Therefore, we avoid the generation
of multiple behaviors that are the same (e.g. user A or B ofthooks and onhooks).
We represent every Aut’s scenario by S(Aut). 0O

The feature interactions may have different causes and thus many definitions.
In our work, feature interaction refers to situations where different features or in-
stances of the same features influence each other. Generally, they can be observed
when two telecommunication systems affect each other [12]. This mechanism is
developed in the following section.



3 Feature Interaction Detection Algorithm

In order to analyze feature interactions, we need to obtain the whole studied
system behavior. We generate all the behaviors in deploying and executing every
cycle in the finite state machines.

3.1 Acyclic paths and simple loops generation in a Finite State
Machine

The behaviors are usually cyclic in telecommunication systems, that is, when all
the users onhook, the current state becomes the initial state, and we obtain the
system like a huge strongly connected component. Therefore, for the automata
analysis, we stop the scenarios execution when we reach the initial state back,
defining then final states. In order to obtain every scenario of a FSM Aut, we
first transform it in a Direct Acyclic Graph (DAG) Awut’' in which the nodes
are either Aut nodes or Strongly Connected Components (SCC) in Aut. To
compute the partitions of finite state machines into SCCs, we apply the method
developed by Tarjan [18] implemented in our laboratory. By a depth-first search,
we obtain the acyclic paths in the finite state machine Aut’. Into the scenarios,
some nodes represent some SCCs and then we need to deploy them in order to
analyze the whole behavior. We generate for this reason every simple loop. We
call simple loops the cycles which do not contain other cycles. We apply the
following algorithm to the strongly connected components.

Scenario-Generation Algorithm
Input: N a strongly connected component in Aut, v a state in N.
Output: A set of scenarios in N starting from v.
1- Let v;, be a node belonging to N, (v;,t;,v;) € T4y, where v; is a node in N,
2- y(v;) = U (vi, tj,v5)v(v;) where y(v;) = {A} if v; has already been
(Vi t5,05) €T Aut
visited by y(v;). \ * {A} illustrates the empty scenario \*.
3- return y(v)

We apply this last algorithm to the SCC represented in Figure 1 and to the state
v = 1. We obtain the set v(1) = {(1,q,2,b,3,¢,1),(1,a,2,b,3,d,4,¢,1),(1,qa,2,b,
3,d,4,f,5,9,3)}. Every simple loop in N is obtained from this last set by pro-
jecting the segments of scenarios. That is, in each element of y(v), we extract all
the scenarios beginning from a state p and terminating to the same state p. In
the previous case, we obtain the simple loops set {(1,q,2,b,3,¢,1),(1,q,2,b,3,d,
4563 1)7 (35d5 47 f75ﬂgﬂ3)}

Proposition 1 This last algorithm allows to obtain all the simple loops in a
strongly connected component.

proof: By the SCC definition, all states are reachable from any states. From one
state, we execute all the possible transitions. We thus may reach from this state



Figurel. A strongly connected component.

all the other states in a recursive way and we eventually reach this same state.
Therefore, all the simple loops are generated by any state. -

We obtain simple loops that allow to analyze interactions from the FSM scenar-
ios. Nevertheless, in the general case, the set of all these scenarios has a infinite
size, indeed, the SCC cycles may be executed infinitely. The method used here
consists in, first of all, obtaining the acyclic paths in a DAG and in the second
hand, analyzing the automaton SCC. This is detailed in the following.

3.2 Scenarios Analysis

Let our system be composed by two services F; and F (different from the BCS)
with some different primitives. The specification of this system is written in SDL
and with Object GEODE [19] we generate three finite state machines Ay, A and
G. They respectively represent the feature F; and the BCS, the feature F» and
the BCS, and the global system containing F;, F» and the BCS.

Our work follows the idea that there exists a feature interaction between F; and
F5 if and only if the behavior of G does not respect the expected and defined
behaviors of A1 and A, according to Section 2.

In an informal manner, here is the procedure allowing the feature interaction
detection we propose:

— First, we want to verify that the scenarios included in 4; and A, are present
in the scenarios set of G (having renamed the states if necessary). If this is
not the case, it means that the service behavior, whose the scenario is the
cause, has been modified. A feature interaction occurs.

— In the second hand, if the inclusion in the last step is verified, we also have
to check that the scenarios of G non-executed previously can be produced by
A; and As. The mixed execution of actions of A; and Ay have to generate
them. These scenarios correspond to the configurations where both services
are active. Indeed, the other scenarios are checked by the previous step.
The mixed execution of A; and As may generate scenarios where only one
service is activated, which are undesired. Therefore, we remove transitions
that prevent to services from beeing triggered or do not cause the services
to be triggered. In A; and A,, we mark such transitions.



The first step of the procedure corresponds of preserving the A; and A, behav-
iors in the global system. The second step allows to guarantee that both features
are activated in the scenarios of G not taken into account previously, and that
these latters may be generated by the mixed execution of A; and A, actions.
This combination is obtained by the independent product A; x Ay of A; and A,.
The independent product allows to obtain all the interleaved behaviors of the
automata A; and As.

Definition 3: Let Aut; = (s9, D;, Xy, Act;, T;), i = 1,2, be two finite state
machines, we note x the independent product between the two Aut;, defined by:
A1 * Az = Aut = ((S?,Sg),Dl X D2, 21 X ZQ,Actl @] ACtQ,T)
with T obtained such that:

(81,1'1,8,1) €Ty = Vsy € 22, ((81782),1'1, (811,82)) eT
(SQ,.’L‘Q, 8'2) €Ty = Vs € 21, ((81782),1'2, (81, 512)) eT

We illustrate this product in Figure 2.

Figure2. Example of independent product *.

We need to check the inclusion of one set of scenarios in another set of scenarios.
However, strongly connected components may exist. As follows, we give a method
based on two SCCs obtained with scenario-generation algorithm in order to
improve this analysis. '
For every strongly connected component scc; in Auty, let P/ be the j execution
sequences from the initial state to scc;. These P/ have to reach a scc; in Auty
such that the set of simple loops of sce; is included in scc;. Furthermore, each
state of the simple loops of these both strongly connected components must have
the same outcoming and incoming transitions. Otherwise, S(Aut) ¢ S(Auts).
Figure 3 shows an example where S(Aut;) € S(Aut,).

By this technique, we check whether a set of scenarios is included in another
one by analyzing the strongly connected components.

3.3 Feature Interactions Detection Strategy

We expound here our feature interaction detection method. First, we check
whether the behaviors defined by each isolated automaton A; and A, are present
in the finite state machine G. After that, we verify that the other scenarios in
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e<>f The simple loops of sccy in Aut; are in-

cluded in the one of scc),. However, in the
state 2, the transition c is incoming, and b
outcoming which is not the case for state 4.
Aty Aty We infer S(Aut1) ¢ S(Autz).

Figure3. Automata with dif-
ferent sets of scenarios.

G, that is S(G) \ {S(A1) US(A2)} are included in S(A; * A2). As mentioned be-
fore, marked transitions in A; and A> do not have to be executed. The marked

automaton A; is noted A;. Formally, we can describe our feature interaction
algorithm as follows.

Interactions-Detection Algorithm
Input: A1, As and G, three FSMs respectively representing F; and the BCS; F;
and the BCS, Fi, F5 and the BCS.
Output: “Interaction detected” or “No interaction detected”.
1-if S(4;) C S(G) and S(A3) C S(G) and S(G)\{S(A1)US(A2)}CS(A;xAs)
2- then “no interaction detected”
3- else “interaction detected”.

We note here S(G) \ {S(41) U S(A43)}CS(A; * Ay) the inclusion which is true
if and only if Vs € S(G) \ {S(A1) US(A42)} such that s does not execute marked
transitions and reaches a final state of A; or A2, we have s € S(A; xA5). Indeed,
if s does not reach neither a final state in A; nor in A,, it means that s in G
have not executed a excepted behavior in A; or As. That is a feature interaction
occurs. In order to avoid the combinatory explosion problem when A; x A, is
generated, the inclusion C will be verified on-the-fly in A; and Aj.

This feature interaction detection algorithm is applied to a pair of services. It
means that we analyze two-way interactions. However we also may be confronted
with three-way (and even more) interactions although pairs of these features do
not show any interaction. Let us imagine a party A, subscriber of the Unlisted
Number service (the subscriber may hide his call number to a called party), that
calls a party B, subscriber of an Automatic Recall of the last caller (the subscriber
may automatically recall the last caller). User B is also a subscriber of Itemized
Billing service. If every feature is activated and B uses the Automatic Recall, A’s
number appears on B’s phone bill. This is clearly a violation of the intention of
A’s Unlisted Number. These cases are less common than two-way interactions
but we may extend our algorithm in order to tackle this kind of interactions. Let
A1, A2, Az and G be four finite state machines respectively containing the ser-



vices Fy, F», F3 and {F, F», F3}. The last automaton G represents the global
system. The reasoning is then the same than for the interactions-detection algo-
rithm except that we focus on the G scenarios composed by behaviors belonging
to Ay, As and Aj interleaved together. For this reason, we use the independent
product between A;, A, and As.

Property 2: Let A;, Ay and A3z be three finite state machines, we have:
commutativity: Ay * As = Ay x Ay,
associativity: (A1 * A2) * Az = Ay x (A2 x A3).

In order to extend our algorithm to three-way interactions detection we then
use the independent product A; x As x A3 (also written ® A;) represented
€{1,2,3}
by (A; *x A2) *x Az. As before, we mark the transitions allowing the deactivation
or non-activation of a service. The following algorithm allows to detect such
interactions.

Three-Way-Interactions-Detection Algorithm
Input: A1, As, A3 and G, four FSMs that respectively represent F; and the BCS;
F, and the BCS, F3 and the BCS, F, F5, F3 and the BCS.
Output: “Interaction detected” or “No interaction detected”.
1- if S(A;) C S(G) and S(43) C S(G) and S(A3) C S(G) and S(G) \ {S(4; *
As)US(Aq * A3) U S(Ag x A3)}CS (A1 x As x A3)
2- then “no interaction detected”
3- else “interaction detected”.

This algorithm allows to check whether the isolated behaviors of Fi, F5 and F3
are present in the global system G. Furthermore, the fourth inclusion verifies if
the execution of F1, F5 and F3 in a same G scenario has a sense with regard to
the A1, A and As specifications. Let us remark that Three-Way-Interactions-
Detection Algorithm does not guarantee the Two-Way interactions detection
covered with the Interactions-Detection Algorithm. Indeed, the scenarios only
containing pairs of services behaviors are not covered there. By this way, we also
may study four-way (and more) interactions in extending our method. We give
in the following a method allowing to detect interactions between n features.
This is an extension of Three-Way-Interactions-Detection Algorithm in which
we detect interactions when n services are active.

N-Way-Interactions-Detection Algorithm
Input: Ay, As,..., A, and G, n+ 1 FSMs that respectively represent F; and the
BCS; F, and the BCS,... F3 and the BCS, and the BCS with Fi,..., F,.
Output: “Interaction detected” or “No interaction detected”.
-if | S4) cS@G)
ie{l,...,n}
and S@\{ [J S @ 4ncs( Q 4

ie{ly"'an} je{l,...,n},j:/fz’ ie{lﬁ"'ﬁn}



2- then “no interaction detected”
3- else “interaction detected”.

As before, this last algorithm does not guarantee k-Way-Interactions-Detection
for k € {2,...,n — 1}. However, when n increases, the number of N-Way inter-
actions decreases. This method is used with a number n of features that allows
to limit the number of k-Way interactions detection and thus improving the
computation. Indeed, in order to detect every feature interaction between each
service, it is necessary to tackle each k-Way interaction. Qur approach enables
to resolve this last point.

In order to apply our Interactions-Detection Algorithm, we illustrate a case of
study in the following.

4 Application to a Case Study

In this section, we describe the experimental results obtained by an implemen-
tation of our algorithm. We present an application of the tool developed in our
laboratory to a real telecommunication system upon an intelligent networks ar-
chitecture [10]. The services integrated in this system are the Originating Call
Service (OCS), Terminating Call Service (T'CS), Call Forward Unconditional
(CFU), Call Forward on Busyline (CFB) and the Automatic Call Back (ACB).
The system is described using the SDL language [11] for the call treatment, the
services invocation and for the customers management. The framework of this
specification is described in Figure 4.

The global system whose we give few significantly numerals in Figure 5, has
been simulated in using the exhaustive simulation mode and a startup file in
order to obtain a complete reachability graph. The startup file allows to restrict
the simulation and thus to avoid the combinatory explosion problem. Indeed,
it is impossible to obtain the complete reachability graph, huge memory size
is necessary for such a graph. Therefore, the startup file of the specification
allows to activate only the Originating Call Service (OCS) and the Call Forward
Unconditional (CFU), and to put the three others inactive. We also may reduce
the number of the customers as three, Uy, Us and Us.

Our tool needs three input files. The first one represents an automaton where
OCS is lonely active, the second one illustrates the system with only CFU active,
and the last one represents the global system containing the two services above.
In order to mark the transitions of the two first finite state machines, a static
insertion of a signal fake is provided in the SDL specification. This signal is sent
when the service is unused as it is shown on Figure 6.

With the ObjectGEODE tool, we have simulated the three configurations
and have obtained the three finite state machines A;, As and G whose the
details are given in Figure 7.

We may underline that these three finite state machines A;, As and G do not
contain neither deadlocks, nor livelocks. If this is the case, it would meant that
the behavior is not correct, and then, an analysis of these scenarios reaching these
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deadlocks or livelocks would be necessary. From the formal method described
in Section 3.2, we check S(4;) C S(G) and S(A2) C S(G). Our tool does
not detect any anomalies when we verify both inclusions, it means that the
Fy and F; isolated behaviors are correctly respected in the global system. The
A; and A, transitions have previously been marked and the implementation
of our algorithm respectively provides us 228,157 and 507 scenarios in Ay, A
and @. The third inclusion takes into account 285 scenarios which we need to
reproduce from the A; and A, behaviors in A; x Ay. We note that 124 errors
invalidate the inclusion. Therefore, we have analyzed the obtained results in order
to observe the interactions we detected. Every scenario implied in the detection
represents the same interaction, indeed, we reach the wished final states, but
the fake transition is executed. We have studied the schema of the detected
communication and we observe that the interaction is produced when the user
U; is in line with Us whereas this latter is in the U;’s blacklist.

5 Conclusion

The contribution of our work is the definition of a formal method allowing to
analyze the global behavior of a system containing several services in order to
detect the feature interactions. We extend our algorithm in order to detect three-
way interactions. This work has led to the implementation of a tool taking three
finite state machines in input and allowing to detect the interactions. We applied
our algorithm to a real case study in a system with an Intelligent Network
architecture. The experimentation has been realized on the system containing
the Call Forward Unconditional service and the Originating Call Service. We
detect 124 scenarios that lead to the same interactions. One of the perspectives
is to restrict the scenarios analysis in order to avoid the execution of all the
scenarios which create a redundant interaction.

Furthermore, it is possible to study the desirable interactions with our method.
Indeed, this could be obtained as a generalization of our algorithm by marking
the transitions with different criteria. This would allow to reach objectives such
as desirable interactions.
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